ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (40)
  • Elsevier  (40)
  • Institut für Meereskunde
  • American Meteorological Society
  • MDPI Publishing
  • 2020-2023  (40)
  • 1
    Publication Date: 2022-12-22
    Description: This chapter aims at introducing the reader to general concepts about the main forcings of the Mediterranean Sea, in terms of exchanges through the Strait of Gibraltar, and air-sea exchanges of heat, freshwater, and momentum. These forcings are also responsible for the peculiar characteristics of Mediterranean water masses. Therefore, the chapter continues with giving a general explanation on water mass analysis, and then it describes the properties and vertical and horizontal distributions of the main Mediterranean water masses. To conclude, the reader is introduced to the use of other (biogeochemical, and chemical) tracers of water masses, with a focus on the Mediterranean Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-25
    Description: Wildfires are natural or anthropogenic phenomena increasing at alarming rates globally due to land-use alterations, droughts, climatic warming, hunting and biological invasions. Whereas wildfire effects on terrestrial ecosystems are marked and relatively well-studied, ash depositions into aquatic ecosystems have often remained overlooked but have the potential to significantly impact bottom-up processes. This study assessed ash-water-phytoplankton biomass dynamics using six plant species [i.e., three natives (apple leaf Philenoptera violacea, Transvaal milk plum Englerophytum magalismontanum, quinine tree Rauvolfia caffra) and three aliens (lantana Lantana camara, gum Eucalyptus camaldulensis, guava Psidium guajava)] based on a six-week mesocosm experiment with different ash concentrations (1 and 2 g L-1). We assessed concentrations of chemical elements, i.e., N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn and B from ash collected, and we have observed significant differences among the species. High concentrations of P, K, Mn, Fe, Cu, Zn and B were recorded from Transvaal milk plum ash and low concentrations of P, K, Ca, Mg, Cu and Zn were recorded from apple leaf. An increase in phytoplankton biomass (using chlorophyll-a concentration as a proxy) for all treatments i.e., 1 and 2 g L-1 for all plant species ash was observed a week after, followed by decreases in the following weeks, with the exception of 2 g L-1 for lantana, gum and control. Silicate concentrations (i.e., used as a proxy for diatom abundance) showed increasing patterns among all ash treatments, with exception of controls. However, no clear patterns were observed between native and alien plant ash on both chl-a and silicate concentrations. We found that ash has notable effects on water chemistry, particularly nitrate, which increased throughout the weeks, whereas, pH and conductivity were high at low ash concentrations. The impacts of ash on water chemistry, chl-a and silicate concentrations vary with individual species and the amount of ash deposited into the system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-22
    Description: Phytoplankton form the base of the pelagic food web in inland waters. Unlike rooted plants with access to nutrients in the sediment, phytoplankton depend on the open water as their sole direct source of minerals. Phytoplankton comprise cyanobacteria and phylogenetically diverse eukaryotic algae that convert light energy and mineral nutrients into organic matter. Many species also exploit the elements and energy within dissolved organic compounds and particles produced in the catchment or within the water. Here, we describe the nutrient requirements of phytoplankton, their different modes of nutrition, the mechanisms they employ to acquire nutrients and the ecological consequences of their varying ability to exploit an often scarce and spatially and temporally variable resource. When nutrients are abundant, often as a result of human disruption of nutrient cycles, phytoplankton productivity, and often biomass, increases to the point that it causes a range of ecological consequences that reduce the value of the water resource for mankind.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-05
    Description: Quantification of phthalates or phthalic acid esters (PAEs) might be problematic due to matrix overlap, auto-self absorbance and background scattering noise by the plastic lab materials although plastics have been reported in the release of PAEs. These materials (ambient air, reagents bottles, sampling devices, and various analytical instruments), are ubiquitous in the laboratory environment, thereby making it more difficult to reliably analyze of trace concentration of PAEs. Thus, in the current study, a straight forward and reliable protocol has been established for the analysis of PAEs including control of blank contamination, and the experimental conditions such as extraction time and temperature were optimized. The mass of PAEs in blank tests of selected materials ranged from 3±0.7 to 35±6 ng for liquid-liquid extraction (LLE) and from 5±1.8 to 63±15 ng for solid-phase extraction (SPE). For both extraction methods, higher blank values were measured for dibutyl phthalate (DBP) (35±6 ng, 12±3 ng), and DEHP (63±12 ng, 23±5 ng) in LLE and SPE, respectively. Average recoveries of PAEs in LLE were 90-97% and obtained with successive aliquots of 2 mL, 1 mL, and 1 mL dichloromethane (DCM). For SPE, recoveries up to 86-90% were achieved with successive aliquots of 5, 3, and 2 mL DCM at a sample flow rate of 5 mL min -1 . Under the optimized conditions, the method quantification limits (MQL) for PAEs was 10-20 ng L -1 for LLE and 10-35 ng L -1 for SPE. Moreover, the dissolved concentrations of PAEs from LDPE measured by the LLE method ranged 〈 1.5 to 5.83 ng cm -2, and those measured by SPE ranged from 1.0to256ngL -1 , in seawater samples of Sharm Obhur. The method has lower MQL values for LLE and SPE than average reported values of 10-100 ng L -1 and 30-100 ng L -1 , respectively.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-02
    Description: A key requirement for geological CO2 storage is site integrity management and monitoring during operation through to the post decommissioning period. This paper focuses on monitoring deformation of the ground surface and seabed as a proxy for overall deformation in the reservoir and surrounding layers. The objective is to inform, based on deformation data, on how the reservoir is responding to CO2 injection and to ensure any issues with regard to storage integrity are rapidly detected. The magnitude and pattern of deformation at the surface reveals geomechanical/hydromechanical processes that occur in reservoir due to CO2 injection. We acquired deformation data from the In Salah CO2 injection site and from four additional study cases during the course of this study; one in the onshore UK, the other a combined campaign onshore Norway and offshore Germany, and the third in onshore Japan. Significant developments in measurement techniques, processing tools and interpretation algorithms were developed through this project. Models were then developed to simulate the observed data and to couple surface deformation to displacement in the subsurface. The results show millimeter-scale deformations in the subsurface have a signature at the surface that can be captured by the tools and workflows developed in this project. These deformations, particularly the patterns, are important factors to consider when monitoring a CO2 storage site.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Climate Change. Elsevier, Amsterdam, The Netherlands, pp. 219-249. 3.ed. ISBN 978-0-12-821575-3
    Publication Date: 2022-01-06
    Description: The oceans' role in climate and climate change is manifold. The Ocean circulation transports large amounts of heat and freshwater on hemispheric space scales which have significant impacts on regional climate in the ocean itself but also noticeable consequences via atmospheric teleconnections on land. Due to the high heat capacity of seawater and the relatively slow ocean circulation, the oceans provide a significant “memory” for the climate system. Bodies of water that descend from the sea surface may reside in the ocean interior for decades and centuries, while preserving their temperature and salinity signature, before they surface again to interact with the overlying atmosphere. The residence time of water in the atmosphere is about ten days and the persistence of dynamical states of the atmospheric circulation may last up to a few weeks. Thus, on long time scales ocean dynamics becomes important for climate, which implies that climate variations and climate change can only partially be understood without consideration of ocean dynamics and the intricate ocean-atmosphere interaction. Since 1960 the heat uptake of the oceans has been 20 times larger than that of the atmosphere. Thus the oceans have been able to reduce the otherwise much more pronounced temperature rise in the atmospheric climate. Also, over the last 200 years the oceans have absorbed about half of the CO2 release into the atmosphere by human activities (fossil fuel combustion, de-forestation, cement production), thereby reducing the direct effect of greenhouse gases on atmospheric temperatures.This chapter aims to describe and explain fundamental principles of the ocean dynamics and gathers information about past, present and future states the world’s ocean and its role in climate change.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-07
    Description: Highlights • Continuous CH4 bioelectrosynthesis from CO2 demonstrated with 80% or higher Coulombic Efficiency • At pH values below 8 CH4 cathodic off-gas contains up to 85% CH4 • At pH above 8.5, production of acetate and then ethanol (up to 8 g L−1) was obtained • Coulombic efficiency remained above 80% • 16S sequencing showed proliferation of Clostridium, Methanosaeta, Methanobrevibacter and Methanobacterium spp at the cathode This study demonstrates the continuous conversion of CO2 to methane, acetate, and ethanol in a Microbial Electrosynthesis Cell (MESC) with a carbon felt biocathode. The MESC was inoculated with a mixed anaerobic microbial consortium and operated at a mesophilic temperature of 30 °C. In situ deposition of Ni and Fe was achieved by introducing 0.2 g L−1 of NiSO4 or FeSO4, respectively, into the cathode compartment influent stream. In response, a considerable improvement in MESC performance was observed with a current density of 6.4 mA cm−2 (per separator area) and a CH4 production of 0.83 L (LR d)−1 (R = cathode volume). Once Ni and Fe were removed from the influent solution, the performance remained unchanged. Electron dispersive spectroscopy confirmed Ni and Fe electrodeposition. A shift from CH4 to acetate and ethanol production with concentrations reaching 5 and 8 g L−1, respectively, was observed upon increasing the cathode compartment pH to 8.5–9.0. 16S rRNA gene sequencing showed significant changes in the bacterial population at the cathode with Clostridia representing almost two-thirds of the population. Methanosaeta, Methanobrevibacter, and Methanobacterium species dominated the archaeal community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-07
    Description: Rivers are viewed as major pathways of microplastic transport from terrestrial areas to marine ecosystems. However, there is paucity of knowledge on the dispersal pattern and transport of microplastics in river sediments. In this study, a three dimensional hydrodynamic and particle transport modelling framework was created to investigate the dispersal and transport processes of microplastic particles commonly present in the environment, namely, polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) in river sediments. The study outcomes confirmed that sedimental microplastics with lower density would have higher mobility. PE and PP are likely to be transported for a relatively longer distance, while PA and PET would likely accumulate close to source points. High water flow would transport more microplastics from source points, and high flow velocity in bottom water layer are suggested to facilitate the transport of sedimental microplastics. Considering the limited dispersal and transport, the study outcomes indicated that river sediments would act as a sink for microplastic pollutants instead of being a transport pathway. The patchiness associated with the hotspots of different plastic types is expected to provide valuable information for microplastic source tracking.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-07
    Description: Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-07
    Description: Highlights: • Transcriptional response to hypoxia-reoxygenation was studied in an OMZ bivalve. • Anaerobic glycolysis and protein quality control pathways were transcriptionally upregulated in hypoxia. • Hypoxia elevated mRNA levels of UCP2 but had no effect on thiol-dependent antioxidants. • No impact of hypoxia-reoxygenation was found on aerobic marker enzymes. • Responses of an OMZ bivalve show parallels to other hypoxia-tolerant bivalves. Abstract: Benthic animals inhabiting the edges of marine oxygen minimum zones (OMZ) are exposed to unpredictable large fluctuations of oxygen levels. Sessile organisms including bivalves must depend on physiological adaptations to withstand these conditions. However, as habitats are rather inaccessible, physiological adaptations of the OMZ margin inhabitants to oxygen fluctuations are not well understood. We therefore investigated the transcriptional responses of selected key genes involved in energy metabolism and stress protection in a dominant benthic species of the northern edge of the Namibian OMZ, the nuculanid clam Lembulus bicuspidatus,. We exposed clams to normoxia (~5.8 ml O2 l−1), severe hypoxia (36 h at ~0.01 ml O2 l−1) and post-hypoxic recovery (24 h of normoxia following 36 h of severe hypoxia). Using newly identified gene sequences, we determined the transcriptional responses to hypoxia and reoxygenation of the mitochondrial aerobic energy metabolism (pyruvate dehydrogenase E1 complex, cytochrome c oxidase, citrate synthase, and adenine nucleotide translocator), anaerobic glycolysis (hexokinase (HK), phosphoenolpyruvate carboxykinase (PEPCK), phosphofructokinase, and aldolase), mitochondrial antioxidants (glutaredoxin, peroxiredoxin, and uncoupling protein UCP2) and stress protection mechanisms (a molecular chaperone HSP70 and a mitochondrial quality control protein MIEAP) in the gills and the labial palps of L. bicuspidatus. Exposure to severe hypoxia transcriptionally stimulated anaerobic glycolysis (including HK and PEPCK), antioxidant protection (UCP2), and quality control mechanisms (HSP70 and MIEAP) in the gills of L. bicuspidatus. Unlike UCP2, mRNA levels of the thiol-dependent mitochondrial antioxidants were not affected by hypoxia-reoxygenation stress. Transcript levels of marker genes for aerobic energy metabolism were not responsive to oxygen fluctuations in L. bicuspidatus. Our findings highlight the probable importance of anaerobic succinate production (via PEPCK) and mitochondrial and proteome quality control mechanisms in responses to oxygen fluctuations of the OMZ bivalve L. bicuspidatus. The reaction of L. bicuspidatus to oxygen fluctuations implies parallels to that of other hypoxia-tolerant bivalves, such as intertidal species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-01-07
    Description: Despite the growing concern of scyphozoan jellyfish blooms and their associated threats, there is an acute lack of baseline knowledge regarding the trophic ecology of scyphozoans in tropical waters where blooms of several species sometimes occur at once or successively. Therefore, this study was conducted from June 2010 to December 2011 in the Klang Strait (Malaysia) to elucidate the trophic ecology of eight sympatric species of scyphozoan that occurred in a conjoint mangrove-mudflat habitat. The species diet, trophic position and the relative contribution of primary producers to their nutrition were determined by integrating stomach content examination with stable isotope analysis. Scyphozoans in the Klang Strait are principally carnivores and can be grouped into three major trophic guilds: specialized copepod feeder, copepod and macrozooplankton feeder, and mixed plankton feeder. Bayesian mixing model of δ13C isotope values indicates that the scyphozoans mainly derived their basal carbon source from microphytobenthos and phytoplankton. Analysis of δ15N isotope values reveals that all species are positioned at the third trophic level after mixed zooplankton groups (second) and primary producers (first) in the food web. Scyphozoans thus represent an important trophic link coupling benthic and pelagic primary production to higher-level predators and humans, and are important carbon exporters from nearshore to neritic and offshore waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-07
    Description: Being integral primary producers in diverse ecosystems, microalgal genomes could be mined for ecological insights, but representative genome sequences are lacking for many phyla. We cultured and sequenced 107 microalgae species from 11 different phyla indigenous to varied geographies and climates. This collection was used to resolve genomic differences between saltwater and freshwater microalgae. Freshwater species showed domain-centric ontology enrichment for nuclear and nuclear membrane functions, while saltwater species were enriched in organellar and cellular membrane functions. Further, marine species contained significantly more viral families in their genomes (p = 8e–4). Sequences from Chlorovirus, Coccolithovirus, Pandoravirus, Marseillevirus, Tupanvirus, and other viruses were found integrated into the genomes of algal from marine environments. These viral-origin sequences were found to be expressed and code for a wide variety of functions. Together, this study comprehensively defines the expanse of protein-coding and viral elements in microalgal genomes and posits a unified adaptive strategy for algal halotolerance.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: video
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-01-07
    Description: A major highlight of restoration efforts is to improve the ecological structure and function of the natural ecosystem in the restored habitat. Assessment of restoration success is a crucial component of an optimal ecological management strategy. In studies to determine the restoration success of a transplanted seagrass habitat by assessing trophic recovery, we examined carbon and nitrogen stable isotope ratios of organic matter sources and macrobenthic assemblages in a transplanted eelgrass Zostera marina bed. The eelgrass bed was restored about 2 years after transplantation in a southern coastal bay of Korea, and consequently, the food web structure in the bed was compared with that in a natural reference site. Our results revealed no significant differences in isotopic values of both macrobenthic consumers and their putative food sources between the transplanted and natural seagrass beds. These isotopic similarities in florae and faunae in the two beds suggest a uniformity in food web structure formed by the diversity and availability of resources, and thereby suggest similarities in the resource–consumer relationship. Isotopic niche indices and high dietary overlaps of feeding guilds in the transplanted and natural beds further suggest the transplanted habitat provides similar ecological functions and ecosystem services to its natural counterpart. Collectively, our results suggest the eelgrass transplantation led to successful restoration of a common seagrass bed, with recovery of the functional properties of the food web structure. Finally, our findings support the idea that stable isotope measures can provide a better understanding of the functioning of restored ecosystems, and improve post-transplantation monitoring efforts for the future planning and managing of successful habitat restoration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-01-07
    Description: Micro- and nano-scale plastic particles in the environment result from their direct release and degradation of larger plastic debris. Relative to macro-sized plastics, these small particles are of special concern due to their potential impact on marine, freshwater, and terrestrial systems. While microplastic (MP) pollution has been widely studied in geographic regions globally, many questions remain about its origins. It is assumed that urban environments are the main contributors but systematic studies are lacking. The absence of standard methods to characterize and quantify MPs and smaller particles in environmental and biological matrices has hindered progress in understanding their geographic origins and sources, distribution, and impact. Hence, the development and standardization of methods is needed to establish the potential environmental and human health risks. In this study, we investigated stable carbon isotope ratio mass spectrometry (IRMS), attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy, and micro-Raman spectroscopy (μ-Raman) as complementary techniques for characterization of common plastics. Plastic items selected for comparative analysis included food packaging, containers, straws, and polymer pellets. The ability of IRMS to distinguish weathered samples was also investigated using the simulated weathering conditions of ultraviolet (UV) light and heat. Our IRMS results show a difference between the δ13C values for plant-derived and petroleum-based polymers. We also found differences between plastic items composed of the same polymer but from different countries, and between some recycled and nonrecycled plastics. Furthermore, increasing δ13C values were observed after exposure to UV light. The results of the three techniques, and their advantages and limitations, are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-01-07
    Description: Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) has become a well-established technique for the detection, size characterization and quantification of inorganic nanoparticles but its use for the analysis of micro- and nanoparticles composed of carbon has been scarce. Here, the analysis of a microplastic suspensions by ICP-MS operated in single particle mode using microsecond dwell times is comprehensively discussed. The detection of polystyrene microparticles down to 1.2 μm was achieved by monitoring the 13C isotope. Plastic microparticles of up to 5 μm were completely volatized and their components atomized, which allowed the detection of microplastics, their quantification using aqueous dissolved carbon standards, and the measurement of the size-distribution of the detected particles. Limits of detection of 100 particles per milliliter were achieved for an acquisition time of 5 min. The method developed was applied to the screening of microplastics in personal care products and released from food packagings. The chemical identity of the detected microplastics was confirmed by attenuated total reflectance Fourier-transform infrared spectroscopy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Opinion in Biotechnology, 67 . pp. 119-129.
    Publication Date: 2022-01-07
    Description: Favorable interspecies associations prevail in natural microbial assemblages. Some of these favorable associations are co-metabolic dependent partnerships in which extracellular electrons are exchanged between species. For such electron exchange to occur, the cells must exhibit electroactive interfaces and get involved in direct cell-to-cell contact (Direct Interspecies Electron Transfer/DIET) or use available conductive mineral grains from their environment (Conductive-particle-mediated Interspecies Electron Transfer/CIET). This review will highlight recent discoveries and knowledge gaps regarding DIET and CIET interspecies associations in artificial co-cultures and consortia from natural and man-made environments and emphasize approaches to validate DIET and CIET. Additionally, we acknowledge the initiation of a movement towards applying electric syntrophies in biotechnology, bioremediation and geoengineering for natural attenuation of toxic compounds. Next, we have highlighted the urgent research needs that must be met to develop such technologies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Elsevier
    In:  Physics of the Earth and Planetary Interiors, 312 . Art.Nr. 106660.
    Publication Date: 2022-01-07
    Description: Highlights • A total of 1455 crustal events in Santorini-Amorgos zone have been relocated. • The seismogenic layer along the zone is found to be 12.5 km thick. • Expected moment magnitude of future earthquakes is in the range of 6.3 to 7.2. • High Vp/Vs ratios in northern part of Santorini caldera indicate the presence of melt. • Upward migrating fluids exist at areas with vertical earthquake clusters. The Santorini-Amorgos zone is located in the central part of the Hellenic volcanic arc and is hosting eight large faults as well as Kolumbo and Santorini volcanic centers. The largest earthquake (Mw ~ 7.1) in the southern Aegean during the 20th century also occurred in this area on 9 July 1956. A total of 1868 crustal events were recorded by temporary networks during September 2002 to July 2004 and October 2005 to March 2007, and also by the permanent network from 2011 to 2019. We relocated 1455 of these events by using HypoDD and revealed clusters of earthquakes beneath Kolumbo, Anydros graben, and Santorini-Amorgos ridge. Only the faults in the SW of Anydros, SE of Ios, and along the south coast of Amorgos were delineated by the relocated events. Nearly vertical clusters were observed beneath the island of Anydros, south of Amorgos, and in NE end of Amorgos fault, indicating possible pathways of upward migrating fluids. The seismogenic layer thickness calculated based on the depth distribution of the relocated events was 12.5 km. We combined this thickness with geometrical properties of the faults to calculate the expected moment magnitude of future earthquakes, resulting in a range of 6.3–7.2. In an effort to map the distribution of fluids, the Vp/Vs ratio distribution was estimated by utilizing the event-station travel time data along with crack density, fluid saturation, and Poisson's ratio. The petrophysical parameters observed in the northern part of the Santorini caldera suggest the existence of melt, while those observed in Anydros and in the NE of Amorgos fault support the suggestion of upward migrating fluids in these areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-01-07
    Description: The Santorini-Amorgos zone is an area rich in microseismicity at the center of the Hellenic volcanic arc. The microseismicity of the zone is distributed along the Santorini-Amorgos ridge and Kolumbo submarine volcano. In this study, we utilized crustal events that were recorded by temporary networks during September 2002 to July 2004 and October 2005 to March 2007, and also by the permanent network from 2011 to 2020. These events were inverted for their moment tensors by using P-wave polarities as well as SV/P and SH/P amplitude ratios, yielding 74 well-constrained moment tensor solutions. Most of these moment tensors have significant CLVD and isotropic components that are positively correlated to each other (R2 = 0.68). Tensile faulting due to high pore pressure is considered as the most likely cause of the observed non-DC components. The positive and negative non-DC components observed in Kolumbo may be generated by the opening and closing of cracks beneath the shallow (6–7 km) magma chamber due to a steady migration of magmatic fluids from the deep reservoir into the chamber. In Anydros, most of the microearthquakes have positive non-DC components associated with the opening of cracks. It is possible that the extensional deformation and high pore fluid pressure in the area opens subvertical cracks that become pathways for upward migrating fluids. The upward migration of magmatic fluids in an extensional regime such as the Santorini-Amorgos zone can also be viewed as an indication of emerging volcanic activity in this area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-01-07
    Description: Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 μg/L) and chlorpyrifos (0.04 μg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-01-07
    Description: The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to an individual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions where access and bio-monitoring represent challenging issues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-01-07
    Description: Methane generation from seagrass contributes to green-house gases emissions but can also be a potential controlled biogas source. Understanding the natural fluctuations of emissions and the biotic and abiotic factors underlying such variations is essential. In this work, CH4 emission from beach-cast seagrass from the High-Adriatic coast was analysed. Biochemical methane potential (BMP) tests were used to evaluate CH4 generation at different temperatures (30 °C and 35 °C) and salinity levels (from 0‰ to 35‰), consistent with the typical observed environmental conditions. The changes in the microorganism community composition were investigated by means of amplicon metagenomics sequencing. The results underlined a specific CH4 emission in the range of 0.90–1.37 NmL CH4/g Volatile Solids (VS) d at 35 °C and 0.36–0.50 NmL CH4/g VS d at 30 °C. The most intense methane generation was observed at intermediate salinity levels of 18‰ at 35 °C and 9‰ at 30 °C. The total seasonal emission from the investigated beach-cast seagrass was estimated as 0.1399 mmol CH4/m2g. The microbial community analysis highlighted that Rhodobacteraceae was the most abundant family, coherently with its abundance in the marine environment. Low salinity (0–9‰) samples showed a prevalence of carbohydrate–degrading Ruminococcaceae, while the carbohydrate-fermenting Petrotogaceae were more abundant in high salinity (18–35‰) samples. The total lack of an important functional class was not noticed in any salinity level, except for sulphate-reducing bacteria, which were virtually absent when salinity was 0‰. The present study allows a better understanding of the environmental conditions resulting in a higher methanogenic potential and an enhanced comprehension of the bacterial communities associated to this process. The obtained information can be of help for designing efficient systems for producing methane from seagrass wrack, as well as for selecting the most appropriate managing route among the currently available technologies (such as on-site environmental preservation, composting, anaerobic digestion).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-01-07
    Description: Transdisciplinary research is a promising approach to address sustainability challenges arising from global environmental change, as it is characterized by an iterative process that brings together actors from multiple academic fields and diverse sectors of society to engage in mutual learning with the intent to co-produce new knowledge. We present a conceptual model to guide the implementation of environmental transdisciplinary work, which we consider a “science with society” (SWS) approach, providing suggested activities to conduct throughout a seven-step process. We used a survey with 168 respondents involved in environmental transdisciplinary work worldwide to evaluate the relative importance of these activities and the skills and characteristics required to implement them successfully, with attention to how responses differed according to the gender, geographic location, and positionality of the respondents. Flexibility and collaborative spirit were the most frequently valued skills in SWS, though non-researchers tended to prioritize attributes like humility, trust, and patience over flexibility. We also explored the relative significance of barriers to successful SWS, finding insufficient time and unequal power dynamics were the two most significant barriers to successful SWS. Together with case studies of respondents’ most successful SWS projects, we create a toolbox of 20 best practices that can be used to overcome barriers and increase the societal and scientific impacts of SWS projects. Project success was perceived to be significantly higher where there was medium to high policy impact, and projects initiated by practitioners/other stakeholders had a larger proportion of high policy impact compared to projects initiated by researchers only. Communicating project results to academic audiences occurred more frequently than communicating results to practitioners or the public, despite this being ranked less important overall. We discuss how these results point to three recommendations for future SWS: 1) balancing diverse perspectives through careful partnership formation and design; 2) promoting communication, learning, and reflexivity (i.e., questioning assumptions, beliefs, and practices) to overcome conflict and power asymmetries; and 3) increasing policy impact for joint science and society benefits. Our study highlights the benefits of diversity in SWS - both in the types of people and knowledge included as well as the methods used - and the potential benefits of this approach for addressing the increasingly complex challenges arising from global environmental change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-01-07
    Description: The Quaternary history of the Atlantic Canadian inner shelf shares some similarities with the North Sea and northern United States of America (US) Atlantic coast, with the influence of large-scale glaciation and subsequent sea level transgression being the main drivers of seafloor morphology, sedimentology, and uppermost stratigraphy. The geology of the inner shelf, generally confined to 100 m water depth for this study, is an important constraint on the development of offshore renewables, in particular wind energy. Offshore wind has seen rapid growth, particularly in Europe and Asia, where the industry has now experienced decades of production. In the US, one small-scale production farm and many hundreds of MW are in the production pipeline. In contrast, offshore wind in Canada, despite onshore installed wind capacity that ranks highly globally, lacks any operating turbines and there are no plans for development in the wind resource-rich Atlantic Canadian region. In this study, the geological constraints on offshore wind in Atlantic Canada are explored. Generally, the available offshore wind resource is high, and thus the main geophysical constraint on the development of offshore wind energy converters is the inner shelf geology. Several sites with available high-resolution geophysical data are selected for in-depth analysis and comparison with production and planned offshore wind farm sites found elsewhere. In general, a lack of sufficiently thick Quaternary sedimentation—necessary for the most common bottom-fixed foundations for wind turbines—will make developing offshore wind in Atlantic Canada challenging when compared with North Sea and US Atlantic Coast locations. A few locations may be suitable geologically, such as Sable Island Bank in Nova Scotia (thick package of sands), Northumberland Strait between Prince Edward Island and Nova Scotia (shallow firm seabed and sandbanks), Baie des Chaleurs in New Brunswick/Québec (thick, low relief fine sediments), and St. George's Bay, Newfoundland (shallow, postglacially modified moraine). Highlights • Glaciated shelves in Atlantic Canada present distinct challenges for offshore wind foundations. • Few analogies exist between Atlantic Canadian shelf sites and offshore wind sites elsewhere. • Piles—typical offshore wind foundations—require thick sediments, rare in Atlantic Canada. • Thin sand/cobble blankets over bedrock are ubiquitous but thick sand banks/mud basins exist. • The inner shelf seabed geology is variable and historically data collection has focused elsewhere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-01-07
    Description: The occurrence of neurotoxicity caused by xenobiotics such as pesticides (dichlorodiphenyltrichloroethane, organophosphates, pyrethroids, etc.) or metals (mercury, lead, aluminum, arsenic, etc.) is a growing concern around the world, particularly in vulnerable populations with difficulties on both detection and symptoms treatment, due to low economic status, remote access, poor infrastructure, and low educational level, among others features. Despite the numerous molecular markers and questionnaires/clinical evaluations, studying neurotoxicity and its effects on cognition in these populations faces problems with samples collection and processing, and information accuracy. Assessing cognitive changes caused by neurotoxicity, especially those that are subtle in the initial stages, is fundamentally challenging. Finding accurate, non-invasive, and low-cost strategies to detect the first signals of brain injury has the potential to support an accelerated development of the research with these populations. Saliva emerges as an ideal pool of biomarkers (with interleukins and neural damage-related proteins, among others) and potential alternative diagnostic fluid to molecularly investigate neurotoxicity. As a source of numerous neurological biomarkers, saliva has several advantages compared to blood, such as easier storage, requires less manipulation, and the procedure is cheaper, safer and well accepted by patients compared with drawing blood. Regarding cognitive dysfunction, neuropsychological batteries represent, with their friendly interface, a feasible and accurate method to evaluate the eventual cognitive deficits associated with neurotoxicity in people from diverse cultural and educational backgrounds. The association of these two tools, saliva and neuropsychological batteries, to cover the molecular and cognitive aspects of neurotoxicity in vulnerable populations, could potentially increase the prevalence of early intervention and successful treatment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-01-07
    Description: The reaction surface area of hydrate (RSAH) inherently controls the reaction rate of hydrate dissociation in the pore spaces, which further affects the gas production behaviour of the hydrate-bearing sediments. The objective of this work is to measure and describe the RSAH evolution during MH dissociation and analyse its implications for gas production. The CT images obtained from different dissociation stages showed the RSAH decreased slowly in the early stage of dissociation and rapidly in the later stage. By considering the pore structure features of sediment, a fractal method was proposed to predict the relationship between RSAH and hydrate saturation, which showed better agreement with the CT experimental results than that of Yousif's model. Further hydrate production numerical simulations embedded with different RSAH predictions indicated that the hydrate production process was significantly influenced by the variations in RSAH. The simulated gas production rate based on the fractal model was lower than that of Yousif's model, the far-field pressure drop in the fractal model was slower, and the advance of the dissociation front and the transfer of the pressure field in Yousif's model was faster than that of the fractal model. Highlights • The changes in hydrate reaction surface area during hydrate dissociation are experimentally measured and analysed. • A fractal model considering the pore structure characteristics of porous media is proposed and experimentally validated. • A comparison of the hydrate dissociation rate predicted by the proposed fractal model and by Yousif’s model is made. • Implications of reaction surface evolution during the hydrate dissociation for hydrate productions are modeled.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Elsevier
    In:  IFAC-PapersOnLine, 54 (16). pp. 320-326.
    Publication Date: 2022-01-10
    Description: Adaptive sampling and situational awareness for autonomous underwater vehicles (AUVs) is a major improvement in ocean research. By only sampling the feature of interest in a feature-relevant domain instead of a covering a whole area expensive ship time can be saved and at the same time a more comprehensive data set can be obtained. A classical marine example where adaptive sampling is useful is sampling of boundary layers such as the thermocline because the boundary layer thickness is very small compared to the depth of the water column. These boundary layers play an important role in many ocean related disciplines such as marine biology, physical oceanography and underwater acoustics. In this paper an unscented Kalman filter (UKF) based extremum seeking control (ESC) approach is presented to detect and track such boundary layers. Simulation results for different use cases are presented to show its effectiveness.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-01-07
    Description: The Q10 temperature coefficient, which is widely used in scientific literature, is a measure of the temperature sensitivity of chemical reaction rates or biological processes. However, the conclusions drawn from applying this coefficient to experimental data obtained from biological processes are not universal. In many biological processes, Q10 values are often discordant with the results predicted by the Arrhenius law. The hypothesis tested in the present study is that this problem arises mainly from the fact that the Q10 coefficient is defined by the ratio between rates described by exponential laws instead of power laws. Considering this hypothesis and the need to review the mathematical laws and models currently used to describe rates and Q10 coefficients, we propose a model beyond the usual Arrhenius theory or exponential decay law herein. The proposed mathematical model is based on the theory of deformed exponential functions, with the ordinary Q10 model representing the conventional exponential function. Therefore, all results following the standard model remain valid. Moreover, we include a Q10 free open-source code, written in Python, and compatible with Windows, Linux and macOS platforms. The validation of the proposed model and confirmation of the given hypothesis were performed based on the following temperature-dependent biological processes: soil organic carbon (SOC) decomposition (which is essential to forecast the impact of climate change on terrestrial ecosystems); the metabolism of Arctic zooplankton; physiological processes of the respiratory and cardiovascular systems; rate of oxygen consumption in mitochondria of the eurythermal killifish Fundulus heteroclitus, and leaf respiration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-01-07
    Description: Since 2010, the Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors the earth emission at L-Band. It provides the longest time series of Sea Surface Salinity (SSS) from space over the global ocean. However, the SSS retrieval at high latitudes is a challenge because of the low sensitivity L-Band radiometric measurements to SSS in cold waters and to the contamination of SMOS measurements by the vicinity of continents, of sea ice and of Radio Frequency Interferences. In this paper, we assess the quality of weekly SSS fields derived from swath-ordered instantaneous SMOS SSS (so called Level 2) distributed by the European Space Agency. These products are filtered according to new criteria. We use the pseudo-dielectric constant retrieved from SMOS brightness temperatures to filter SSS pixels polluted by sea ice. We identify that the dielectric constant model and the sea surface temperature auxiliary parameter used as prior information in the SMOS SSS retrieval induce significant systematic errors at low temperatures. We propose a novel empirical correction to mitigate those sources of errors at high latitudes. Comparisons with in-situ measurements ranging from 1 to 11 m depths spotlight huge vertical stratification in fresh regions. This emphasizes the need to consider in-situ salinity as close as possible to the sea surface when validating L-band radiometric SSS which are representative of the first top centimeter. SSS Standard deviation of differences (STDD) between weekly SMOS SSS and in-situ near surface salinity significantly decrease after applying the SSS correction, from 1.46 pss to 1.28 pss. The correlation between new SMOS SSS and in-situ near surface salinity reaches 0.94. SMOS estimates better capture SSS variability in the Arctic Ocean in comparison to TOPAZ reanalysis (STDD between TOPAZ and in-situ SSS = 1.86 pss), particularly in river plumes with very large SSS spatial gradients.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-01-07
    Description: The exhumation of peridotite rocks in oceanic transform zones passes by the rheological transition between the ductile and brittle deformation until the complete emplacement in the oceanic lithosphere. The São Pedro and São Paulo Archipelago (SPSPA), in the Equatorial Atlantic, records the deformational products of ductile, brittle and the rocks/fluid interaction generating specific structures in each domain. The deformational stages are related to the transpressional and transtensional geodynamics of São Paulo Transform Fault. Firstly, during transpression, exhumation occurs associated with the ductile domain causing intense mylonitization in temperatures between ~700° and 800 °C, defined by olivine and orthopyroxene recrystallization. The interaction with fluids initially originated from the mantle generates amphibole and oxide-rich layers marking the passage to a semi-brittle deformation. The continuation of peridotite exhumation, associated with an NW-SE shortening and transpressional led to a higher availability of hydrothermal fluids. As a consequence, four serpentinization episodes are recorded, which are associated with semi-brittle to brittle transition under temperatures between 300° and 400 °C. Finally, the complete exhumation and establishment of brittle mechanisms led to carbonatation phase near the surface, with temperatures ranging from 300° to 150 °C. The active NW-SE tectonic stress generated E-W strike-slip faults that were filled by carbonates recording the final exhumation stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Elsevier
    In:  Environmental Technology & Innovation, 17 . Art.-Nr.: 100567.
    Publication Date: 2022-01-07
    Description: The present state of constantly increasing plastic pollution is the major concern of scientific researchers. The conventional techniques applied (i.e., burning and landfilling) to get plastic degraded from the environment are inadequate due to harmful byproducts and limited to its recycling. In this review, we have recapitulated recent biotechnological approaches, including synthetic microbial consortia, systems biology tools, and genetic engineering techniques which can pave the path towards the plastic bioremediation and degradation. Moreover, potential plastic degrader microbes and their degradation pathways are also summarized. Lastly, this review focuses on enhancing the understanding of the degradation ability of microorganisms using contemporary biotechnological tools.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-01-07
    Description: Atmospheric deposition of aerosols to the ocean provides an important pathway for the supply of vital micronutrients, including trace metals. These trace metals are essential for phytoplankton growth, and therefore their delivery to marine ecosystems can strongly influence the ocean carbon cycle. The solubility of trace metals in aerosols is a key parameter to better constrain their potential impact on phytoplankton growth. To date, a wide range of experimental approaches and nomenclature have been used to define aerosol trace metal solubility, making data comparison between studies difficult. Here we investigate and discuss several laboratory leaching protocols to determine the solubility of key trace metals in aerosol samples, namely iron, cobalt, manganese, copper, lead, vanadium, titanium and aluminium. Commonly used techniques and tools are also considered such as enrichment factor calculations and air mass back-trajectory projections and recommendations are given for aerosol field sampling, laboratory processing (including leaching and digestion) and analytical measurements. Finally, a simple 3-step leaching protocol combining commonly used protocols is proposed to operationally define trace metal solubility in aerosols. The need for standard guidelines and protocols to study the biogeochemical impact of atmospheric trace metal deposition to the ocean has been increasingly emphasised by both the atmospheric and oceanographic communities. This lack of standardisation currently limits our understanding and ability to predict ocean and climate interactions under changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-01-07
    Description: Highlights • Regional brain iron concentrations are heterogenous. • Regional distribution of iron is most consistent with ferritin mRNA expression. • SEC-ICP-MS reveals the protein masses that cytosolic iron is associated with. • More than 50 % of cytosolic iron is associated with ferritin. Iron is essential for brain development and health where its redox properties are used for a number of neurological processes. However, iron is also a major driver of oxidative stress if not properly controlled. Brain iron distribution is highly compartmentalised and regulated by a number of proteins and small biomolecules. Here, we examine heterogeneity in regional iron levels in 10 anatomical structures from seven post-mortem human brains with no apparent neuropathology. Putamen contained the highest levels, and most case-to-case variability, of iron compared with the other regions examined. Partitioning of iron between cytosolic and membrane-bound iron was generally consistent in each region, with a slightly higher proportion (55 %) in the ‘insoluble’ phase. We expand on this using the Allen Human Brain Atlas to examine patterns between iron levels and transcriptomic expression of iron regulatory proteins and using quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry to assess regional differences in the molecular masses to which cytosolic iron predominantly binds. Approximately 60 % was associated with ferritin, equating to approximately 25 % of total tissue iron essentially in storage. This study is the first of its kind in human brain tissue, providing a valuable resource and new insight for iron biologists and neuroscientists, alike.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-01-07
    Description: The aim of this study was to investigate the syntrophic methanogenesis from the perspective of energy transfer and competition. Effects of redox materials and redox potential on direct interspecies electron transfer (DIET) were examined through thermodynamic analysis based on the energy distribution principle. Types of redox materials could affect the efficiency of DIET via changing the total energy supply of the syntrophic methanogenesis. Decreasing system redox potential could facilitate DIET through increasing the total available energy. The competition between hydrogenotrophic methanogens and DIET methanogens might be the reason for the low proportion of the DIET pathway in the syntrophic methanogenesis. A facilitation mechanism of DIET was proposed based on the energy distribution. Providing sufficient electrons, inhibiting hydrogenotrophic methanogens and adding more competitive redox couples to avoid hydrogen generation might be beneficial for the facilitation of DIET.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-01-07
    Description: Highlights • NH4NO3, Tris-HCl, and NH4CH3COO are optimal buffers for use in SEC-ICP-MS metalloprotein analyses. • Optimal range of buffer concentration is 50–200 mM in SEC-ICP-MS. • 100 mM concentration reduces both protein column interactions and ICP-MS maintenance. • Dextran-based columns are best suited for the analysis of apo-copper proteins. The correct identification of the metalloproteins present in human tissues and fluids is essential to our understanding of the cellular mechanisms underpinning a host of health disorders. Separation and analysis of biological samples are typically done via size exclusion chromatography hyphenated with inductively coupled plasma-mass spectrometry (SEC-ICP-MS). Although this technique can be extremely effective in identification of potential metalloproteins, the choice of mobile phase may have a marked effect on results, results by adversely affecting metal-protein bonds of the metalloproteins of interest. To assess the choice of mobile phase on SEC-ICP-MS resolution and the resulting metalloproteome pattern, we analysed several different sample types (brain homogenate; Cu/Zn-superoxide dismutase (SOD1); a molecular weight standard mix containing ferritin (Ft), ceruloplasmin (Cp), cytochrome c (CytC), vitamin B12 (B12) and thyroglobulin (Tg) using six different mobile phase conditions (200 mM, pH 7.5 solutions of ammonium salts nitrate, acetate, and sulfate; HEPES, MOPS and Tris-HCl). Our findings suggest that ammonium nitrate, ammonium acetate and Tris-HCl are optimal choices for the mobile phase, with the specific choice being dependent on both the number of samples and method of detection that is hyphenated with separation. Furthermore, we found that MOPS, HEPES and ammonium sulfate mobile phases all caused significant changes to peak resolution, retention time and overall profile shape. MOPS and HEPES, in particular, produced additional Fe peaks that were not detected with any of the other mobile phases that were investigated. As well as this, MOPS and HEPES both caused significant concentration dependent matrix suppression of the internal standard.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-01-07
    Description: Symbiotic relationships range from parasitic to mutualistic, yet all endosymbionts face similar challenges, including evasion of host immunity. Many symbiotic organisms have evolved similar mechanisms to face these challenges, including manipulation of the host's transforming growth factor-beta (TGFβ) pathway. Here we investigate the TGFβ pathway in scelaractinian corals which are dependent on symbioses with dinoflagellates from the family Symbiodiniaceae. Using the Caribbean coral, Orbicella faveolata, we explore the effects of enhancement and inhibition of the TGFβ pathway on host gene expression. Following transcriptomic analyses, we demonstrated limited effects of pathway manipulation in absence of immune stimulation. However, manipulation of the TGFβ pathway significantly affects the subsequent ability of host corals to mount an immune response. Enhancement of the TGFβ pathway eliminates transcriptomic signatures of host coral immune response, while inhibition of the pathway maintains the response. This is, to our knowledge, the first evidence of an immunomodulatory role for TGFβ in a scelaractinian coral. These findings suggest variation in TGFβ signaling may have implications in the face of increasing disease prevelance. Our results suggest that the TGFβ pathway can modulate tradeoffs between symbiosis and immunity. Further study of links between symbiosis, TGFβ, and immunity is needed to better understand the ecological implications of these findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-01-07
    Description: Highlights • Microplastics act as anthropogenic vectors of trace metals in freshwaters. • Adsorption capacity of microplastics is enhanced by biofilms but is not strong as natural substrates. • Biofilms alter the adsorption kinetics and mechanisms of trace metals onto microplastics. • Microplastics enhance exchange rates of trace metals between water and solid materials. • Anthropogenic substrate is necessary in evaluation of migration and fate of trace metals. Microplastics (MPs) are ubiquitous in freshwater environments, and represent an emerging anthropogenic vector for contaminants, such as trace metals. In this study, virgin expanded polystyrene (PS) particles were placed in a eutrophic urban lake and a reservoir serving as the resource of domestic water for 4 weeks, to develop biofilms on the surface. For comparison, natural adsorbents in the form of suspended particles and surficial sediment were also sampled from these waterbodies. The trace metal adsorption properties of anthropogenic (virgin and biofilm covered microplastics) and natural substrates were investigated and compared via batch adsorption experiments. The adsorption isotherms fitted the Langmuir model, revealed that biofilms could enhance the trace metal adsorption capacity of MPs. However, natural substrates still had a greater adsorption capacity. Biofilms also alter the adsorption kinetics of trace metals onto MPs. The process of adsorption onto virgin MPs was dominated by intraparticle diffusion, whereas film diffusion governed adsorption onto biofilm covered microplastics and natural substrates. The trace metal adsorption of all the substrates was significantly dependent on pH and ionic strength. The adsorption mechanisms were further analyzed by SEM-EDS and FT-IR. The enhancement of adsorption was mainly attributed to complexation with functional groups contained in the biofilms, including carboxyl, amino, and phenyl-OH. Collectively, biofilm development intensifies the role of MPs in the migration and fate of trace metals in freshwater, since it does not give MPs an edge over natural substrates in adsorption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-01-07
    Description: Highlights • New insights of CH4 and CO2 hydrates are explored using MD strategy. • The bubble evolution appears to be important over dissociation process. • RDF, MSD, AOP, and diffusion coefficient can be used to examine hydrate stability. • The most stable structure of CH4 and CO2 molecules in the gas hydrate is found. • A promising match is noticed between the MD and literature findings. A comprehensive knowledge and precise estimation of the dynamic, structural, and thermodynamic characteristics of hydrates are needed to assess the stability of gas hydrates. Thermodynamic model and experimental studies can be utilized to compute the physical and dynamic properties of hydrate structures. The use of molecular dynamic (MD) simulation is a well-established approach in gas hydrate studies at the atomic level where the properties of interest are obtained from the numerical solution of Newtonian equations. The present work uses MD simulations by employing the constant temperature-constant pressure (NPT), constant temperature-constant volume (NVT) conditions, and the consistent valence force field (CVFF) to monitor the stability and decomposition of methane and carbon dioxide gas hydrates with different compositions. The effects of temperature and composition on the hydrate stability are investigated. In this study, we also compute the radial distribution function, mean square displacement, diffusion coefficient, lattice parameter, potential energy, dissociation enthalpy as well as the density of methane and carbon dioxide under various thermodynamic and process conditions. The formation of methane and carbon dioxide bubbles is studied to investigate bubble evolution during hydrate dissociation. The sizes of methane and carbon dioxide bubbles are not the same due to different solubility conditions of methane and carbon dioxide in liquid water. In addition, the influences of pressure and temperature on the lattice parameter and density of clathrate hydrates are discussed. The obtained results are consistent with previous theoretical and experimental findings, implying that the methodology followed in this work is reliable. The most stable arrangement of methane and carbon dioxide molecules in the gas hydrate is found. The insights/findings of this study might be useful to further understand detailed transport phenomena (e.g., molecular interactions, gas production rate, carbon dioxide replacement, and carbon dioxide capture) involved in the process of carbon dioxide injection into gas hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-01-07
    Description: Deep-ocean islands have long been associated with the generation of oceanic eddies in their wakes. However, their interaction with incoming eddies has seldom been considered. This study focuses on the characterization of background and locally generated mesoscale eddies in the Cabo Verde archipelago between 2003 and 2014. Special attention is given to the interaction of incoming eddies with the bathymetry of the islands, along with their impacts on the local generation of eddies. Island-induced wind-shear effects are also considered. In addition, some examples of the biological response to background and locally generated eddies are discussed. This is achieved by combining remote-sensing satellite observations for wind, sea surface height, and chlorophyll-a (Chla) surface concentrations. The results show that the interaction between incoming background eddies and the archipelago is a recurrent phenomenon, which results in eddy deflection, splitting, merging, intensification, and termination (sorted by highest to lowest number of occurrences). Local island-induced disturbances are also significant, mainly due to atmospheric effects. Such processes result in the generation of island-induced eddies and in wind-mediated eddy intensification and confinement, more often observed in the leeward group. Nonetheless, it is strongly suggested that many of the locally generated eddies are a direct product or by-product of the interaction of background eddies with the islands. With respect to the biological realm, a locally generated cyclonic eddy is observed to originate a pronounced phytoplankton bloom in the vicinity of the tallest island. Nonetheless, background eddies generated off the African coast are often associated with enhanced Chla concentrations when they intersect the archipelago. Such observations challenge the idea that local biological productivity in deep oceanic islands is exclusively driven by island-induced mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-01-07
    Description: In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-31
    Description: One of the best-known greenhouse gases, CO2, has been increasing in the last decade of about 1.7%. To overcome the well-known global problems related to this gas, researchers of all over the world are working very hard in order to develop any strategies to seriously solve this issue. In this chapter, the authors focus their attention on one of the possible solutions to the problem: bacteria that are CO2 capture cells which have carried out this task since ancient times. In our work we make an excursus on all the biochemical processes of CO2 capture carried out by bacteria, ending with a detailed comparison of the most studied enzymes. One of the alternatives will be to genetically modify the organisms known to date to speed up their conversion process.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...