ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (256)
  • Articles (OceanRep)  (256)
  • geoleo_oai
  • Springer  (218)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (37)
  • American Meteorological Society
  • Springer Nature
  • 2020-2024  (256)
Collection
  • Other Sources  (256)
Source
  • Articles (OceanRep)  (256)
  • geoleo_oai
Years
Year
  • 1
    Publication Date: 2023-01-04
    Description: Millions of tons of plastic waste are released into the marine environment every year. While they steadily accumulate, synthetic polymers provide a habitat for microorganisms. This denominated Plastisphere has been studied in detail over the past ten years. So have the enzymes responsible for microbial degradation, which are unfortunately lacking for most sorts of plastics. Therefore, the BMBF-funded project PLASTISEA is focusing on bioprospecting the marine treasure trove for novel plastic acting enzymes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-04
    Description: Many of the socio-economic and environmental challenges of the 21st century like the growing energy and food demand, rising sea levels and temperatures put stress on marine ecosystems and coastal populations. This requires a significant strengthening of our monitoring capacities for processes in the water column, at the seafloor and in the subsurface. However, present-day seafloor instruments and the required infrastructure to operate these are expensive and inaccessible. We envision a future Internet of Underwater Things, composed of small and cheap but intelligent underwater nodes. Each node will be equipped with sensing, communication, and computing capabilities. Building on distributed event detection and cross-domain data fusion, such an Internet of Underwater Things will enable new applications. In this paper, we argue that to make this vision a reality, we need new methodologies for resource-efficient and distributed cross-domain data fusion. Resource-efficient, distributed neural networks will serve as data-analytics pipelines to derive highly aggregated patterns of interest from raw data. These will serve as (1) a common base in time and space for fusion of heterogeneous data, and (2) be sufficiently small to be transmitted efficiently in resource-constrained settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-04
    Description: Die Messung submariner Bodendeformationen an den Flanken von Inselvulkanen hilft dabei, ihre Stabilität und die Gefahr von Hangrutschungen einzuschätzen, ist aber inherent schwierig für Gebiete, die unter Wasser liegen. Wiederholte Seismik- oder Fächerecholot-Vermessungen können größere Gebiete abdecken, aber Auflösung und Lokalisierung sind bestimmten Grenzen unterworfen. Optische Daten andererseits sind besser aufgelöst, aber limitiert in ihrer räumlichen Abdeckung, und Meeresbodengeodäsie wiederum liefert nur punktuelle Information. In diesem Artikel schlagen wir vor, verschiedene Arten von Fernerkundungsdaten zusammenzubringen und auch mit bestehenden statischen und dynamischen Modellen zu verschneiden. Aufgrund ihrer verschiedenen Modalitäten, Unsicherheiten und Skalierungen ist dies jedoch schwierig und bedarf einer Fusion. Zusammen mit anderen Aspekten (Erdbeben, Strömungen etc.) sollen die fusionierten Daten und Modelle langfristig neue Einblicke in das dynamische System des sich verändernden Meeresbodens, die dafür verantwortlichen Faktoren sowie die Auswirkungen instabiler submariner Hänge auf andere Meeressysteme bieten.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-04
    Description: Plankton is a massive and phylogenetically diverse group of thousands of prokaryotes, protists (unicellular eukaryotic organisms), and metazoans (multicellular eukaryotic organisms; Fig. 1). Plankton functional diversity is at the core of various ecological processes, including productivity, carbon cycling and sequestration, nutrient cycling (Falkowski 2012), interspecies interactions, and food web dynamics and structure (D'Alelio et al. 2016). Through these functions, plankton play a critical role in the health of the coastal and open ocean and provide essential ecosystem services. Yet, at present, our understanding of plankton dynamics is insufficient to project how climate change and other human-driven impacts affect the functional diversity of plankton. That limits our ability to predict how critical ecosystem services will change in the future and develop strategies to adapt to these changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-04
    Description: A central promise of cross-domain fusion (CDF) is the provision of a “bigger picture” that integrates different disciplines and may span very different levels of detail. We present a number of settings that call for this bigger picture, with a particular focus on how information from several domains can be made easily accessible and visualizable for different stakeholders. We propose harnessing an approach that is now well established in interactive maps, which we refer to as the “Google maps approach” (Google LLC, Mountain View, CA, USA), which combines effective filtering with intuitive user interaction. We expect this approach to be applicable to a range of CDF settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-02
    Description: Consistently high data quality is essential for the development of novel loss functions and architectures in the field of deep learning. The existence of such data and labels is usually presumed, while acquiring high-quality datasets is still a major issue in many cases. Subjective annotations by annotators often lead to ambiguous labels in real-world datasets. We propose a data-centric approach to relabel such ambiguous labels instead of implementing the handling of this issue in a neural network. A hard classification is by definition not enough to capture the real-world ambiguity of the data. Therefore, we propose our method “Data-Centric Classification & Clustering (DC3)” which combines semi-supervised classification and clustering. It automatically estimates the ambiguity of an image and performs a classification or clustering depending on that ambiguity. DC3 is general in nature so that it can be used in addition to many Semi-Supervised Learning (SSL) algorithms. On average, our approach yields a 7.6% better F1-Score for classifications and a 7.9% lower inner distance of clusters across multiple evaluated SSL algorithms and datasets. Most importantly, we give a proof-of-concept that the classifications and clusterings from DC3 are beneficial as proposals for the manual refinement of such ambiguous labels. Overall, a combination of SSL with our method DC3 can lead to better handling of ambiguous labels during the annotation process. (Source code is available at https://github.com/Emprime/dc3).
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-19
    Description: Here, we outline how to identify hydrogenase enzymes from metagenomic fosmid libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis MR-1 (ΔhyaB) via triparental mating. If a fosmid clone exhibits hydrogen-uptake activity, S. oneidensis’ phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. The screen enables screening of 48 metagenomic fosmid clones in parallel.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-19
    Description: The gas hydrate system off Mauritania is characterized by the undulating landward termination of a gas hydrate-related bottom simulating reflector (BSR). Some of the most landward sections of this BSR reach up to within 6 m of the seafloor. This suggests a shallow sulphate-methane-interface over an unusually large area. We attribute this to the presence of large amounts of methane due to the efficient burial of organic matter in a high-productivity oceanographic region, and the efficient channelling of methane along permeable turbidite beds towards the feather edge of the gas hydrate stability zone. This is consistent with the observation of steps in the BSR, where it cross-cuts other inferred permeable horizons. The high thermal conductivity of a salt dome in the southern part of the study area distorts the subsurface temperature field, giving the base of the hydrate stability zone a concave-down shape. Within this anticline of the BSR, high amplitudes and a horizontal reflection that crosses the sedimentary strata indicate the entrapment of free gas. We interpret this as a direct indication of a reduced hydraulic permeability of the hydrate-bearing sediment.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-24
    Description: Spectacular advances have been made in the field of machine vision over the past decade. While this discipline is traditionally driven by geometric models, neural networks have proven to be superior in some applications and have significantly expanded the limits of what is possible. At the same time, conventional graphic models describe the relationship between images and the associated scene with textures and light in a physically realistic manner and are an important part of photogrammetry. Differential renderers combine these approaches by enabling gradient-based optimization in fixed structures of a graphics pipeline and thus adapt the learning process of neural networks. This fusion of formalized knowledge and machine learning motivates the idea of a modular differentiable renderer in which physical and statistical models can be recombined depending on the use case. We therefore present Gemini Connector: an initiative for the modular development and combination of differentiable physical models and neural networks. We examine opportunities and problems and motivate the idea with the extension of a differentiable rendering pipeline to include models of underwater optics for the analysis of deep sea images. Finally, we discuss use cases, especially within the Cross-Domain Fusion initiative.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-02
    Description: Interactive exploration of Earth system simulations may have great potential to improve the scientific modeling process. It will allow monitoring of the state of the simulation via dashboards presenting real-time diagnostics within a digital twin world. We present the state of the art for Earth system modeling in this context. Cross-domain data handling and fusion will make it possible to integrate model and observation data in the context of digital twins of the ocean. Domain-driven modularization of monolithic Earth system models allows one to recover interfaces for such a cross-domain fusion. Reverse engineering with static and dynamic analysis enables modularization of Earth system models. The modularization does not only help with restructuring existing Earth system models, it also makes it possible to integrate additional scientific domains into the interactive simulation environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...