ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd
  • 2020-2024  (13)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-01-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Flood risk assessments require different disciplines to understand and model the underlying components hazard, exposure, and vulnerability. Many methods and data sets have been refined considerably to cover more details of spatial, temporal, or process information. We compile case studies indicating that refined methods and data have a considerable effect on the overall assessment of flood risk. But are these improvements worth the effort? The adequate level of detail is typically unknown and prioritization of improvements in a specific component is hampered by the lack of an overarching view on flood risk. Consequently, creating the dilemma of potentially being too greedy or too wasteful with the resources available for a risk assessment. A “sweet spot” between those two would use methods and data sets that cover all relevant known processes without using resources inefficiently. We provide three key questions as a qualitative guidance toward this “sweet spot.” For quantitative decision support, more overarching case studies in various contexts are needed to reveal the sensitivity of the overall flood risk to individual components. This could also support the anticipation of unforeseen events like the flood event in Germany and Belgium in 2021 and increase the reliability of flood risk assessments.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: BMBF http://dx.doi.org/10.13039/501100002347
    Description: Federal Environment Agency http://dx.doi.org/10.13039/501100010809
    Description: http://howas21.gfz-potsdam.de/howas21/
    Description: https://www.umwelt.niedersachsen.de/startseite/themen/wasser/hochwasser_amp_kustenschutz/hochwasserrisikomanagement_richtlinie/hochwassergefahren_und_hochwasserrisikokarten/hochwasserkarten-121920.html
    Description: https://download.geofabrik.de/europe/germany.html
    Description: https://emergency.copernicus.eu/mapping/list-of-components/EMSN024
    Description: https://data.jrc.ec.europa.eu/collection/id-0054
    Description: https://oasishub.co/dataset/surface-water-flooding-footprinthurricane-harvey-august-2017-jba
    Description: https://www.wasser.sachsen.de/hochwassergefahrenkarte-11915.html
    Keywords: ddc:551.48 ; decision support ; extreme events ; integrated flood risk management ; risk assessment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-09
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gas transport in soils is usually assumed to be purely diffusive, although several studies have shown that non‐diffusive processes can significantly enhance soil gas transport. These processes include barometric air pressure changes, wind‐induced pressure pumping and static air pressure fields generated by wind interacting with obstacles. The associated pressure gradients in the soil can cause advective gas fluxes that are much larger than diffusive fluxes. However, the contributions of the respective transport processes are difficult to separate. We developed a large chamber system to simulate pressure fields and investigate their influence on soil gas transport. The chamber consists of four subspaces in which pressure is regulated by fans that blow air in or out of the chamber. With this setup, we conducted experiments with oscillating and static pressure fields. CO〈sub〉2〈/sub〉 concentrations were measured along two soil profiles beneath the chamber. We found a significant relationship between static lateral pressure gradients and the change in the CO〈sub〉2〈/sub〉 profiles (R〈sup〉2〈/sup〉 = 0.53; 〈italic toggle="no"〉p〈/italic〉‐value 〈2e‐16). Even small pressure gradients between −1 and 1 Pa relative to ambient pressure resulted in an increase or decrease in CO〈sub〉2〈/sub〉 concentrations of 8% on average in the upper soil, indicating advective flow of air in the pore space. Positive pressure gradients resulted in decreasing, negative pressure gradients in increasing CO〈sub〉2〈/sub〉 concentrations. The concentration changes were probably caused by an advective flow field in the soil beneath the chamber generated by the pressure gradients. No effect of oscillating pressure fields was observed in this study. The results indicate that static lateral pressure gradients have a substantial impact on soil gas transport and therefore are an important driver of gas exchange between soil and atmosphere. Lateral pressure gradients in a comparable range can be induced under windy conditions when wind interacts with terrain features. They can also be caused by chambers used for flux measurements at high wind speed or by fans used for head‐space mixing within the chambers, which yields biased flux estimates.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; advective flux ; chamber flux measurements ; static air pressure fields ; wind‐induced pressure pumping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-18
    Description: Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air‐filled porosities (ε), oxygen concentration (O〈sub〉2〈/sub〉) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O〈sub〉2〈/sub〉) systems to monitor at high spatiotemporal resolution redox dynamics within self‐constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X‐ray microtomography (X‐ray μCT). Depletion of O〈sub〉2〈/sub〉 was faster in the organic matter‐ and clay‐rich aggregated topsoil and the CF extended 〉10 cm above the artificial WT. The homogeneous and less‐aggregated subsoil extended only 4 cm above the WT as indicated by ε–O〈sub〉2〈/sub〉–EH data during saturation. After drainage, 2D O〈sub〉2〈/sub〉 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X‐ray μCT (ε〈sub〉CT_conn〈/sub〉) of 14.9% of the total porosity. However, small‐scaled anoxic domains with O〈sub〉2〈/sub〉 saturation 〈5% were apparent even after lowering the WT (down to 0.25 cm〈sup〉2〈/sup〉 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (E〈sub〉H〈/sub〉 〈 −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O〈sub〉2〈/sub〉 saturation after 8 days for the complete soil volume. Values of ε〈sub〉CT_conn〈/sub〉 around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox‐measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O〈sub〉2〈/sub〉 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature E〈sub〉H〈/sub〉 〉 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O〈sub〉2〈/sub〉 consumption rates aerated considerably faster than the topsoil and exclusively by O〈sub〉2〈/sub〉 diffusion through medium‐ and fine‐sized pores. To derive the soil redox status based upon the triplet ε–O〈sub〉2〈/sub〉–E〈sub〉H〈/sub〉 is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm〈sup〉3〈/sup〉. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
    Keywords: ddc:631.4 ; environmental monitoring ; incubation experiments ; redox processes ; soil reducing conditions ; undisturbed soil ; X‐ray microtomography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-17
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-1003" xml:lang="en"〉 〈p xml:lang="en"〉Long‐term experiments (LTEs) have provided data to modellers and agronomists to investigate changes and dynamics of soil organic carbon (SOC) under different cropping systems. As treatment changes have occurred due to agricultural advancements, so too have analytical soil methods. This may lead to method bias over time, which could affect the robust interpretation of data and conclusions drawn. This study aims to quantify differences in SOC due to changes in dry combustion methods over time, using soil samples of a LTE established in 1963 that focuses on mineral and organic fertilizer management in the temperate zone of Northeast Germany. For this purpose, 1059 soil samples, collected between 1976 and 2008, have been analysed twice, once with their historical laboratory method right after sampling, and a second time in 2016 when all samples were analysed using the same elementary analyser. In 9 of 11 soil sampling campaigns, a paired 〈italic toggle="no"〉t〈/italic〉‐test provided evidence for significant differences in the historical SOC values when compared with the re‐analysed concentrations of the same LTE sample. In the sampling years 1988 and 2004, the historical analysis obtained about 0.9 g kg〈sup〉−1〈/sup〉 lower SOC compared with the re‐analysed one. For 1990 and 1998, this difference was about 0.4 g kg〈sup〉−1〈/sup〉. Correction factors, an approach often used to correct for different analytical techniques, could only be applied for 5 of 11 sampling campaigns to account for constant and proportional systematic method error. For this particular LTE, the interpretation of SOC changes due to agronomic management (here fertilization) deviates depending on the analytical method used, which may weaken the explanatory power of the historical data. We demonstrate that analytical method changes over time present one of many challenges in the interpretation of time series data of SOC dynamics. Therefore, LTE site managers need to ensure providing all necessary protocols and data in order to retrace method changes and if necessary recalculate SOC.〈/p〉 〈/sec〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-0003" xml:lang="en"〉 〈title〉Highlights〈/title〉 〈p xml:lang="en"〉〈list list-type="bullet" id="ejss13362-list-0001"〉 〈list-item id="ejss13362-li-0001"〉〈p〉A total of 1059 LTE soil samples taken between 1976 and 2008 were re‐analysed for SOC in 2016〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0002"〉〈p〉Several methodological changes for SOC determination led to significant different SOC concentration in the same sample〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0003"〉〈p〉Interpretation and time series of LTE soil data suffer from consideration of analytical method changes and poor documentation of the same〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0004"〉〈p〉Soil archive establishment, thorough method protocols and diligent proficiency testing after soil method changes ameliorate the dilemma〈/p〉〈/list-item〉 〈/list〉〈/p〉 〈/sec〉
    Description: Brandenburger Staatsministerium für Wissenschaft, Forschung und Kultur http://dx.doi.org/10.13039/501100004581
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100004937
    Description: https://doi.org/10.4228/zalf-acge-b683
    Keywords: ddc:631.4 ; Bland–Altman ; carbon stocks ; data trueness ; Deming regression ; method bias ; soil archive ; soil survey
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Infrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (C〈sub〉t〈/sub〉), total nitrogen (N〈sub〉t〈/sub〉) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with 〈italic toggle="no"〉R〈/italic〉〈sup〉2〈/sup〉 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (C〈sub〉t〈/sub〉) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; data fusion ; independent validation ; infrared spectroscopy ; MBL ; nitrogen ; outer product analysis ; pH ; soil organic carbon ; spiking ; total carbon
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In recent years, many two‐dimensional (2D) hydrodynamic models have been extended to include the direct rainfall method (DRM). This allows their application as a hydrological‐hydrodynamic model for the determination of floodplains in one model system. In previous studies on DRM, the role of catchment hydrological processes (CaHyPro) and its interaction with the calibration process was not investigated in detail. In the present, case‐oriented study, the influence of the spatiotemporal distribution of the processes precipitation and runoff formation in combination with the 2D model HEC‐RAS is investigated. In a further step, a conceptual approach for event‐based interflow is integrated. The study is performed on the basis of a single storm event in a small rural catchment (low mountain range, 38 km〈sup〉2〈/sup〉) in Hesse (Germany). The model results are evaluated against six quality criteria and compared to a simplified baseline model. Finally, the calibrated improved model is contrasted with a calibrated baseline model. The results show the enhancement of the model results due to the integration of the CaHyPro and highlight its interplay with the calibrated model parameters.〈/p〉
    Keywords: ddc:551.48 ; 2D hydrodynamic modeling ; calibration ; direct rainfall modeling ; hydrological processes ; radar data ; runoff formation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long‐term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process‐based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site‐specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://git.ufz.de/bodium/bodium_v1.0
    Keywords: ddc:631.4 ; agriculture ; computational model ; simulation ; soil microbiology ; soil structure ; sustainable soil
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-18
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Temperature and soil moisture are known to control pesticide mineralization. Half‐life times (DT〈sub〉50〈/sub〉) derived from pesticide mineralization curves generally indicate longer residence times at low soil temperature and moisture but do not consider potential changes in the microbial allocation of pesticide‐derived carbon (C). We aimed to determine carbon use efficiency (CUE, formation of new biomass relative to total C uptake) to better understand microbial utilization of pesticide‐derived C under different environmental conditions and to support the conventional description of degradation dynamics based on mineralization. We performed a microcosm experiment at two MCPA (2‐methyl‐4‐chlorophenoxyacetic acid) concentrations (1 and 20 mg kg〈sup〉−1〈/sup〉) and defined 20°C/pF 1.8 as optimal and 10°C/pF 3.5 as limiting environmental conditions. After 4 weeks, 70% of the initially applied MCPA was mineralized under optimal conditions but MCPA mineralization reached less than 25% under limiting conditions. However, under limiting conditions, an increase in CUE was observed, indicating a shift towards anabolic utilization of MCPA‐derived C. In this case, increased C assimilation implied C storage or the formation of precursor compounds to support resistance mechanisms, rather than actual growth since we did not find an increase in the 〈italic toggle="no"〉tfdA〈/italic〉 gene relevant to MCPA degradation. We were able to confirm the assumption that under limiting conditions, C assimilation increases relative to mineralization and that C redistribution, may serve as an explanation for the difference between mineralization and MCPA dissipation‐derived degradation dynamics. In addition, by introducing CUE to the temperature‐ and moisture‐dependent degradation of pesticides, we can capture the underlying microbial constraints and adaptive mechanisms to changing environmental conditions.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Changing environmental conditions alter the MCPA degradation dynamics and the allocation of pesticide‐derived carbon to anabolic or catabolic metabolism.〈boxed-text position="anchor" content-type="graphic" id="ejss13417-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:13510754:media:ejss13417:ejss13417-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Collaborative Research Center 1253 CAMPOS (DFG)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: DFG Priority Program 2322 “Soil System”
    Description: Ellrichshausen Foundation
    Description: Research Training Group “Integrated Hydrosystem modeling”
    Description: https://doi.org/10.5281/zenodo.5081655
    Keywords: ddc:631.4 ; anabolism ; carbon use efficiency ; catabolism ; effect of soil moisture and temperature ; gene‐centric process model ; MCPA biodegradation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-20
    Description: Stable hydrogen isotope ratios (δ2H values) in structural hydroxyl groups of pedogenic clay minerals are inherited from the surrounding water at the time of their formation. Only non‐exchangeable H preserves the environmental forensic and paleoclimate information (δ2Hn value). To measure δ2Hn values in structural H of clay minerals and soil clay fractions, we adapted a steam equilibration method by accounting for high hygroscopicity. Our δ2Hn values for USGS57 biotite (−95.3 ± SD 0.9‰) and USGS58 muscovite (30.7 ± 1.4‰) differed slightly but significantly from the reported δ2H values (−91.5 ± 2.4‰ and −28.4 ± 1.6‰), because the minerals contained 1.1%–4.4% of exchangeable H. The low SD of replicate measurements (n = 3) confirmed a high precision. The clay separation method including destruction of Fe oxides, carbonates and soil organic matter, and dispersion did not significantly change the δ2Hn values of five different clay minerals. However, we were unable to remove all organic matter from the soil clay fractions resulting in an estimated bias of 1‰ in two samples and 15‰ in the carbon‐richest sample. Our results demonstrate that δ2Hn values of structural H of clay minerals and soil clay fractions can be reliably measured without interference from atmospheric water and the method used to separate the soil clay fraction. Highlights We tested steam equilibration to determine stable isotope ratios of structural H in clay. Gas‐tight capsule sealing in Ar atmosphere was necessary to avoid remoistening. Our steam equilibration method showed a high accuracy and precision. The clay separation method did not change stable isotope ratios of structural H in clay.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:549 ; controlled isotope exchange technique ; deuterium ; montmorillonite ; soil clay separation ; soil organic matter removal ; steam equilibration ; structural H ; USGS57 biotite ; vermiculite ; δ2H
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-26
    Description: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-21
    Description: Charcoal‐rich Technosols on century‐old relict charcoal hearths (RCHs) are the subject of ongoing research regarding potential legacy effects that result from historic charcoal production and subsequent charcoal amendments on forest soil properties and forest ecosystems today. RCHs consist mostly of Auh horizons that are substantially enriched in soil organic carbon (SOC), of which the largest part seems to be of pyrogenic origin (PyC). However, the reported range of SOC and PyC contents in RCH soil also suggests that they are enriched in nonpyrogenic SOC. RCH soils are discussed as potential benchmarks for the long‐term influence of biochar amendment and the post‐wildfire influences on soil properties. In this study, we utilised a large soil sample dataset (n = 1245) from 52 RCH sites in north‐western Connecticut, USA, to quantify SOC contents by total element analysis. The contents of condensed highly aromatic carbon as a proxy for black carbon (BC) were predicted by using a modified benzene polycarboxylated acid (BPCA) marker method in combination with diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy‐based partial least square regression (r2 = 0.89). A high vertical spatial sampling resolution allowed the identification of soil organic matter (SOM) enrichment and translocation processes. The results show an average 75% and 1862% increase in TOC and BPCA‐derived carbon, respectively, for technogenic Auh horizons compared to reference soils. In addition to an increase in aromatic properties, increased carboxylic properties of the RCH SOC suggest self‐humification effects of degrading charcoal and thereby the continuing formation of leachable aromatic carbon compounds, which could have effects on pedogenic processes in buried soils. Indeed, we show BPCA‐derived carbon concentrations in intermediate technogenic Cu horizons and buried top/subsoils that suggest vertical translocation of highly aromatic carbon originating in RCH Auh horizons. Topmost Auh horizons showed a gradual decrease in total organic carbon (TOC) contents with increasing depth, suggesting accumulation of recent, non‐pyrogenic SOM. Lower aliphatic absorptions in RCH soil spectra suggest different SOM turnover dynamics compared to reference soils. Furthermore, studied RCH soils featured additional TOC enrichment, which cannot be fully explained now. Highlights BC to TOC ratio and high resolution vertical SOC distribution in 52 RCH sites were studied. RCH soils non‐BC pool was potentially different to reference soils. RCH soils feature TOC accumulation in the topmost horizon. There is BC translocation into buried soils on RCH sites.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; benzene polycarboxylated acid marker (BPCA) ; black carbon ; charcoal degradation ; charcoal kiln ; pyrogenic carbon ; relict charcoal hearth ; biochar
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Hydrogeological information about an aquifer is difficult and costly to obtain, yet essential for the efficient management of groundwater resources. Transferring information from sampled sites to a specific site of interest can provide information when site‐specific data is lacking. Central to this approach is the notion of site similarity, which is necessary for determining relevant sites to include in the data transfer process. In this paper, we present a data‐driven method for defining site similarity. We apply this method to selecting groups of similar sites from which to derive prior distributions for the Bayesian estimation of hydraulic conductivity measurements at sites of interest. We conclude that there is now a unique opportunity to combine hydrogeological expertise with data‐driven methods to improve the predictive ability of stochastic hydrogeological models.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉Article impact statement〈/italic〉: This article introduces hierarchical clustering as a method for defining a notion of site similarity; the aim of this method is to improve the derivation of prior distributions in Bayesian methods in hydrogeology.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://github.com/GeoStat-Bayesian/geostatDB
    Description: https://github.com/GeoStat-Bayesian/exPrior
    Description: https://github.com/GeoStat-Bayesian/siteSimilarity
    Keywords: ddc:551.49 ; hydrogeological sites ; hydrogeological modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-22
    Description: Soil fauna drives crucial processes of energy and nutrient cycling in agricultural systems, and influences the quality of crops and pest incidence. Soil tillage is the most influential agricultural manipulation of soil structure, and has a profound influence on soil biology and its provision of ecosystem services. The objective of this study was to quantify through meta‐analyses the effects of reducing tillage intensity on density and diversity of soil micro‐ and mesofaunal communities, and how these effects vary among different pedoclimatic conditions and interact with concurrent management practices. We present the results of a global meta‐analysis of available literature data on the effects of different tillage intensities on taxonomic and functional groups of soil micro‐ and mesofauna. We collected paired observations (conventional vs. reduced forms of tillage/no‐tillage) from 133 studies across 33 countries. Our results show that reduced tillage intensity or no‐tillage increases the total density of springtails (+35%), mites (+23%), and enchytraeids (+37%) compared to more intense tillage methods. The meta‐analyses for different nematode feeding groups, life‐forms of springtails, and taxonomic mite groups showed higher densities under reduced forms of tillage compared to conventional tillage on omnivorous nematodes (+53%), epedaphic (+81%) and hemiedaphic (+84%) springtails, oribatid (+43%) and mesostigmatid (+57%) mites. Furthermore, the effects of reduced forms of tillage on soil micro‐ and mesofauna varied with depth, climate and soil texture, as well as with tillage method, tillage frequency, concurrent fertilisation, and herbicide application. Our findings suggest that reducing tillage intensity can have positive effects on the density of micro‐ and mesofaunal communities in areas subjected to long‐term intensive cultivation practices. Our results will be useful to support decision making on the management of soil faunal communities and will facilitate modelling efforts of soil biology in global agroecosystems. HIGHLIGHTS Global meta‐analysis to estimate the effect of reducing tillage intensity on micro‐ and mesofauna Reduced tillage or no‐tillage has positive effects on springtail, mite and enchytraeid density Effects vary among nematode feeding groups, springtail life forms and mite suborders Effects vary with texture, climate and depth and depend on the tillage method and frequency
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.20387/bonares-eh0f-hj28
    Keywords: ddc:631.4 ; agricultural land use ; conservation agriculture ; conventional agriculture ; soil biodiversity ; soil cultivation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...