ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Internal waves  (22)
  • Diapycnal mixing  (13)
  • American Meteorological Society  (27)
  • Annual Reviews
  • 2010-2014  (27)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 789-801, doi:10.1175/2009JPO4039.1.
    Description: The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
    Keywords: Eddies ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2556-2574, doi:10.1175/2008JPO3666.1.
    Description: Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model. These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.
    Description: Salary support for this analysis was provided by Woods Hole Oceanographic Institution bridge support funds.
    Keywords: Eddies ; Ocean dynamics ; Internal waves ; Ocean variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2605–2623, doi:10.1175/2010JPO4132.1.
    Description: Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations. A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime. The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.
    Description: This research is supported by NSF CMG Grants 0417724, 0417732 and 0417466. YL is also supported by NSF DMS Grant 0807871 and ONR Award N00014-09-1-0515.
    Keywords: Waves ; Oceanic ; Internal waves ; Spectral analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1524–1547, doi:10.1175/JPO-D-11-0117.1.
    Description: Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those receiving energy directly from the winds, barotropic tides, and parametric subharmonic instability, with those most directly involved in the breaking process. Transfer estimates are based on month-long records of ocean velocity and temperature obtained continuously over 80–800 m from the research platform (R/P) Floating Instrument Platform (FLIP) in the Hawaii Ocean Mixing Experiment (HOME) Nearfield (2002) and Farfield (2001) experiments, in Hawaiian waters. Triple correlations between low-frequency vertical shears and high-frequency Reynolds stresses, uiw∂Ui/∂z, are used to estimate energy transfers. These are supported by bispectral analysis, which show significant energy transfers to pairs of waves with nearly identical frequency. Wavenumber bispectra indicate that the vertical scales of the high-frequency waves are unequal, with one wave of comparable scale to that of the low-frequency parent and the other of much longer scale. The scales of the high-frequency waves contrast with the classical pictures of induced diffusion and elastic scattering interactions and violates the scale-separation assumption of eikonal models of interaction. The possibility that the observed waves are Doppler shifted from intrinsic frequencies near f or N is explored. Peak transfer rates in the Nearfield, an energetic tidal conversion site, are on the order of 2 × 10−7 W kg−1 and are of similar magnitude to estimates of turbulent dissipation that were made near the ridge during HOME. Transfer rates in the Farfield are found to be about half the Nearfield values.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-03-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Ship observations ; Spectral analysis/models/distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 17–28, doi:10.1175/JPO-D-11-0108.1.
    Description: Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.
    Description: This work was sponsored by NSF OCE 04-25283.
    Description: 2013-07-01
    Keywords: Diapycnal mixing ; Internal waves ; Nonlinear dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 880–895, doi:10.1175/2007JPO3750.1.
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows enter the open ocean as dense gravity currents that flow along and down the continental slope. While descending the slope, overflows typically double their volume transport by entraining upper oceanic water. The upper oceanic layer must balance this loss of mass, and the resulting convergent flow produces significant vortex stretching. Overflows thus represent an intense and localized mass and vorticity forcing for the upper ocean. In this study, simulations show that the upper ocean responds to the overflow-induced forcing by establishing topographic β plumes that are aligned more or less along isobaths and that have a transport that is typically a few times larger than that of the overflows. For the topographic β plume driven by the Mediterranean overflow, the occurrence of eddies near Cape St. Vincent, Portugal, allows the topographic β plume to flow across isobaths. The modeled topographic β-plume circulation forms two transatlantic zonal jets that are analogous to the Azores Current and the Azores Countercurrent. In other cases (e.g., the Denmark Strait overflow), the same kind of circulation remains trapped along the western boundary and hence would not be readily detected.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530.
    Keywords: North Atlantic Ocean ; Mediterranean region ; Ocean models ; Mass fluxes/transport ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 380-399, doi:10.1175/2007JPO3728.1.
    Description: Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.
    Description: This work was funded by the National Science Foundation as a component of the Hawaii Ocean Mixing Program. Added support for FLIP was provided by the Office of Naval Research.
    Keywords: Pacific Ocean ; Topographic effects ; Internal waves ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 686-701, doi:10.1175/2007JPO3826.1.
    Description: The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia–gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia–gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.
    Description: KRH was supported by a Woods Hole Oceanographic Institution Mellon Independent Study Award and ONR Grant N000140610798.
    Keywords: Tides ; Internal waves ; Solitary waves ; Inertia–gravity waves ; Rotation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1981–2000, doi:10.1175/JPO-D-12-028.1.
    Description: Packets of nonlinear internal waves (NLIWs) in a small area of the Mid-Atlantic Bight were 10 times more energetic during a local neap tide than during the preceding spring tide. This counterintuitive result cannot be explained if the waves are generated near the shelf break by the local barotropic tide since changes in shelfbreak stratification explain only a small fraction of the variability in barotropic to baroclinic conversion. Instead, this study suggests that the occurrence of strong NLIWs was caused by the shoaling of distantly generated internal tides with amplitudes that are uncorrelated with the local spring-neap cycle. An extensive set of moored observations show that NLIWs are correlated with the internal tide but uncorrelated with barotropic tide. Using harmonic analysis of a 40-day record, this study associates steady-phase motions at the shelf break with waves generated by the local barotropic tide and variable-phase motions with the shoaling of distantly generated internal tides. The dual sources of internal tide energy (local or remote) mean that shelf internal tides and NLIWs will be predictable with a local model only if the locally generated internal tides are significantly stronger than shoaling internal tides. Since the depth-integrated internal tide energy in the open ocean can greatly exceed that on the shelf, it is likely that shoaling internal tides control the energetics on shelves that are directly exposed to the open ocean.
    Description: This research was supported by ONR Grants N00014-05-1-0271, N00014-08-1-0991, N00014-04- 1-0146, and N00014-11-1-0194.
    Description: 2013-05-01
    Keywords: Internal waves ; Nonlinear dynamics ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2143–2152, doi:10.1175/JPO-D-12-027.1.
    Description: Direct measurements of turbulence levels in the Drake Passage region of the Southern Ocean show a marked enhancement over the Phoenix Ridge. At this site, the Antarctic Circumpolar Current (ACC) is constricted in its flow between the southern tip of South America and the northern tip of the Antarctic Peninsula. Observed turbulent kinetic energy dissipation rates are enhanced in the regions corresponding to the ACC frontal zones where strong flow reaches the bottom. In these areas, turbulent dissipation levels reach 10−8 W kg−1 at abyssal and middepths. The mixing enhancement in the frontal regions is sufficient to elevate the diapycnal turbulent diffusivity acting in the deep water above the axis of the ridge to 1 × 10−4 m2 s−1. This level is an order of magnitude larger than the mixing levels observed upstream in the ACC above smoother bathymetry. Outside of the frontal regions, dissipation rates are O(10−10) W kg−1, comparable to the background levels of turbulence found throughout most mid- and low-latitude regions of the global ocean.
    Description: This work was supported by the U.S. National Science Foundation and by the Natural Environment Research Council of the United Kingdom.
    Description: 2013-06-01
    Keywords: Southern Ocean ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 698–705, doi:10.1175/JPO-D-12-0119.1.
    Description: Owing to the larger thermal expansion coefficient at higher temperatures, more buoyancy is put into the ocean by heating than is removed by cooling at low temperatures. The authors show that, even with globally balanced thermal and haline surface forcing at the ocean surface, there is a negative density flux and hence a positive buoyancy flux. As shown by McDougall and Garrett, this must be compensated by interior densification on mixing due to the nonlinearity of the equation of state (cabbeling). Three issues that arise from this are addressed: the estimation of the annual input of density forcing, the effects of the seasonal cycle, and the total cabbeling potential of the ocean upon complete mixing. The annual expansion through surface density forcing in a steady-state ocean driven by balanced evaporation–precipitation–runoff (E–P–R) and net radiative budget at the surface Qnet is estimated as 74 000 m3 s−1 (0.07 Sv; 1 Sv ≡ 106 m3 s−1), which would be equivalent to a sea level rise of 6.3 mm yr−1. This is equivalent to approximately 3 times the estimated rate of sea level rise or 450% of the average Mississippi River discharge. When seasonal variations are included, this density forcing increases by 35% relative to the time-mean case to 101 000 m3 s−1 (0.1 Sv). Likely bounds are established on these numbers by using different Qnet and E–P–R datasets and the estimates are found to be robust to a factor of ~2. These values compare well with the cabbeling-induced contraction inferred from independent thermal dissipation rate estimates. The potential sea level decrease upon complete vertical mixing of the ocean is estimated as 230 mm. When horizontal mixing is included, the sea level drop is estimated as 300 mm.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration, Grant NNX12AF59G and the National Science Foundation, Grant OCE-0647949.
    Description: 2013-10-01
    Keywords: Buoyancy ; Conservation equations ; Diapycnal mixing ; Heating ; Mixing ; Heat budgets/fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1035-1049, doi:10.1175/2008JPO3920.1.
    Description: Seasonal variability of near-inertial horizontal kinetic energy is examined using observations from a series of McLane Moored Profiler moorings located at 39°N, 69°W in the western North Atlantic Ocean in combination with a one-dimensional, depth-integrated kinetic energy model. The time-mean kinetic energy and shear vertical wavenumber spectra of the high-frequency motions at the mooring site are in reasonable agreement with the Garrett–Munk internal wave description. Time series of depth-dependent and depth-integrated near-inertial kinetic energy are calculated from available mooring data after filtering to isolate near-inertial-frequency motions. These data document a pronounced seasonal cycle featuring a wintertime maximum in the depth-integrated near-inertial kinetic energy deriving chiefly from the variability in the upper 500 m of the water column. The seasonal signal in the near-inertial kinetic energy is most prominent for motions with vertical wavelengths greater than 100 m but observable wintertime enhancement is seen down to wavelengths of the order of 10 m. Rotary vertical wavenumber spectra exhibit a dominance of clockwise-with-depth energy, indicative of downward energy propagation and implying a surface energy source. A simple depth-integrated near-inertial kinetic energy model consisting of a wind forcing term and a dissipation term captures the order of magnitude of the observed near-inertial kinetic energy as well as its seasonal cycle.
    Description: Funding to initiate the McLane Moored Profiler observations at Line W were provided by grants from the G. Unger Vetlesen Foundation and the Comer Charitable Fund to the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute. Ongoing moored observations at Line W are supported by the National Science Foundation (NSF Grant OCE-0241354).
    Keywords: Kinetic energy ; Internal waves ; Intraseasonal variability ; North Atlantic Ocean ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 259–282, doi:10.1175/JPO-D-11-0194.1.
    Description: This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.
    Description: SW acknowledges the support of the Grantham Institute for Climate Change, Imperial College London. ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1). KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds.
    Description: 2013-08-01
    Keywords: Diapycnal mixing ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 766–789, doi:10.1175/JPO-D-12-0141.1.
    Description: Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-10-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2223–2241, doi:10.1175/2011JPO4344.1.
    Description: Results are presented from an observational study of stratified, turbulent flow in the bottom boundary layer on the outer southeast Florida shelf. Measurements of momentum and heat fluxes were made using an array of acoustic Doppler velocimeters and fast-response temperature sensors in the bottom 3 m over a rough reef slope. Direct estimates of flux Richardson number Rf confirm previous laboratory, numerical, and observational work, which find mixing efficiency not to be a constant but rather to vary with Frt, Reb, and Rig. These results depart from previous observations in that the highest levels of mixing efficiency occur for Frt 〈 1, suggesting that efficient mixing can also happen in regions of buoyancy-controlled turbulence. Generally, the authors find that turbulence in the reef bottom boundary layer is highly variable in time and modified by near-bed flow, shear, and stratification driven by shoaling internal waves.
    Description: Funding was provided by grants from the National Oceanic and Atmospheric Administration’s National Undersea Research Program, National Science Foundation Grants OCE-0622967 and OCE- 0824972 to SGM, and the Singapore Stanford Program. Kristen Davis was supported by a National Defense Science and Engineering Graduate Fellowship and an ARCS Foundation Fellowship.
    Keywords: Boundary layer ; Turbulence ; Bottom currents ; Mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2938–2950, doi:10.1175/JPO-D-13-0201.1.
    Description: Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a kilometer-thick layer above rough bottom topography collocated with the deep-reaching fronts of the Antarctic Circumpolar Current. Linear theory, corrected for finite-amplitude topography based on idealized, two-dimensional numerical simulations, has been recently used to estimate the global distribution of internal wave generation by oceanic currents and eddies. The global estimate shows that the topographic wave generation is a significant sink of energy for geostrophic flows and a source of energy for turbulent mixing in the deep ocean. However, comparison with recent observations from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean shows that the linear theory predictions and idealized two-dimensional simulations grossly overestimate the observed levels of turbulent energy dissipation. This study presents two- and three-dimensional, realistic topography simulations of internal lee-wave generation from a steady flow interacting with topography with parameters typical of Drake Passage. The results demonstrate that internal wave generation at three-dimensional, finite bottom topography is reduced compared to the two-dimensional case. The reduction is primarily associated with finite-amplitude bottom topography effects that suppress vertical motions and thus reduce the amplitude of the internal waves radiated from topography. The implication of these results for the global lee-wave generation is discussed.
    Description: This research was supported by the National Science Foundation under Award CMG-1024198.
    Description: 2015-05-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Mixing ; Mountain waves ; Topographic effects ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 413–426, doi:10.1175/JPO-D-13-0117.1.
    Description: Salinity and temperature profiles from drifting ice-tethered profilers in the Beaufort gyre region of the Canada Basin are used to characterize and quantify the regional near-inertial internal wave field over one year. Vertical displacements of potential density surfaces from the surface to 750-m depth are tracked from fall 2006 to fall 2007. Because of the time resolution and irregular sampling of the ice-tethered profilers, near-inertial frequency signals are marginally resolved. Complex demodulation is used to determine variations with a time scale of several days in the amplitude and phase of waves at a specified near-inertial frequency. Characteristics and variability of the wave field over the course of the year are investigated quantitatively and related to changes in surface wind forcing and sea ice cover.
    Description: The ITP program and J. Toole’s contributions were supported by the National Science Foundation Office of Polar Programs Arctic Observing Network. We acknowledge the support of the Office of Naval Research (Grant N00014-11-1-0454) for this study. Support for H. Dosser was also provided by the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Inertia-gravity waves ; Internal waves ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2381-2400, doi:10.1175/2010JPO4403.1.
    Description: Langmuir circulation (LC) is a turbulent upper-ocean process driven by wind and surface waves that contributes significantly to the transport of momentum, heat, and mass in the oceanic surface layer. The authors have previously performed a direct comparison of large-eddy simulations and observations of the upper-ocean response to a wind event with rapid mixed layer deepening. The evolution of simulated crosswind velocity variance and spatial scales, as well as mixed layer deepening, was only consistent with observations if LC effects are included in the model. Based on an analysis of these validated simulations, in this study the fundamental differences in mixing between purely shear-driven turbulence and turbulence with LC are identified. In the former case, turbulent kinetic energy (TKE) production due to shear instabilities is largest near the surface, gradually decreasing to zero near the base of the mixed layer. This stands in contrast to the LC case in which at middepth range TKE production can be dominated by Stokes drift shear. Furthermore, the Eulerian mean vertical shear peaks near the base of the mixed layer so that TKE production by mean shear flow is elevated there. LC transports horizontal momentum efficiently downward leading to an along-wind velocity jet below LC downwelling regions at the base of the mixed layer. Locally enhanced vertical shear instabilities as a result of this jet efficiently erode the thermocline. In turn, enhanced breaking internal waves inject cold deep water into the mixed layer, where LC currents transport temperature perturbation advectively. Thus, LC and locally generated shear instabilities work intimately together to facilitate strongly the mixed layer deepening process.
    Description: This research was supported by the Office of Naval Research through Grants N00014-09-M-0112 (TK) and N00014-06-1-0178 (AP, JT). Author TK also received support from a Woods Hole Oceanographic Institution Cooperative Institute for Climate and Ocean Research Postdoctoral Scholarship.
    Keywords: Mixed layer ; Shear structure/flows ; Wind effects ; Turbulence ; Thermocline ; Internal waves ; Advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1854–1872, doi:10.1175/JPO-D-13-0104.1.
    Description: The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
    Description: This research was funded by the Climate Process Team (CPT) on internal wave–driven mixing throughNSF GrantOCE-0968721. GSC acknowledges support from NSF Grants OCE-0825266 (EXITS), OCE-1029483 (SPAM), and OCE-1029722 (MIXET). LDT and CBW acknowledge support from NSF Grant OCE-0927650. SWand ACNG acknowledge support from NERC Grant NE/G001510/1 (SOFine).
    Description: 2015-01-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 26 (2009): 2228-2242, doi:10.1175/2009JTECHO652.1.
    Description: The performance of pressure sensor–equipped inverted echo sounders for monitoring nonlinear internal waves is examined. The inverted echo sounder measures the round-trip acoustic travel time from the sea floor to the sea surface and thus acquires vertically integrated information on the thermal structure, from which the first baroclinic mode of thermocline motion may be inferred. This application of the technology differs from previous uses in that the wave period (30 min) is short, requiring a more rapid transmission rate and a different approach to the analysis. Sources of error affecting instrument performance include tidal effects, barotropic adjustment to internal waves, ambient acoustic noise, and sea surface roughness. The latter two effects are explored with a simulation that includes surface wave reconstruction, acoustic scattering based on the Kirchhoff approximation, wind-generated noise, sound propagation, and the instrument’s signal processing circuitry. Bias is introduced as a function of wind speed, but the simulation provides a basis for bias correction. The assumption that the waves do not significantly affect the mean stratification allows for a focus on the dynamic response. Model calculations are compared with observations in the South China Sea by using nearby temperature measurements to provide a test of instrument performance. After applying corrections for ambient noise and surface roughness effects, the inverted echo sounder exhibits an RMS variability of approximately 4 m in the estimated depth of the eigenfunction maximum in the wind speed range 0 ≤ U10 ≤ 10 m s−1. This uncertainty may be compared with isopycnal excursions for nonlinear internal waves of 100 m, showing that the observational approach is effective for measurements of nonlinear internal waves in this environment.
    Description: This project was supported by the ONR Nonlinear Wave Program under Contract N0014-05-1-0286.
    Keywords: Acoustic measurements/effects ; Internal waves ; Instrumentation/sensors ; Temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 241-246, doi:10.1175/2010JPO4557.1.
    Description: The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.
    Description: This material is based upon work supported by the National Science Foundation Grants OCE-0622825,OCE-0622670, OCE-0622630, and OCE-0623177.
    Keywords: Diapycnal mixing ; Currents ; Antarctica ; Ocean circulation ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 602–615, doi:10.1175/JPO-D-12-055.1.
    Description: The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.
    Description: This work is a component of the Internal- Wave Driven Mixing Climate Process Team funded by the National Science Foundation Grant OCE-0968721 and the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Award NA08OAR4320752.
    Description: 2013-09-01
    Keywords: Diapycnal mixing ; Internal waves ; Subgrid-scale processes ; Ocean models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2475–2489, doi:10.1175/JPO-D-13-057.1.
    Description: Data from three midlatitude, month-long surveys are examined for evidence of enhanced vertical mixing associated with the transition layer (TL), here defined as the strongly stratified layer that exists between the well mixed layer and the thermocline below. In each survey, microstructure estimates of turbulent dissipation were collected concurrently with fine-structure stratification and shear. Survey-wide averages are formed in a “TL coordinate” zTL, which is referenced around the depth of maximum stratification for each profile. Averaged profiles show characteristic TL structures such as peaks in stratification N2 and shear variance S2, which fall off steeply above zTL = 0 and more gradually below. Turbulent dissipation rates ɛ are 5–10 times larger than those found in the upper thermocline (TC). The gradient Richardson number Ri = N2/S2 becomes unstable (Ri 〈 0.25) within ~10 m of the TL upper boundary, suggesting that shear instability is active in the TL for zTL 〉 0. Ri is stable for zTL ≤ 0. Turbulent dissipation is found to scale exponentially with depth for zTL ≤ 0, but the decay scales are different for the TL and upper TC: ɛ scales well with either N2 or S2. Owing to the strong correlation between S2 and N2, existing TC scalings of the form ɛ ~ |S|p|N|q overpredict variations in ɛ. The scale dependence of shear variance is not found to significantly affect the scalings of ɛ versus N2 and S2 for zTL ≤ 0. However, the onset of unstable Ri at the top of the TL is sensitively dependent to the resolution of the shears.
    Description: This work was funded by NSF Grant OCE-0968787 as part of a Climate Process Team for internal wave-driven mixing.
    Keywords: Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Mixed layer ; Thermocline ; Physical Meteorology and Climatology ; Heat budgets/fluxes ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.
    Description: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Description: Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-11-01
    Keywords: Geographic location/entity ; Arctic ; Sea ice ; Circulation/ Dynamics ; Ekman pumping/transport ; Internal waves ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1116–1132, doi:10.1175/JPO-D-13-0194.1.
    Description: Internal solitary waves commonly observed in the coastal ocean are often modeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for internal waves does not support a steady solitary wave solution. Recent studies using a combination of asymptotic theory, numerical simulations, and laboratory experiments have shown that the long time effect of rotation is the destruction of the initial internal solitary wave by the radiation of small-amplitude inertia–gravity waves, and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. However, in the ocean, internal solitary waves are often propagating over variable topography, and this alone can cause quite dramatic deformation and transformation of an internal solitary wave. Hence, the combined effects of background rotation and variable topography are examined. Then the Ostrovsky equation is replaced by a variable coefficient Ostrovsky equation whose coefficients depend explicitly on the spatial coordinate. Some numerical simulations of this equation, together with analogous simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm), for a certain cross section of the South China Sea are presented. These demonstrate that the combined effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced radiation from the leading wave.
    Description: KH was supported by Grants N00014-09-10227 and N00014-11-0701 from the Office of Naval Research.
    Description: 2014-10-01
    Keywords: Circulation/ Dynamics ; Internal waves ; Solitary waves ; Models and modeling ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...