ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics
  • Aircraft Stability and Control
  • 1960-1964  (208)
  • 1945-1949  (217)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2015-04-02
    Description: Effect of rapid pressure decay on solid propellant combustion
    Keywords: Aerodynamics
    Type: ARS Journal; Volume 31; No. 11; 1584-1586
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-07
    Description: The effect of mass addition on the flow over bodies moving at hypersonic speeds has been studied by several investigators (e.g., Cresci and Libby). In most of this work, primary attention logically has been directed toward the effects of foreign-gas injection on heat transfer and pressure distributions, and, principally for this reason, most of the work ha been done at zero angle of attack. The foreign gas can be provided either by some active injection system or by the action of an ablation heat shield. With increasing rates of injection, the basic flow about the body can be affected significantly. One such effect was observed in the paper by Cresci and Libby, where it was shown that the shockwave standoff distance can be increased by gas injection at the nose of a body.
    Keywords: Aerodynamics
    Type: AIAA Journal; Volume 1; No. 4; 939-940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: The greatest efficiency for a lifting surface at supersonic speeds, according to the theoretical considerations of reference 1, can be attained if the leading edge is swept well behind the Mach cone and the highest aspect ratio which is structurally possible is employed. Such a wing, designed for a Mach number of 3.0, would have 80 deg. of sweepback. Aeroelastic effects have 〈 been shown 3 to be considerable for a wing with 60deg of sweepback and designed for a Mach number of 2.0. The wing shown was found theoretically to have considerable loss in maximum lift-drag ratio attributable to aeroelasticity. This wing has 12-per cent-thick Clark-Y airfoils normal to the wing leading edge. If it were of solid aluminum and flying at a dynamic pressure of 2,400 lbs./sq.ft. (flexibility parameter qb(exp. 4) /El(0) = 7.8), analysis indicates that the wing would deflect so as to reduce the maximum lift-drag ratio about 30 per cent.
    Keywords: Aerodynamics
    Type: Journal of the Aerospace Sciences; Volume 27; No. 8; 634-635
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-25
    Description: A simplified method is presented for estimating the lift-curve slope of irregular planform wings at subsonic speeds and low angles of attack. The present process is an extension of the method derived in NACA Technical Note 3911 and enables quick estimates of subsonic liftcurve slope, to be made whereas more refined procedures require considerable time and computation. Comparison of experimental and estimated values for a wide range of wing planforms having discontinuous spanwise sweep variation indicates good agreement. A comparison of the present procedure with a 20-step vortex method (NACA Research Memorandum L50L13) indicated good agreement for a variable-sweep configuration.
    Keywords: Aerodynamics
    Type: NASA-TM-X-525
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L9C04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.
    Keywords: Aerodynamics
    Type: NACA-RM-A7J13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Pressure distribution over an extended leading-edge flap on a 42 degree swept-back wing was investigated. Results indicate that the flap normal-force coefficient increased almost linearly with the angle of attack to a maximum value of 3.25. The maximum section normal-force coefficient was located about 30 percent of the flap span outboard of the inboard end and had a value of 3.75. Peak negative pressures built up at the flap leading edge as the angle of attack was increased and caused the chordwise location of the flap center of pressure to be move forward.
    Keywords: Aerodynamics
    Type: NACA-RM-L7J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.
    Keywords: Aerodynamics
    Type: NACA-RM-E7G23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: In the course of a flight test of a supersonic research pilotless aircraft (the NACA RM-1), large-amplitude aileron oscillations, probably aileron compressibility flutter, were encountered in the transonic and supersonic speed ranges. The wing was oscillating at the same frequency as the aileron. The aircraft was equipped with 45 degree swept-back wings of symmetrical NASA 65-010 airfoil section. Completely mass-balanced ailerons with 20 degree beveled trailing edges were installed on the wings. The ailerons were free floating with no mechanical restraining force other than the friction of the aileron hinges and servomechanism bearings throughout the high-speed interval of flight.
    Keywords: Aerodynamics
    Type: NACA-RM-L6L09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: A three-dimensional investigation of straight-sided-profile plain ailerons on a wing with 30 degrees and 45 degrees of sweepback and sweepforward was made in a high-speed wind tunnel for aileron deflections from -10 degrees to 10 degrees and at Mach numbers from 0.60 to 0.96. Wing configurations of 30 degrees generally reduced the severity of the large changes in rolling-moment and aileron hinge-moment coefficients experienced by the upswept wing configurations as the result of compression shock and extended to higher Mach numbers the speeds at which such changes occurred.
    Keywords: Aerodynamics
    Type: NACA-RM-L7I15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: Low-speed tests of a pilotless aircraft were conducted in the Langley propeller-research tunnel to provide information for the estimation of the longitudinal stability and. control, to measure the aileron effectiveness, and to calibrate the radome and the Machmeter pitot-static orifices. It was found that the model possessed a stEb.le variation of elevator angle required for trim throughout the speed range at the design angle of attack. A comparison of the airplane with and without JATO units and with an alternate rocket booster showed that a large loss in longitudinal stability and control resulting from the addition of the rocket booster to the aircraft was sufficient to make the rocket-booster assembly unsatisfactory as an alternate for the JATO units. Reversal of the aileron effectiveness was evident at positive deflections of the vertical wing flap indicating that the roll-stabilization system would produce roiling moments in a tight right turn contrary to its design purpose. Vertical-wing-flap deflections caused large errors in the static-pressure reading obtained by the original static-tube installation. A practical installation point on the fuselage was located which should yield reliable measurement of the free-stream static pressure.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a series of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airfoils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge. The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the 'wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a freely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonable
    Keywords: Aerodynamics
    Type: NACA-RM-L6K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L7C04a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.
    Keywords: Aerodynamics
    Type: NACA-RM-E6K21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1474 , AD-A801528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.
    Keywords: Aerodynamics
    Type: NACA-TN-1299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: Theoretical analysts of lateral dynamic motion of tailless and conventional airplanes was made for fighter and heavy transport. Their reactions to a lateral gust and control power required by each for simple maneuvers were determined and compared. Both types of airplanes require almost identical aileron control power to perform a given maneuver; tailless airplane requires about 1-2 to 1-3 directional control power of conventional airplane. Tailless airplane also shows greatest displacement for a given disturbance and has least damping in oscillatory mode.
    Keywords: Aerodynamics
    Type: NACA-TN-1154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-06-28
    Description: For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.
    Keywords: Aerodynamics
    Type: NACA-TN-1069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: Behaviors of both model and full-scale airplanes were ascertained by making visual observations, by recording time histories of decelerations, and by taking motion picture records of ditchings. Results are presented in form of sequence photographs and time-history curves for attitudes, vertical and horizontal displacements, and longitudinal decelerations. Time-history curves for attitudes and horizontal and vertical displacements for model and full-scale tests were in agreement; maximum longitudinal decelerations for both ditchings did not occur at same part of run; full-scale maximum deceleration was 50 percent greater.
    Keywords: Aerodynamics
    Type: NACA-WR-L-617 , NACA-MR-L6A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: Finite trigonometric series is fitted by harmonic analysis as an approximation function to the psi function of the Theodorsen arbitrary-airfoil potential theory. By harmonic synthesis, the corresponding conjugate trigonometric series is used as an approximation to the epsilon function. A set of coefficients of particularly simple form is obtained algebraically for direct calculation of the epsilon values from the corresponding set of psi values. Complete derivation of this process is presented.
    Keywords: Aerodynamics
    Type: NACA-WR-L-153 , NACA-ARR-L5H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: A program of model tests has been completed at Langley tank no. 1 which will furnish a qualitative guide as to the relation of length of afterbody and depth of step. The model used for the tests was a l/12-size unpowered dynamic model of a hypothetical 160,000-pound airplane. The results showed that an increase in length of afterbody requires an accompanying increase in depth of step to maintain adequate landing stability. Changing the length of afterbody and depth of step in such a manner as to maintain a given landing stability will result in only small changes in take-off stability.
    Keywords: Aerodynamics
    Type: NACA-WR-L-684 , NACA-MR-L5I28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: Tests show that at inlet-air temperatures of 250 deg F and 100 deg F the knock-limited performance of the base fuel of blends, leaded with 4 ml TEL per gallon and containing 20 percent spiropentane, was reduced at fuel/air ratios below 0.085. The 20 percent methylenecyclobutane reduced the knock-limited power of the base fuel at fuel/air ratios below 0.112. Di-tert-butyl ether, methyl-tert-butyl ether, and triptane increased the knock-limited power of the base fuel at all fuel/air ratios and at both temperatures.
    Keywords: Aerodynamics
    Type: NACA-WR-E-222 , NACA-RB-E6D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: Engine temperature data and cooling correlating analyses of the engine and oil cooler are presented in connection with an investigation of the cowling and cooling of the ranger V-770-8 engine installation in the Edo XOSE-1 airplane. Three types of baffles were installed in the course of the tests: the conventional, the turbulent-flow, and the NACA diffuser baffles. Each of the types was of merit in cooling a different region on the cylinder. Incorporation of the best features of the three types into one baffle, a method which appears to be feasible, would provide improvements in cylinder cooling.
    Keywords: Aerodynamics
    Type: NACA-WR-L-561
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.
    Keywords: Aerodynamics
    Type: NACA-WR-L-51 , NACA-ACR-L5G10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: Sectional characteristics of airfoil having retractable slotted flap with plain, slot-lip, or retractable ailerons are presented for a large range of aileron deflections. The analysis indicated that pitching moments produced by spoilers were less positive than those produced by plain flaps of equal effectiveness, also that pitching moments created by the spoiler increased less with the Mach number than similar moments produced by plain flaps. Positive values of pitching moment decreased as devices were located nearer airfoil leading edge.
    Keywords: Aerodynamics
    Type: NACA-WR-L-124 , NACA-ACR-L5C24a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: Results of flight tests of a control-feel aid presented. This device consisted of a spring and dashpot connected in series between the control stick and airplane structure. The device was tested in combination with an experimental elevator and bobweight which had given unsatisfactory dynamic stability and control-feel characteristics in previous tests. The control-feel aid effected marked improvement in both the control-feel characteristics and the control-feel dynamic longitudinal stability of the airplane.
    Keywords: Aerodynamics
    Type: NACA-WR-L-730 , NACA-MR-L6E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.
    Keywords: Aerodynamics
    Type: NACA-TN-1495
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: The first part of this paper reviews the present state of the problem of the instability of laminar boundary layers which has formed an important part of the general lectures by von Karman at the first and fourth Congresses and by Taylor at the fifth Congress. This problem may now be considered as essentially solved as the result of work completed since 1938. When the velocity fluctuations of the free-stream flow are less than 0.1 percent of the mean speed, instability occurs as described by the well-known Tollmien-Schlichting theory. The Tollmien-Schlichting waves were first observed experimentally by Schubauer and Skramstad in 1940. They devised methods of introducing controlled small disturbances and obtained measured values of frequency, damping, and wave length at various Reynolds numbers which agreed well with the theoretical results. Their experimental results were confirmed by Liepmann. Much theoretical work was done in Germany in extending the Tol1mien-Schlichting theory to other boundary conditions, in particular to flow along a porous wall to which suction is applied for removing part of the boundary layer. The second part of this paper summarizes the present state of knowledge of the mechanics of turbulent boundary layers, and of the methods now being used for fundamental studies of the turbulent fluctuations in turbulent boundary layers. A brief review is given of the semi-empirical method of approach as developed by Buri, Gruschwitz, Fediaevsky, and Kalikhman. In recent years the National Advisory.Commsittee for Aeronautics has sponsored a detailed study at the National Bureau of Standards of the turbulent fluctuations in a turbulent boundary layer under adverse pressure gradient sufficient to produce separation. The aims of this investigation and its present status are described.
    Keywords: Aerodynamics
    Type: NACA-TN-1168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted to determine the penetration of a circular air Jet directed perpendicularly to an air stream as a function of Jet density, Jet velocity, air-stream density, air-stream velocity, Jet diameter, and distance downstream from the Jet. The penetration was determined for nearly constant values of air-stream density at two tunnel velocities, four Jet diameters, four positions downstream of the Jet, and for a large range of Jet velocities and densities. An equation for the penetration was obtained in terms of the Jet diameter, the distance downstream from the jet, and the ratios of Jet and air-stream velocities and densities.
    Keywords: Aerodynamics
    Type: NACA-TN-1615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: Tests of a partial-span model of a large bomber-type air1ane were conducted to determine the. aerodynamic characteristics of the wing equipped with full-span flaps and a retractable spoiler end aileron lateral control system. The arrangement consisted of (1) a double slotted flap extending over aproximate1y 86 percent of the wing semispan, (2) a 20-percent constant-percentage-chord aileron extending from the outboard end of the flap to the wing tip, and (3) a retractable spoiler, located at the 65-percent wing-chord station and extending from approximately 63 percent of the wing semispan to the wing tip. In addition, tests were made of a wing vent (of 1 and 2 percent of the wing chord located directly behind the spoiler), perforations in the spoiler, a blot or cut-out along the lower edge of the spoiler and spoilers of various spans. With full-span flaps deflected and with the 2-percent vent open or closed the initial stalling of the wing occurred at the tips, but with the vents closed there probably would be no appreciable loss in lateral control until maximum lift was reached. The l-percent vent increased the rolling effectiveness of the spoiler at small spoi1er deflections, particularly at high angles of attack with flaps deflected. With flaps deflected the 2-percent vent caused a large reduction in both the wing lift and rolling effectiveness of the spoiler at large angles of attack. However, at small angle of attack the 2-percent vent increased the rolling effectiveness of the spoiler at small spoiler deflections. The simultaneous operation of the spoiler and vent (in contrast to a vent fixed in the wing) would result in a large increase in the effectiveness of the spoiler and would avoid any loss in wing lift as in a fixed vent arrangement. The tests of the spoiler modifications revealed that (1) the spoiler perforations reduced the rolling-moment and yawing-moment coefficients but caused the spoiler hinge-moment coefficients to become more positive; (2) the spoiler slot had no notable effect on the rolling-moment and yawing-moment characteristics but produced a positive increase in the spoiler hinge-moment coefficients at large spoiler deflections; (3) the effects produced by the individual modifications were additive when the various modifications were combined. In general, progressively decreasing the spoiler span by removing the segments from the inboard end of the spoiler caused a decrease in rolling effectiveness approximately proportional to the span of the segment.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1409
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: A theoretical investigation was conducted on jet-induced flow deviation. Analysis is given of flow inclination induced outside cold and hot jets and jet deflection caused by angle of attack. Applications to computation of effects of jet on longitudinal stability and trim are explained. Effect of jet temperature on flow inclination was found small when thrust coefficient is used as criterion for similitude. The average jet-induced downwash over tail plane was obtained geometrically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-213 , NACA-ACR-L6C13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. Jacobs, Ira R. Abbott, and Milton Davidson, March 1942 has been corrected and included in the present paper, which supersedes the previously published paper.
    Keywords: Aerodynamics
    Type: NACA-ACR-L5005 , NACA-MR-L5I12 , NACA-WR-L-560
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Statistical methods were applied to acceleration and airspeed data obtained with the XC-35 airplane during flights in turbulent air within convective clouds in order to determine the characteristics of repeated or closely spaced gusts pertinent to design problems. Results indicated that, in turbulent air within convective cloud, gusts tend to be contiguous and are seldom found isolated in space. Over-all average spacing between repeated gusts was in good agreement with twice the average gust-gradient distance of 10 chords used in present design.
    Keywords: Aerodynamics
    Type: NACA-WR-L-39 , NACA-ARR-L5H30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: At the request of the Air Technical Service Command, U.S. Army Air Forces, a 0.22-scale model of a twin-fuselae pursuit airplane was built and tested at the Ames Aeronautical Laboratory. The tests of this model were made in order that the aerodynamic characteristics of the airplane, especially at high speed, might be predicted. The results shown in this report consist of force data for the model and critical Mach numbers of parts of the model as determined from pressure-distribution measurements. The results indicate that a diving tendency of the airplane can be expected at Mach numbers above 0.70 at lift co-efficients from 0 to 0.4. There is an indication that the Mach number at which the airpolane would first experience a diving tendency for lift coefficients from 0 to 0.2 can be increased if the critical speed of the radiator enclosures is increased, and the wing-fuselage-juncture fillets are improved.
    Keywords: Aerodynamics
    Type: NACA-WR-A-75 , NACA-MR-A6D03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: Two-dimensional data were obtained in Mach range of from 0.40 to 0.94 and Reynolds Number range of (3.4 - 4.2) X 10 Degrees. Results indicate that thickness ratio is dominating shape parameter at high Mach numbers and that aerodynamic advantages are attainable by using thinnest possible sections. Effects of jet boundaries, Reynolds Number, and Data presented are free from jet-boundary and humidity effects.
    Keywords: Aerodynamics
    Type: NACA-WR-L-143 , NACA-ACR-L5E21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-06-28
    Description: Wing section outboard of flap was tested by wake surveys in Mach range of 0.25 - 0.78 and lift coefficient range 0.06 - 0.69. Results indicated that minimum profile-drag coefficient of 0.0097 was attained for lift coefficients from 0.16 to 0.25 at Mach less than 0.67. Below Mach number at which compressibility shock occurred, variations in Mach of 0.2 had negligible effect on profile drag coefficient. Shock was not evident until critical Mach was exceeded by 0.025.
    Keywords: Aerodynamics
    Type: NACA-WR-L-98 , NACA-ACR-L6B21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: Tests in Langley pressure tunnel of model XA-26 bomber were compared with those of A-26B (twin-engine attack bomber) and showed that static longitudinal stability, indicated by elevator-fixed neutral points, and variation of elevator deflection in straight and turning flight were good. Airplane possessed improved stability at low speeds which was attributed to pronounced stalling at root of production wing. At rudder-force reversal at speeds higher than those in flight tests, agreement in rudder-fixed and rudder-free static directional stability was good. Hinge moment obtained at zero sideslip was satisfactory for determining aileron forces in sideslip.
    Keywords: Aerodynamics
    Type: NACA-WR-L-99 , NACA-ARR-L5H11a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-05-11
    Description: Closed-form expressions and tables composed from these expressions are presented for complete and partial conic and spheric bodies at combined angles of attack and sideslip in Newtonian flow. Aerodynamic coefficients of these bodies are tabulated for various body segments over a range of angles of attack from 1 deg to 85 deg and angles of sideslip from 0 deg to 15 deg. Some comparisons between Newtonian predictions and hypersonic experimental aerodynamic characteristics were made for conic bodies hawing various surface slopes, nose bluntnesses, and body cross sections to indicate the range of validity of the theory. In general, the theory is shown to agree quite well with experimental results for sharp-nose complete cones and for configurations hawing large blunted noses and steep surface slopes. However, agreement between theory and experiment generally is poor for the more slender, slightly blunted complete or half conic bodies and also for sharp-nose half conic bodies where real-flow phenomena such as forebody interference, viscous forces, leeward surface contributions, or leading-edge pressure reductions may have significant effect. The agreement between theory and experiment for the bodies considered can be improved by using the stagnation pressure coefficient behind a normal shock rather than 2 as the Newtonian coefficient, although for the sharp-nose half conic bodies there i s no theoretical justification for this modification.
    Keywords: Aerodynamics
    Type: NASA-TR-R-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: An investigation was made of the static longitudinal stability, and control and stall characteristics of XBTK-1 dive bomber. Results indicate that the longitudinal stability will probably be satisfactory for all contemplated flight conditions at the rear-most CG location with elevator both fixed and free. Power effects were small. Sufficient elevator control will be available to trim in any flight condition above the ground. Increasing the slotted flap deflection above 30 degrees only slightly increased the max. lift coefficient.
    Keywords: Aerodynamics
    Type: NACA-WR-L-785 , NACA-MR-L5D27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: Availability data obtained on SNB-1 trainer-class airplanes were analyzed and results presented as flight envelopes which predict occurrences of large values of air speed and acceleration. Comparison is made with SNJ-4 trainer-class airplane data analyzed by the same method. It is concluded that flight envelopes are satisfactory; that the two types show large differences in flight loads and speeds experience; and that SNB-1 will seldom, if ever, exceed design limit load factor and restricted speed, which SNJ-4 can be expected to exceed design-limit load factor and restricted speed in a very small number of flight hours.
    Keywords: Aerodynamics
    Type: NACA-WR-L-759 , NACA-MR-L6F27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: The data presented have no bearing on performance characteristics of airplane, which were considered exceptionally good in previous tests. Some of the undesirable features of lateral and directional stability and control characteristics of the F-8 are listed. Directional stability, with rudder fixed, did not sufficiently restrict aileron yaw; rudder control was inadequate during take-off and landing, and was insufficient to fly airplane with one engine; in clean condition, power of ailerons was slightly below minimum value specified; it was difficult to trim airplane in rough air.
    Keywords: Aerodynamics
    Type: NACA-WR-L-593 , NACA-MR-L5D19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: Results are reported of knock-limited tests of five aromatics, each individually blended with selected base fuels and tested with and without TEL, using 17.6, F-4, and F-3 small-scale engines. The five aromatics rated in the following order of decreasing antiknock effectiveness at fuel/air ratio 0.10: m-xylene, 1-isopropyl-4-methylbenzene, n-propylbenzene, isobutylbenzene, and n-butylbenzene.
    Keywords: Aerodynamics
    Type: NACA-WR-E-237 , NACA-ARR-E6C05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: Data are presented of the flow conditions in the vicinity of an NACA D sub S -type cowling. Tests were made of a 1/2 scale-nacelle model at inlet-velocity ratios ranging from 0.23 to 1.02 and angles of attack from 6 deg to 10 deg. The velocity and direction of flow in the vertical plane of symmetry of the cowling were determined from orifices and tufts installed on a board aligned with the flow. Diagrams showing velocity ratio contours and lines of constant flow angles are given.
    Keywords: Aerodynamics
    Type: NACA-WR-L-747 , NACA-MR-L6H14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: In Mach range of 0.25 - 0.69, boundary-layer measurements were made on upper wing surface at 25% semi-span, pressure-distribution measurements made on upper surface at 63% semi-span, and wake surveys made at 63% semi-span. The minimum profile-drag coefficient of 0.0062 was indicated for smooth section at 63% semi-span. Critical mach number was exceeded by 0.04, but no compressibility shocks appeared. In slipstream, boundary layer transition occurred as far back as 20% chord on upper surface at low lift coefficients.
    Keywords: Aerodynamics
    Type: NACA-WR-L-86 , NACA-ARR-L5H11A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.
    Keywords: Aerodynamics
    Type: NACA-WR-L-727 , NACA-ACR-L6B18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: The results of a theoretical analysis of the hinge-moment characteristics of various sealed-internal-balance arrangements for control surfaces are presented. The analysis considered overhands sealed to various types of wing structure by flexible seals spanning gaps of various widths or sealed to the wing structure by a flexible system of linked plates. Leakage was not considered; the seal was assumed to extend the full spanwise length of the control surface. The effect of the developed width of the flexible seal and of the geometry of the structure to which the seal was anchored was investigated, as well as the effect of the gap width that is sealed. The results of the investigation indicated that the most nearly linear control-surface hinge-moment characteristics can probably be obtained from a flexible seal over a narrow gap (about 0.1 of the overhang chord), which is so installed that the motion of the seal is restricted to a region behind the point of attachment of the seal to the wing structure. Control-surface hinge moments that tend to be high at large deflections and low or overbalanced at small deflections will result if a very narrow seal is used.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-L-174 , NACA-ARR-L5F30 , AD-A801569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: Tests were made to determine whether spring-tab ailerons tended to oscillate or flutter in speed ranges up to 400 mph. Flight tests showed spring-tab ailerons had desirable light stick forces and no tendency to overbalance. No flutter tendencies were indicated up to 400 mph, and any oscillations following abrupt control deflections were heavily damped. Recommendations were made for modifications to increase aileron effectiveness at low speeds without affecting lateral control at high speeds by increasing available deflection and modifying spring-tab arrangement.
    Keywords: Aerodynamics
    Type: NACA-WR-L-149 , NACA-ARR-L5C23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: Critical Mach number as function of lift coefficient is determined for certain moderately thick NACA low-drag airfoils. Results, given graphically, included calculations on same airfoil sections with plain flaps for small flap deflections. Curves indicate optimum critical conditions for airfoils with flaps in such form that they can be compared with corresponding results for zero flap deflections. Plain flaps increase life-coefficient range for which critical Mach number is in region of high values characteristic of low-drag airfoils.
    Keywords: Aerodynamics
    Type: NACA-WR-W-2 , NACA-ACR-6A30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.
    Keywords: Aerodynamics
    Type: NACA-WR-L-50 , NACA-ACR-L5A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-05
    Description: Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.
    Keywords: Aerodynamics
    Type: Journal of Aerospace Sciences; Volume 27; No. 5; 321-333
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: Propellers with trailing-edge extensions were studied to determine aerodynamic characteristics. Trailing-edge extension increased power absorbed by propeller with little loss in efficiency. Power coefficient for maximum efficiency was greater for 20% camber type extension than for 20% straight type extension over range of advance ratio of 1.0 to 2.5 although camber type was less efficient. Efficiency was about the same for cruising and high-speed at a high power coefficient for propeller with extension.
    Keywords: Aerodynamics
    Type: NACA-WR-L-582
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: Investigations were made to determine the cowling and cooling characteristics of the Ranger V-770-8 engine installation in an observation seaplane. Final cowl configurations possessed ample engine and oil-cooler pressure drops for cooling in the critical normal-power climb condition with any of the three baffle configurations tested. The indicated critical Mach number of the cowling was found to be 0.70 as determined by the pressure on the lower lip of the inlet.
    Keywords: Aerodynamics
    Type: NACA-WR-L-562 , NACA-MR-L5I12b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.
    Keywords: Aerodynamics
    Type: NACA-WR-L-270
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-A-19 , NACA-ARR-5C01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.
    Keywords: Aerodynamics
    Type: NACA-TR-496
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: The aerodynamic effects of fixing boundary-layer transition for a swept- and a triangular-wing configuration have been determined from tests of two small-scale wing-body models. The wings had an aspect ratio of 2.99 and 3-percent-thick biconvex sections. Lift, pitching-moment, and drag data were obtained at Mach numbers ranging from 0.60 to 1.40 for angles of attack between -2 deg and about 15 deg. The Reynolds number of the tests was generally 1.5 million; however, minimum drag measurements were made for both models over a range of Reynolds numbers from 1.0 million to about 3.0 or 4.0 million.
    Keywords: Aerodynamics
    Type: NASA-TN-D-312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: A theoretical analysis indicates that, for rotors, ground effect decreases rapidly with increases in either height above the ground or forward speed. The decrease with height above the ground in forward flights is greater than that in hovering. The major part of the decrease in ground effect with forward speed occurs at speeds less than 1.5 times the hovering mean induced velocity. Consequently, the total induced velocity at the rotor center increases rather than decreases when a helicopter gathers speed at low height above the ground.
    Keywords: Aerodynamics
    Type: NASA-TN-D-234
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Aerodynamics
    Type: 1961 International Heat Transfer Conference; 1961 Aug. 28-Sept. 1; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-25
    Description: An investigation has been made to study the effect of ground proximity on the aerodynamic characteristics of two jet vertical-take-off-and-landing airplane models in which the fuselage remains in a horizontal attitude for the take-off and landing. The first model (called the tilt-wing model) had a tilting wing-engine assembly which was set at 90 deg incidence for the take-off and landing. The second model, called the deflected-jet model) had a cascade of retractable turning vanes to deflect the exhaust of the horizontally mounted jet engines downward for vertical take-off and landing while the entire model remained in a horizontal attitude. With the models at various heights above the ground in the take-off and landing configuration, the lift, drag, and pitching moment were measured and tuft surveys were made to determine the flow field caused by the jet exhaust. The tilt-wing model experienced a loss of lift of less than 3 percent near the ground. The deflected-jet model, however, suffered losses in lift as high as 45 percent near the ground because of a low pressure region under the model caused by the entrainment of air by the jet exhaust as it spread out along the ground. This loss in lift for the deflected-jet configuration could probably be reduced to less than 5 percent by the use of a longer landing gear and a high wing location.
    Keywords: Aerodynamics
    Type: NASA-TN-D-419 , L-1059
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NASA-TM-X-57072
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: Direct measurements have been made of the drag of a special test body and its stabilizing tail surfaces throughout free drops from high altitudes. The data obtained have been used to establish the relation between the drag coefficient and the Mach number for the body and for the tail surfaces over a range of Mach numbers from 0.85 to 1.15. For bodies of the form tested, the drag per square foot of frontal area increased abruptly from about 3 percent of atmospheric pressure at a Mach number of 0.95 to 17 percent of atmospheric pressure at a Mach number of 1.00, then linearly with Mach number to 28 percent of atmospheric pressure at a Mach number of approximately 1.15. Some doubt exists as to the applicability of the tail drag results to the estimation of wing drag at transonic speeds because of the possibility of appreciable interference effects between the vertical and the horizontal surfaces and between the body and the tail surfaces. Insofar as they are applicable, the tail drag results indicated that with symmetrical 6-percent-thick area may be expected to increase abruptly from 4 percent of atmospheric pressure at a Mach number of 0.88 to 36 percent of atmospheric pressure at a Mach number of 1.00, then linearly with Mach number to approximately 50 percent of atmospheric pressure at a Mach number of 1.15.
    Keywords: Aerodynamics
    Type: ACR No. L5EO3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-19
    Description: A 1/5-scale model of the Republic x-84 airplane (Army Project MX-578) was tested in the Langley 300 MPH 7- by 10-foot tunnel. The primary object of the tests was twofold: to determine, a practicable method of increasing the longitudinal 3tability in the landing configuration, and to investigate the effects on longitudinal and lateral Stability of various external stored (fuel tanks, bombs, and rockets). The effects of the fuselage dive brakes were also determined, and the critical Mach numbers of certain of the airplane components were estimated. The use of the revised horizontal tail (of larger aspect ratio and area than the original) seemed to be the most feasible expedient for materially increasing the longitudinal stability in the landing configuration. The neutral-point shifts produced by the various external stores were unstable, the largest shift being about 2.5 percent mean aerodynamic chord. No appreciable aerodynamic trim changes were caused by the external stores. From the standpoint of range, maximum s peed, and rate of climb, the advantages of mounting the fuel tanks at the wing tips rather than inboard beneath the wings were clearly demonstrated by the tests. The effective dihedral parameter was the only static lateral-stability derivative appreciably affected by the external stores. At high lift coefficients, the tip-mounted tanks caused a large increase in the effective dihedral parameter (about 40 increase at a lift coefficient of 1.0). This increase was held undesirable, because the tendency toward oscillatory instability that it would cause would be heightened by the increased moments of inertia resulting from the weight of the tanks when carrying fuel. The fuselage dive brakes, when deflected, caused a change in trim tending to nose the airplane up; the neutral point also moved rearward upon deflecting the dive brakes. The amount of elevator required to overcome the change in trim was well within the available range of deflection. It was estimated that a drive-brake deflection of 900 would.decrease the terminal Mach number in a vertical dive by about 0.1. The estimated critical Mach number of the V-front canopy was about 0.04 greater than that of the original canopy. Pressure-distribution tests disclosed severe pressure peaks inside the nose of the jet entrance duct. These peaks, which would lead to separation and consequently poor pressure recovery at, the engine, could be reduced by, using a smaller nose,radius and: a modified internal lip shape
    Keywords: Aircraft Stability and Control
    Type: NACA-MR No. L6F25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-24
    Description: An investigation has been made to determine the erect and. inverted spin and recovery characteristics of a 1/30-scale dynamic model of the North American A-5A airplane. Tests were made for the basic flight design loading with the center of gravity at 30-percent mean aerodynamic chord and also for a forward position and a rearward position with the center of gravity at 26-percent and 40-percent mean aerodynamic chord, respectively. Tests were also made to determine the effect of full external wing tanks on both wings, and of an asymmetrical condition when only one full tank is carried.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-946 , NACA-AD-3140 , L-3663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-17
    Description: An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.
    Keywords: Aerodynamics
    Type: NASA-TN-D-842 , L-1554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-17
    Description: The mutual influences of compression shocks and friction boundary layers were investigated by means of high speed wind tunnels.Schlieren optics provided a clear picture of the flow phenomena and were used for determining the location of the compression shocks, measurement of shock angles, and also for Mach angles. Pressure measurement and humidity measurements were also taken into consideration.Results along with a mathematical model are described.
    Keywords: Aerodynamics
    Type: NACA-TM-1113 , Mitteilungen aus dem Institut fuer Aerodynamik an der Eidgenoessischen Technischen Hochschule; 10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-17
    Description: Low Mach number longitudinal-stability and control characteristics as predicted by use of wind tunnel data from a powered 3/16-scale model are compared with flight test measurements of a Navy BTD-1 airplane. The accuracy of the wind tunnel data and the discrepancies involved in attempting to correlate with flight data are discussed and analyzed. The comparison showed that wind tunnel predictions were, in general, in good agreement with flight test data. The predicted values were for the most part sufficiently accurate to show the satisfactory and unsatisfactory characteristics in the preliminary design stage and to indicate possible methods of improvement. The discrepancies which did occur were attributed principally to physical dissimilarities between model and airplane and the instability to determine accurately the flight power conditions. The effect of Mach number was considered negligible since the maximum flight test value was about 0.5. In order to simulate more closely the flight conditions and hence obtain more accurate data for predictions, it appears desirable to perform large-scale tests of unorthodox control surfaces such as the sealed vaned elevators with which the airplane was equipped.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A6L30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-17
    Description: The performance and static stability and control characteristics of the Ryan Flex-Wing airplane were determined in an investigation conducted in the Langley full-scale tunnel through an angle-of-attack range of the keel from about 14 to 44 deg. for power-on and -off conditions. Comparisons of the wind-tunnel data with flight-test data obtained with the same airplane by the Ryan Aeronautical Company were made in a number of cases.
    Keywords: Aerodynamics
    Type: NASA-TM-SX-727 , L-3093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-17
    Description: Pressure distributions and shock shapes for a series of cylindrical afterbodies having nose fineness ratios from 0.4 to 4 have been calculated by using the method of characteristics for a perfect gas. The fluid mediums investigated were air and helium and the Mach number range was from 5 to 40. Flow parameters obtained from blast-wave analogy gave good correlations of blunt-nose induced pressures and shock shapes. Experimental results are found to be in good agreement with the characteristic calculations. The concept of hypersonic similitude enables good correlation of the results with respect to body shape, Mach number, and ratio of specific heats.
    Keywords: Aerodynamics
    Type: NASA-TR-R-78
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-16
    Description: Dr. Chapman's lecture examines the physics behind spacecraft entry into planetary atmospheres. He explains how scientists determine if a planet has an atmosphere and how scientists can compute deceleration when the atmospheric conditions are unknown. Symbols and equations used for calculations for aerodynamic heating and deceleration are provided. He also explains heat transfer in bodies approaching an atmosphere, deceleration, and the use of ablation in protecting spacecraft from high temperatures during atmospheric entry.
    Keywords: Aerodynamics
    Type: L-713 , HQ-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-16
    Description: A wind-tunnel investigation has been conducted to determine the aerodynamic characteristics of two preliminary designs of the Scout research vehicle. The first model was tested at Mach numbers from 1.77 to 2.87 at Reynolds numbers of 3.7 x 10(exp 6) to 4.0 x 10(exp 6) per foot. A variable angle-of-attack range of -2 degrees to 14 degrees was used in determining the effect of nose shape, size of interstage flare base diameter, size of trapezoidal first-stage fins, and fin tip-control deflection on the aerodynamic characteristics of the model.
    Keywords: Aerodynamics
    Type: NASA/TN-D-821 , L-804
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-16
    Description: Results are presented of normal-load-factor calculations made for a lightnormal-category airplane and a light transport-category airplane traversing the trailing vortices generated by each of three heavy transport airplanes. With each light airplane, the normal load factors were determined for several penetration paths lying i n a plane perpendicular to the trailing vortices and for three center-of-gravity locations and velocities. Also determined for the light normal-category airplane were the elevator deflections required to maintain 1 g flight and the vertical displacements of the airplane from the prescribed penetration paths while transversing the vortices.
    Keywords: Aerodynamics
    Type: NASA-TN-D-829 , L-980
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-16
    Description: Limited flight - test data obtained from an automatically controlled interceptor during runs in which oscillatory rolling motions were encountered have been correlated with the pilot's comments regarding his ability to tolerate the imposed lateral accelerations.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-810 , L-1537
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-16
    Description: This report addresses a method for the approximate calculation of compressible flows about profiles with local regions of supersonic velocity. The flow around a slender profile is treated as an example.
    Keywords: Aerodynamics
    Type: NACA-TM-1114 , Forschungsbericht-1794 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: An investigation of a 1/7-scale powered model of the Kaiser Fleetwing all-wing airplane was made in the Langley full-scale tunnel to provide data for an estimation of the flying qualities of the airplane. The analysis of the stability and control characteristics of the airplane has been made as closely as possible in accordance with the requirements of the Bureau of Aeronautics, Navy Department's specifications, and a summary of the more significant conclusions is presented as follows. With the normal center of gravity located at 20 percent of the mean aerodynamic chord, the airplane will have adequate static longitudinal stability, elevator fixed, for all flight conditions except for low-power operation at low speeds where the stability will be about neutral. There will not be sufficient down-elevator deflection available for trim above speeds of about 130 miles per hour. It is probable that the reduction in the up-elevator deflections required for trim will be accompanied by reduced elevator hinge moments for low-power operation at low flight speeds. The static directional stability for this airplane will be low for all rudder-fixed or rudder-free flight conditions. The maximum rudder deflection of 30 deg will trim only about 15 deg yaw for most flight conditions and only 10 deg yaw for the condition with low power at low speeds. Also, at low powers and low speeds, it is estimated that the rudders will not trim the total adverse yaw resulting from an abrupt aileron roll using maximum aileron deflection. The airplane will meet the requirements for stability and control for asymmetric power operation with one outboard engine inoperative. The airplane would have no tendency for directional divergence but would probably be spirally unstable, with rudders fixed. The static lateral stability of the airplane will probably be about neutral for the high-speed flight conditions and will be only slightly increased for the low-power operation in low-speed flight. The airplane will not roll against the ailerons in a side-slip maneuver. Although the airplane would probably meet the minimum requirements of pb/2V of 0.07 at all speeds, there will be a loss in rolling ability of the airplane at high aileron deflections and at low flight speeds. It is estimated that the wing stall will be a gradual movement forward from the trailing edge and will be accompanied by no sudden pitching or rolling accelerations. Some stall warning may be indicated by reduction in the elevator and aileron force gradients and by the shaking of the controls caused by unsteady flow over the surfaces near the stall.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
    Keywords: Aerodynamics
    Type: NACA-TM-1217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley stability tunnel to determine the low-speed static stability and control characteristics of a model of the Bell MX-776. The results of the investigation indicated that the basic model configuration was longitudinally stable in the angle-of-attack range from about -16 deg. to 16 deg. but that the stability was a minimum near O deg angle of attack. The data indicated an aerodynamic-center position about 0.64 body diameters behind the center of gravity at low angles of attack. Reduction in the size of the front horizontal fins increased the longitudinal stability. With 20 percent of the span of the normal front horizontal fins cut off the aerodynamic center was about 1.04 body diameters behind the center of gravity, and with front horizontal fins having the same area as the front vertical fins, the aerodynamic center was 2.26 body diameters behind the center of gravity (at low angles of attack).
    Keywords: Aerodynamics
    Type: NACA-RM-SL9G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: The hydrodynamic characteristics of a 1/10-size powered dynamic model of the XP5Y-1 flying boat were determined in Langley tank no. 1. Stable take-offs were possible at all practicable positions of the center of gravity and flap deflections. An increase in gross load from 123.5 to 150.0 pounds (21.5 percent) had only a slight effect on the stable range for take-off. A decrease in forward acceleration from 3.0 to 1.0 feet per second per second had only a very small effect on the stable range for take-off. In general, the landings were free from skipping except at trims below 6 deg where one skip was encountered at an aft position of the center of gravity. The model porpoised during the landing runout at all positions of the center of gravity when landed at trims above 10 deg. Spray in the propellers was light at the design gross load, and was not considered excessive,at a gross load of 136.0 pounds.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9K14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the Grumman XF9F-2 airplane with wing-tip tanks installed has been conducted-in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect spin and recovery characteristics of the model for a range of possible loadings of the tip tanks were determined. Spin and recovery characteristics without tanks were determined in a previous investigation. The model results indicated that the airplane spins will generally be oscillatory and that recoveries will be satisfactory for all loadings by normal recovery technique (full rudder reversal followed approximately one-half turn later by moving the elevator down). The rudder force necessary for recovery should be within the physical capability of the pilot but the elevator force may be excessive so that some type of balance or booster might be necessary, or it might be necessary to jettison the wing-tip tanks.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9F01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: A supplementary wind-tunnel investigation has been conducted to determine the effect of rearward positions of the center of gravity on the spin, longitudinal-trim, and tumbling characteristics of the 1/20-scale model of the Consolidated Vultee 7002 airplane equipped with the single vertical tail. A few tests were also made with dual vertical tails added to the model. The model was ballasted to represent, the airplane in its approximate design gross weight for two center-of-gravity positions, 3O and 35 percent of the mean aerodynamic chord. The original tests previously reported were for a center-of-gravity position of 24 percent of the mean aerodynamic chord.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9B24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: At the request of the Air Material Command, U. S. Air Force, a theoretical study has been made of the dynamic lateral stability characteristics of the MX-838 (XB-51) airplane. The calculations included the determination of the neutral-oscillatory-stability boundary (R = 0), the period and time to damp to one-half amplitude of the lateral oscillation, end the time to damp to one-half amplitude for the spiral mode. Factors varied in the investigation were lift coefficient, wing incidence, wing loading, and altitude. The results of the investigation showed that the lateral oscillation of the airplane is unstable below a lift coefficient of 1.2 with flaps . deflected 40deg but is stable over the entire speed range with flaps deflected 20deg or 0deg. The results showed that satisfactory oscillatory stability can probably be obtained for all lift coefficients with the proper variation of flap deflection and wing incidence with airspeed. Reducing the positive wing incidence improved the oscillatory stability characteristics. The airplane is spirally unstable for most conditions but the instability is mild and the Air Force requirements are easily met.
    Keywords: Aerodynamics
    Type: NACA-RM-SL8K10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-11
    Description: The results of altitude-wind-tunnel tests conducted to determine the performance of an axial-flow-type 4000.pound-thrust turboJet engine for a range of pressure altitudes from 5000 to 40,000 feet and ram pressure ratios from 1.02 to 1.86 are presented and the experimental and analytical methods employed are discussed. By means of suitable generalizing factors applied to the measured performance data, curves were obtained from which the engine performance at any altitude for a given ram pressure ratio can be estimated. The data presented include the windmilling drag characteristics of the turbojet engine for the ranges of altitudes and ram pressure ratios covered by the performance data.
    Keywords: Aerodynamics
    Type: NACA-RM-E8F09-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-11
    Description: A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the effects of decreasing the rudder deflection, of decreasing the rudder span, and of differential rudder movements on the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane. The results indicated that decreasing the rudder span or the rudder deflections, individually or jointly, did not seriously alter the spin or recovery characteristics of the model; and recovery by normal use of controls (full rapid rudder reversal followed l/2 to 1 turn later by movement of the stick forward of neutral) remained satisfactory. Linking the original rudders so that the inboard rudder moves from full with the spin to neutral while the outboard rudder moves from neutral to full against the spin will also result in satisfactory spin and recovery characteristics. Calculations of rudder-pedal forces for recovery showed that the expected forces would probably be within the capabilities of a pilot but that it would be advisable to install some type of boost in the control system to insure easy and rapid movement of the rudders.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H30a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-11
    Description: The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department.We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1201 , Scientifiques et Techniques du Secretariat d'Etat a l'Aviation; Rept-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-11
    Description: At the request of the Air Material Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a jet propelled, parasite fighter with a 34 deg sweepback at the wing quarter chord. It was designed to be carried in a bomb bay of the B-36 air plane. The first portion of the investigation consists of a preliminary evaluation of the stability and control characteristics of the airplane from force and fight tests of an unballasted 1/5-scale model. The second portion of the investigation consists of test of a properly balasted 1/10-scale model which will include a study of the stability of the Xp-85 when attached to the trapeze for retraction into the B-36 bomb bay. The results of the preliminary test with the 1/5-scale model are presented herein. This portion fo the investigation included tests of the model with various center fin arrangements. Both the design nose flap and a stall control vane were investigated.
    Keywords: Aerodynamics
    Type: NACA-RM-L7C27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-11
    Description: An investigation has been made by the NACA wing-flow method to provide information on the relative longitudinal characteristics of a straight and sweptback wing in the transonic speed range. Tests were made of a semispan model of the Grumman airplane design 83 (XFlOF) incorporating a wing swept back 42.5deg with reference to quarter-chord line and also of the model with the swept wing replaced by a straight wing similar to that of the XF9F airplane. The airfoil sections were symmetrical 64l-series, with thickness ratios of 12 percent for the straight wing and 10 percent for the sweptback wing parallel to the stream direction. Measurements were made of normal force, chord force, and pitching moment at various angles of attack with the two wings both with and without the empennage, and with the fuselage alone. The tests covered a range of effective Mach numbers at the wing of the model from 0.65 to 1.10.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9A19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-11
    Description: A series of flight tests have been made at the Langley Flight Research Division at the request of the Bureau of Aeronautics, Department of the Navy, to determine the flying qualities of the Grumman F8F-1 air- plane. This paper presents the test results necessary to determine the longitudinal stability and control characteristics end the stalling characteristics. These tests were made between February and June of 1947- The range of Mach numbers covered in this investigation was approximately 0.10 to 0.62, and no attempt was made to investigate compressibility effects at higher Mach numbers. The lateral and directional stability and control characteristics of the subject airplane have already been reported (reference 1). Also presented in this paper is a discussion of the normal accelerations induced by yawing velocity and sideslip which were considered ob,jectionable by the pilot for this airplane. A discussion of the undesirable accelerations has been included with a view towards formulating some flying-qualities requirements limiting them.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-11
    Description: An investigation was made in the Langley high-speed 7-by 10-foot tunnel to determine the high-speed longitudinal stability end con&o1 characteristics of a 0.01-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicated that the lift and drag force breaks occurred at a Mach number of about 0.76. The aerodynamic-center position moved rearward after the force break and control position stability was present for all Mach numbers up to a Mach number of 0.80.
    Keywords: Aerodynamics
    Type: NACA-RM-SL8K16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-11
    Description: A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the North American XP-86 airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the design gross weight loading. The long-range loading was also investigated and the effects of extending slats and dive flaps were determined. In addition, the investigation included the determination of the size of spin-recovery parachute required for emergency recovery from demonstration spins, the rudder force required to move the rudder for recovery, and the best method for the pilot to escape if it should become necessary to do so during a spin. The results of the investigation indicated that the XP-86 airplane will probably recover satisfactorily from erect and inverted spins for all possible loadings. It was found that fully extending both slats would be beneficial but that extending the dive brakes would cause unsatisfactory recoveries. It was determined that a 10.0-foot-diameter tail parachute with a drag coefficient of 0.7 and with a towline 30.0 feet long attached below the jet exit or a 6.0-foot-diameter wingtip parachute opened on the outer wing tip with a towline 6.0 feet long would insure recoveries from any spins obtainable. The rudder-pedal force necessary to move the rudder for satisfactory recovery was found to be within the physical capabilities of the pilot.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-11
    Description: This paper presents the results of measurements of longitudinal stability of a 1/50-scale model of the XP-88 airplane by the wing-flow method. Lift, rolling-moment, hinge-moment, and pitching-moment characteristics as well as the downwash at the tail were measured over a Mach number range from approximately 0.5 to 1.05 at Reynolds numbers below 1,000,000. No measurements of drag were obtained. No abrupt changes due to Mach number were noted in any of the parameters measured. The data indicated that the wing was subject to early tip stalling; that the tail effectiveness decreased gradually with increasing Mach number up to M = 0.9, but increased again at higher Mach numbers; that the variation of downwash with angle of attack did not change appreciably with Mach number except between 0.95 and 1.0 where d(epsilon)/d(alpha), decreased from 0.46 to 0.32; that at zero lift with a stabilizer setting of -1.5 deg there was a gradually increasing nosing-up tendency with increasing Mach number; and that the control-fixed stability in maneuvers at constant speed gradually increased with increasing Mach number.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8E28A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-11
    Description: Tests of a 1/20-scale dynamically similar model of the Northrop B-35 airplane were made to study its ditching characteristics. The model was ditched in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds,and conditions of damage were simulated during the investigation. The ditching characteristics were determined by visual observation and from motion-picture records and time-history acceleration records. Both longitudinal and lateral accelerations were measured. Results are given in tabular form and time-history acceleration curves and sequence photographs are presented. Conclusions based on the model investigation are as follows: 1. The best ditching of the B-35 airplane probably can be made by contacting the water in a near normal landing attitude of about 9 deg with the landing flaps full down so as to have a low horizontal speed. 2. The airplane usually will turn or yaw but the motion will not be violent. The maximum lateral acceleration will be about 2g. 3. If the airplane does not turn or yaw immediately after landing, it probably will trim up and then make a smooth run or porpoise slightly. The maximum longitudinal decelerations that will be encountered are about 6g or 7g. 4. Although the decelerations are not indicated to be especially large, the construction of the airplane is such that extensive damage is to be expected, and it probably will be difficult to find ditching stations where crew members can adequately brace themselves and be reasonably sure of avoiding a large inrush of water.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed; power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane equipped with full-span leading-edge slats has been conducted in the Langley free-flight tunnel. In this investigation it was found that the-full-span leading-edge slat gave about the same maximum lift coefficient as was obtained with the outboard single slotted flap and inboard slat. The stability and control characteristics were greatly improved except near the stall where the characteristics with the full-span slat were considered unsatisfactory because of a loss of directional stability and a slight nosing-up tendency.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL7L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-11
    Description: An analysis has been made of the lift control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flap on the NACA 65-210 airfoil section. The analysis indicates that the plain trailing-edge flap employed on the 10-percent-thick airfoil at Mach numbers as high as 0.875 retains at least 50-percent of its low-speed lift-control effectiveness, and is sufficiently effective in lateral control application, assuming a rigid wing, to provide adequate airplane rolling characteristics. The plain trailing-edge flap, as compared to the spoiler and the dive-recovery flap, appears to afford the most favorable characteristics as a device for controlling lift continuously throughout the range of Mach numbers from 0.3 to 0.875. At Mach numbers above those for lift divergence of the wing, either a plain flap or a dive-recovery flap may be used on a thin airplane wing to provide auxiliary wing lift when the airplane is to be controlled in flight, other than in dives, at these Mach numbers. The choice of a lift-control device for this use, however, should include the consideration of other factors such as the increments of drag and pitching moment accompanying the use of the device, and the structural and high-speed aerodynamic characteristics of the airplane which is to employ the device.
    Keywords: Aerodynamics
    Type: NACA-RM-A7A17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-11
    Description: On the basis of a recently developed theory for sweptback wings at supersonic velocities, equations are derived for the wave drag of sweptback tapered wings with thin symmetrical double-wedge sections at zero lift. Calculations of section wave-drag distributions and wing wave drag are presented for families of tapered plan forms. Distributions of section wave drag along the span of tapered wings are, in general, very similar in shape to those of untapered plan forms. For a given taper ratio and aspect ratio, an appreciable reduction in wing wave-drag coefficient with increased sweepback is noted for the entire range of Mach number considered. For a given sweep and taper ratio, higher aspect ratios reduce the wing wave-drag coefficient at substantially subcritical supersonic Mach numbers. At Mach numbers approaching the critical value, that is, a value equal to the secant of the sweepback angle, the plan forms of low aspect ratio have lower drag coefficients. Calculations for wings of equal root bending stress (and hence different aspect ratio) indicate that tapering the wing reduces the wing wave-drag coefficient at Mach numbers considerably less than the critical value and a decrease of the drag coefficient with taper at Mach numbers near the critical value.
    Keywords: Aerodynamics
    Type: NACA-RM-L7E23a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-11
    Description: The previous measurements on airfoils with hinged nose disclosed a comparatively large low-pressure peak at the bend of the hinged nose; which favored the separation of flow. It was therefore attempted to reduce these low-pressure peaks by reducing the camber of the forward profile and thereby ensure a longer adherence of the flow and a maximum lift increase. The forces were measured on a rectangular wing with double-hinged nose and end plates, the pressure distributions were measured in the center section of the wing. The measurements disclosed that the highest lift attained with a single-hinged nose cannot be increased by a double-hinged nose. The sum of the deflection angles of both hinged noses related to the maximum lift is about equal to the corresponding angle of the single-hinge nose (approx. 30 deg to 40). The respective angle of attack in both cases amounts to approx. 21 deg. Even the low-pressure peak is about the same in both cases (P/q approx. -5.5). Therefore, a milder curvature of the forward portion of the profile affords no definite increase of the maximum lift.
    Keywords: Aerodynamics
    Type: NACA-TM-1117 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluft-zeugmeisters; Rept-1676/3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-11
    Description: The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1130 , A Muegyetem Aerodinamikai Intezeteben Keszult Munka
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-11
    Description: The tests on the Russian airfoil 2315 Bis were continued. This airfoil shows, according to Moscow tests, good laminar flow characteristics. Several tests were prepared in the large wind tunnel at Gottingen; partial results were obtained.
    Keywords: Aerodynamics
    Type: NACA-TM-1127 , Untersuchungen und Mitteilungen; Rept-3067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...