ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (13)
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  (6)
  • Istituto Nazionale di Geofisica e Vulcanologia  (11)
  • Copernicus Publications  (6)
  • American Association for the Advancement of Science
Collection
Publisher
Years
  • 1
    Publication Date: 2021-06-21
    Description: Quantifying the CO2 flux sustained by lowtemperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles’ atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The calculated CO2 fluxes range from low (5.7 +/- 0.9 t d-1; Krýsuvík) to moderate (524 +/-108 t d-1; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale.
    Description: Published
    Description: 1209–1221
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: volcanic CO2 fluxes ; Hekla volcano ; Krýsuvík hydrothermal area ; Nea Kameni ; Vulcano island ; tunable diode lasers ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-07
    Description: The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d—1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d—1.
    Description: Published
    Description: 301-308
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: SO2 ; Differential optical absorption spectroscopy ; Vulcano Island ; Network for Observation of Volcanic and Atmospheric Change ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-24
    Description: Mount Etna produces frequent eruptions from its summit craters and from fissures on its flanks. The flank fissures trend approximately radially to the summit, and are mainly concentrated in three rift zones that are located on the NE, S and W flanks. Many flank eruptions result from lateral magma transfer from the central conduit into fractures intersecting the flanks, although some eruptions are fed through newly formed conduits that are not directly linked to the central conduit. We analyzed the structural features of eruptions from 1900 to the present, one of the most active periods in the documented eruptive history of Etna, which comprised 35 summit and 33 flank events. Except for a small eruption on the W flank in 1974, all of the flank eruptions in this interval occurred on or near the NE and S rifts. Eruptions in the NE sector were generally shorter, but their fissure systems developed more rapidly and were longer than those in the S sector. In contrast, summit eruptions had longer mean durations, but generally lower effusion rates (excluding paroxysmal events characterized by very high effusion rates that lasted only a few hours). This database was examined considering the main parameters (frequency and strike) of the eruptive fissures that were active over the last ~2 ka. The distribution in time and space of summit and flank eruptions appears to be closely linked to the dynamics of the unstable E to S flank sector of Etna, which is undergoing periodic displacements induced by subvolcanic magma accumulation and gravitational pull. In this framework, magma accumulation below Etna exerts pressure against the unbuttressed E and S flanks, which have moved away from the rest of the volcano. This has caused an extension to the detachment zones, and has facilitated magma transfer from the central conduit into the flanks.
    Description: This work was sponsored by the Italian National Civil Defence Department and INGV (Istituto Nazionale di Geofisica e Vulcanologia), project V3-LAVA (RU01–Team 01C).
    Description: Published
    Description: 464-479
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: dike ; magmas ; tectonics ; structural geology ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002–January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (Q4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and shortand midterm eruption forecasting of explosive activity.
    Description: Published
    Description: 821-823
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727523 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Published
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: open
    Keywords: rock physics, geomechanics, thermo-hydro-mechanical coupling, natural hazards ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2017-04-04
    Description: Episodes of nonvolcanic tremor and accompanying slow slip recently have been observed in the subduction zones of Japan and Cascadia. In Cascadia, such episodes typically last a few weeks, and differ from “normal” earthquakes in their source location and momentduration scaling. The three most recent episodes in the Puget Sound/Southern Vancouver Island portion of the Cascadia subduction zone have been exceptionally well recorded. In each episode, we see clear pulsing of tremor activity with periods of 12.4 and 24-25 hours, the same as the principal lunar and lunisolar tides. This indicates that the small stresses associated with the solid-earth and ocean tides influence the genesis of tremor much more effectively than they do “normal” earthquakes. Because the lithostatic stresses are 105 times larger than those associated with the tides, we argue that tremor occurs on very weak faults.
    Description: Published
    Description: 186 -189
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Nonvolcanic ; tremor ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Multivariate methods were applied to denoise the gravity and geomagnetic signals continuously recorded by the permanent monitoring networks on the Etna volcano. Gravity and geomagnetic signals observed in volcanic areas are severely influenced by meteorological variables (i.e. pressure, temperature and humidity), whose disturbances can make the detection of volcanic source effects more difficult. For volcano monitoring it is necessary, therefore, to reduce the effects of these perturbations. To date filtering noise is a very complex problem since the spectrum of each noise component has wide intervals of superposition and, some times, traditional filtering techniques provide unsatisfactory results. We propose the application of two different approaches, the adaptive neuro-fuzzy inference system (ANFIS) and the Independent Component Analysis (ICA) to remove noise effects from gravity and geomagnetic time series. Results suggest a good efficiency of the two proposed approaches since they are capable of finding and effectively representing the underlying factors or sources, and allow local features of the signal to be detected.
    Description: Published
    Description: 735-749
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: gravity data ; geomagnetic data ; ANFIS ; ICA ; Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i) downloading weather forecast data from meteorological mesoscale models; ii) running models of tephra dispersal, iii) plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv) publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.
    Description: FIRB Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by Italian Minister of University and Research
    Description: Published
    Description: 1573–1585
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; monitoring and forecasting ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and powerinefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 1018 molec cm􀀀2 ( 500 ppmm) were detected along open paths of up to 400m in total length. The instrument’s SO2 detection limit was determined to be 2 1016 molec cm􀀀2 ( 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2/ were both below the instrument’s detection limits during the experiment, the upper limits for the X/ SO2 ratio (XDClO, CS2/ could be derived, and yielded 2 10􀀀3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.
    Description: Published
    Description: 355-367
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: LP-DOAS ; volcanic gas measurements ; Vulcano Island ; sulfur dioxide ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Nowadays, thermal imaging has become a common remote sensing tool for monitoring active volcanoes. The study of temperature variations within openconduit systems, at eruptive fissures, active vents, domes, lava lakes, lava fields and other volcanic features has proven fundamental to better understand volcanic system behaviour over the short and long terms (Harris and Stevenson, 1997; Oppenheimer and Yirgu, 2002; Calvari et al., 2004; Wadge et al., 2006). At INGV Catania Section, thermal imaging has been applied at Mt Etna, Stromboli, Vulcano and Panarea since 2001. The instruments used are thermal cameras manufactured by FLIR (Forward Looking InfraRed) and consist in uncooled bolometers that are sensitive within 7.5 and 13 μ wavelengths. Thermal cameras are based on the capability to detect radiation emitted by bodies according to Planck’s Law. In particular, the camera we used is a FLIR thermal camera A 40 M Ethernet with a focal plane array uncooled bolometer (320 x 240 pixels), and a spectral range between 7.5 and 13 micrometers (Figure 1.). It has a standard optics 24° with spatial resolution (IFOV, instantaneous field of view) of 1.3 mrad, a horizontal view of 24° and a vertical view of 18°. This camera has also been equipped with optional filter to measure temperature values up to 1500°C with the possibility of setting up different temperature ranges. The thermal camera can record and transfer in real time via wi-fi radiometric frames in JPG format of the observed eruptive activity according to some environmental parameters, such as external temperature, air humidity and emissivity and allows the vision of volcanic activity both day and night.Temperature range varies between 0 e 500° C and the emissivity value ε = 1. To correct the temperature of all pixels from the atmospheric attenuation effects, we considered atmospheric parameters, such as air temperature and air humidity, in addition to the introduction of the path length (400 m) in the camera software. In fact, the radiations detected by the FLIR thermal cameras, that work in the spectral band between 7.5 e 13 μm, are affected by the absorption factor from the water spectrum, which is predominant in this band; particularly at La Fossa crater where the water content in the fumaroles is higher than the other gas species. Because of the necessity to correct the radiometric data from the atmospheric factors in real-time, we installed a meteorological station able to interface with the camera to provide atmospheric parameters for the auto-calibration.
    Description: Published
    Description: 427 - 434
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: thermal cameras and active volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...