ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Gravitation
  • Magnetismus
  • FID-GEO-DE-7
  • Geoelektrik
  • 2015-2019  (2)
  • 2010-2014  (8)
Collection
Years
Year
  • 1
    Publication Date: 2016-05-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamilton, Douglas P -- England -- Nature. 2016 May 4;533(7602):187-8. doi: 10.1038/nature17896.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, University of Maryland, College Park, Maryland 20742-2421, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27144360" target="_blank"〉PubMed〈/a〉
    Keywords: Astronomical Phenomena ; Astronomy/*methods ; Gravitation ; *Models, Theoretical ; *Solar System
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-18
    Description: Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porazinski, Sean -- Wang, Huijia -- Asaoka, Yoichi -- Behrndt, Martin -- Miyamoto, Tatsuo -- Morita, Hitoshi -- Hata, Shoji -- Sasaki, Takashi -- Krens, S F Gabriel -- Osada, Yumi -- Asaka, Satoshi -- Momoi, Akihiro -- Linton, Sarah -- Miesfeld, Joel B -- Link, Brian A -- Senga, Takeshi -- Castillo-Morales, Atahualpa -- Urrutia, Araxi O -- Shimizu, Nobuyoshi -- Nagase, Hideaki -- Matsuura, Shinya -- Bagby, Stefan -- Kondoh, Hisato -- Nishina, Hiroshi -- Heisenberg, Carl-Philipp -- Furutani-Seiki, Makoto -- P30 EY001931/EY/NEI NIH HHS/ -- R01 EY014167/EY/NEI NIH HHS/ -- R01 EY016060/EY/NEI NIH HHS/ -- R01EY014167/EY/NEI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2015 May 14;521(7551):217-21. doi: 10.1038/nature14215. Epub 2015 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. ; Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan. ; IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria. ; Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan. ; Department of Molecular Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan. ; Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto 606-8305, Japan. ; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan. ; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK. ; 1] Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto 606-8305, Japan [2] Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan [3] Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan. ; 1] Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK [2] Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto 606-8305, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25778702" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/metabolism ; Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Body Size/*genetics ; Embryo, Nonmammalian/anatomy & histology/embryology/metabolism ; Fish Proteins/genetics/*metabolism ; GTPase-Activating Proteins/metabolism ; Genes, Essential/genetics ; Gravitation ; Humans ; Morphogenesis/*genetics ; Mutation/genetics ; Organ Size/genetics ; Oryzias/*anatomy & histology/*embryology/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Signal Transduction ; Spheroids, Cellular/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-16
    Description: Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Konopacky, Quinn M -- Barman, Travis S -- Macintosh, Bruce A -- Marois, Christian -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1398-401. doi: 10.1126/science.1232003. Epub 2013 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada. konopacky@di.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493423" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Carbon Monoxide ; *Evolution, Planetary ; Extraterrestrial Environment ; Gravitation ; *Planets ; Spectrum Analysis ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-30
    Description: We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 +/- 0.150 and k(2) = 0.637 +/- 0.224 (2sigma). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iess, Luciano -- Jacobson, Robert A -- Ducci, Marco -- Stevenson, David J -- Lunine, Jonathan I -- Armstrong, John W -- Asmar, Sami W -- Racioppa, Paolo -- Rappaport, Nicole J -- Tortora, Paolo -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):457-9. doi: 10.1126/science.1219631. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dipartimento di Ingegneria Meccanica e Aerospaziale, Universita La Sapienza, via Eudossiana 18, 00184 Rome, Italy. luciano.iess@uniroma1.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745254" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Gravitation ; Ice ; *Saturn ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-03-13
    Description: Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iess, Luciano -- Rappaport, Nicole J -- Jacobson, Robert A -- Racioppa, Paolo -- Stevenson, David J -- Tortora, Paolo -- Armstrong, John W -- Asmar, Sami W -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1367-9. doi: 10.1126/science.1182583.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dipartimento di Ingegneria Aerospaziale ed Astronautica, Universita La Sapienza, via Eudossiana 18, 00184 Rome, Italy. luciano.iess@uniroma1.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223984" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Gravitation ; Ice ; *Saturn ; Spacecraft ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-09-11
    Description: Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock-driven activities in animal species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976612/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976612/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreno-Risueno, Miguel A -- Van Norman, Jaimie M -- Moreno, Antonio -- Zhang, Jingyuan -- Ahnert, Sebastian E -- Benfey, Philip N -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1306-11. doi: 10.1126/science.1191937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829477" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Plant ; Gene Regulatory Networks ; Genes, Plant ; Genes, Reporter ; Gravitation ; Indoleacetic Acids/metabolism/pharmacology ; Meristem/*genetics/*growth & development/metabolism ; Oligonucleotide Array Sequence Analysis ; Phthalimides/pharmacology ; Plant Roots/cytology/genetics/*growth & development ; Promoter Regions, Genetic ; Signal Transduction ; Temperature ; Time Factors ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwok, Roberta -- England -- Nature. 2010 Jul 29;466(7306):540-1. doi: 10.1038/466540a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671681" target="_blank"〉PubMed〈/a〉
    Keywords: Earth (Planet) ; Gravitation ; *Meteoroids ; *Minor Planets ; *Moon ; Time Factors ; Water/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-01-16
    Description: Wetlands are the largest individual source of methane (CH4), but the magnitude and distribution of this source are poorly understood on continental scales. We isolated the wetland and rice paddy contributions to spaceborne CH4 measurements over 2003-2005 using satellite observations of gravity anomalies, a proxy for water-table depth Gamma, and surface temperature analyses TS. We find that tropical and higher-latitude CH4 variations are largely described by Gamma and TS variations, respectively. Our work suggests that tropical wetlands contribute 52 to 58% of global emissions, with the remainder coming from the extra-tropics, 2% of which is from Arctic latitudes. We estimate a 7% rise in wetland CH4 emissions over 2003-2007, due to warming of mid-latitude and Arctic wetland regions, which we find is consistent with recent changes in atmospheric CH4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, A Anthony -- Palmer, Paul I -- Fraser, Annemarie -- Reay, David S -- Frankenberg, Christian -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):322-5. doi: 10.1126/science.1175176.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of GeoSciences, University of Edinburgh, Edinburgh, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075250" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/metabolism ; Atmosphere/*chemistry ; *Crops, Agricultural/growth & development ; Geography ; Gravitation ; Methane/*analysis/biosynthesis ; *Oryza/growth & development ; Seasons ; Spacecraft ; Temperature ; Tropical Climate ; *Wetlands
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sohl, Frank -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1338-9. doi: 10.1126/science.1186255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany. frank.sohl@dlr.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223976" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Gravitation ; Ice ; *Saturn ; Spacecraft ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-11-13
    Description: Animals have developed a range of drinking strategies depending on physiological and environmental constraints. Vertebrates with incomplete cheeks use their tongue to drink; the most common example is the lapping of cats and dogs. We show that the domestic cat (Felis catus) laps by a subtle mechanism based on water adhesion to the dorsal side of the tongue. A combined experimental and theoretical analysis reveals that Felis catus exploits fluid inertia to defeat gravity and pull liquid into the mouth. This competition between inertia and gravity sets the lapping frequency and yields a prediction for the dependence of frequency on animal mass. Measurements of lapping frequency across the family Felidae support this prediction, which suggests that the lapping mechanism is conserved among felines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reis, Pedro M -- Jung, Sunghwan -- Aristoff, Jeffrey M -- Stocker, Roman -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1231-4. doi: 10.1126/science.1195421. Epub 2010 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Cats/*physiology ; Drinking/*physiology ; Felidae/physiology ; Gravitation ; Models, Biological ; Movement ; Physical Processes ; Tongue/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...