ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles
  • Other Sources  (210)
  • Aerodynamics  (210)
  • 1955-1959  (141)
  • 1940-1944  (69)
  • 1
    Publication Date: 2018-06-05
    Description: As part of the program of flight tests of airplane propellers to determine compressibility effects at high speeds, preliminary flights have been made with a conventional three-blade propeller (Hamilton Standard 3155-6) on a Bell YP-39 airplane. This preliminary report presents the high-speed data obtained thus far with a brief analysis of the results.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-31
    Description: A 1/13-scale model of the forebody of the Republic F-105 with twin-duct wing-root inlets was tested in the Langley 4- by 4-foot supersonic pressure tunnel through a range of angle of attack from -4 deg to 15 deg at a Mach number of 2.01 and a Reynolds number of approximately 3.4 x 10(exp 6) per foot. The tests were made with four configurations which incorporated varying amounts of sweep and stagger of the inlet leading edges, modifications to the areas of the boundary-layer diverter floor plate, and modifications to the area of the boundary-layer diverter bleed slots. The highest overall pressure recovery at an angle of attack of 0 deg (average total-pressure recovery, 0.84 mass-flow ratio, 0.98) was achieved with configuration having an inlet leading-edge sweep angle of 58 deg with no leading-edge stagger. Stagger was found to improve the angle-of- attack performance, but at a sacrifice in inlet efficiency for an angle of attack of 0 deg. The boundary-layer diverter floor height, of the order of one boundary-layer thickness, was satisfactory for bypassing the fuselage boundary layer. The boundary-layer diverter-plate bleed slots were effective in increasing the total-pressure recovery of the inlet. The total-pressure-recovery contour plots, taken at the compressor-face station, indicate the existence of high-velocity "cores" throughout the inlet operating range.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-11
    Description: A design guide is suggested as a basis for indicating combinations of airplane design variables for which the possibilities of pitch-up are minimized for tail-behind-wing and tailless airplane configurations. The guide specifies wing plan forms that would be expected to show increased tail-off stability with increasing lift and plan forms that show decreased tail-off stability with increasing lift. Boundaries indicating tail-behind-wing positions that should be considered along with given tail-off characteristics also are suggested. An investigation of one possible limitation of the guide with respect to the effects of wing-aspect-ratio variations on the contribution to stability of a high tail has been made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range from 0.60 to 0.92. The measured pitching-moment characteristics were found to be consistent with those of the design guide through the lift range for aspect ratios from 3.0 to 2.0. However, a configuration with an aspect ratio of 1.55 failed t o provide the predicted pitch-up warning characterized by sharply increasing stability at the high lifts following the initial stall before pitching up. Thus, it appears that the design guide presented herein might not be applicable when the wing aspect ratios lower than about 2.0.
    Keywords: Aerodynamics
    Type: NASA-TM-X-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An investigation of some aspects of the sonic boom has been made with the aid of wind-tunnel measurements of the pressure distributions about bodies of various shapes. The tests were made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 and at a Reynolds number per foot of 2.5 x 10(exp 6). Measurements of the pressure field were made at orifices in the surface of a boundary-layer bypass plate. The models which represented both fuselage and wing types of thickness distributions were small enough to allow measurements as far away as 8 body lengths or 64 chords. The results are compared with estimates made using existing theory. To the first order, the boom-producing pressure rise across the bow shock is dependent on the longitudinal development of body area and not on local details. Nonaxisymmetrical shapes may be replaced by equivalent bodies of revolution to obtain satisfactory theoretical estimates of the far-field pressures.
    Keywords: Aerodynamics
    Type: NASA-TN-D-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Time histories of noise pressures near ground level were measured during flight tests of fighter-type airplanes over fairly flat, partly wooded terrain in the e Mach number range between 1.13 and 1.4 and at altitudes from 25,000 to 45,000 feet. Atmospheric soundings and radar tracking studies were made for correlation with the measured noise data. The measured and calculated values of the pressure rise across the shock wave were generally in good agreement. There is a tendency for the theory to overestimate the pressure at locations remote from the track and to underestimate the pressures for conditions of high tailwind at altitude. The measured values of ground-reflection factor averaged about 1.8 f or the surface tested as compared to a theoretical value of 2.0. P o booms were measured in all cases. The observers also generally reported two booms; although, in some cases, only one boom was reported. The shock-wave noise associated with some of the flight tests was judged to be objectionable by ground observers, and in one case the cracking of a plate-glass store window was correlated in time with the passage of the airplane at an altitude of 25,000 feet.
    Keywords: Aerodynamics
    Type: NASA-TN-D-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: An exploratory wind-tunnel investigation has been made to determine the lift effects of blowing from nacelles over the upper surface of flaps on a model having a delta wing of aspect ratio 3. Several flap conditions were examined. High-pressure air was blown from an external-pipe arrangement supported above the wing to simulate jet-engine exhaust. The jet momentum- coefficient range was from 0 to 3.0 and the model angle of attack was 0 deg. The results of this limited investigation show that values of jet circulation lift coefficient larger than the Jet reaction were produced with blowing over flaps from nacelles mounted above the wing. 'I!heuse of double slotted flaps with the gap unsealed between the flaps and wing had a large detrimental effect on the lift capabilities. With these gaps sealed, larger lift coefficients were obtained when fantails were added to the nacelles. The longitudinal trim problems created by large diving moments were similar to those encountered with other jet-augmented-flap systems
    Keywords: Aerodynamics
    Type: NACA-TN-4298
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Problems involved in the stability and control of tailless airplanes are discussed. Such factors as the location of the aerodynamic center and its effect on the longitudinal stability, longitudinal trim with high-lift devices, the effects of various changes in the shape of the wing on lateral stability, and the effects of nacelles are covered. It appears that sufficient stability and controllability can be secured without sweepback. With sweepback, a flap over the center section of the wing may be used to serve the dual purpose of elevator control and high-lift device. Sweepback introduces undesirable stalling characteristics, however, and may require auxiliary devices to prevent stalling of the tips.
    Keywords: Aerodynamics
    Type: NACA-TN-837
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.
    Keywords: Aerodynamics
    Type: NACA-TN-4120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A simplified analysis of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.
    Keywords: Aerodynamics
    Type: NACA-TN-4047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A solution of the equations of the compressible laminar boundary layer including the effects of transpiration cooling is presented. The analysis applies to the flow over an isothermal porous plate with a velocity of fluid injection proportional to the reciprocal of the square root of the distance from the leading edge. The effect of several flow parameters on coolant-flow rates is discussed with the aid of representative examples. A stability analysis indicates that, although transpiration cooling requires a lower surface temperature for stable flow than does internal wall cooling, this lower temperature can be obtained with a smaller expenditure of coolant.
    Keywords: Aerodynamics
    Type: NACA-TN-3404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: An investigation was made of the flow downstream from a "two-dimensional" grid formed of parallel rods. In both two and three dimensional jet fields there is a critical range of grid density below which the downstream flow is stable and above which it is unstable. The flow can be completely stabilized by means of an adequate lateral contraction beginning immediately after the grid or by use of a fine-mesh damping screen parallel to the grid plane and within a definite range of positions downstream from the grid.
    Keywords: Aerodynamics
    Type: NACA-WR-W-90 , NACA-ACR-4H24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: Problem of improving thrust at low speeds is primarily one of reducing angle of attack of operation of sections to improve L/D or reducing blade helix angle. An analysis, based on recent propeller data, is presented for determining improvements in thrust or efficiency which could be obtained by increased number of blades, increased blade width, increased diameter, dual rotation, and two-speed gearing. All methods were found very effective, particularly two-speed gearing.
    Keywords: Aerodynamics
    Type: NACA-WR-L-483
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: Test of a ducted body with Internal flow were made in the 8-foot high-speed wind tunnel for the purpose of studying the effects on external drag and an critical speed of the addition of efficient inlet and outlet openings to a basic streamline shape. Drag tests of a 13.6- inch-diameter streamline body of fineness ratio 6.14 were made at Mach numbers ranging from 0.20 to 0.75. The model was centrally mounted on a 9-percent-thick airfoil and was designed to have an efficient airfoil-body juncture and a high critical speed. An air inlet at the nose and various outlets at the tail were added: drag and internal-flow data were obtained over the given speed range. The critical speed of the ducted bodies was found to be as high as that of the streamline body. The external - drag with air flow through the body did not exceed the drag of the basic streamline shape. No appreciable variation in the efficiency of the diffuser section of the internal duct occurred throughout the Mach number range of the tests.
    Keywords: Aerodynamics
    Type: NACA-WR-L-486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: Data taken from tests at constant speed to establish trim limits of stability, tests at accelerated speeds to determine stable limits of center of gravity shift, and tests at decelerated speeds to obtain landing characteristics of several model hull forms were used to establish hull design effect on longitudinal stability of porpoising. Results show a reduction of dead rise angle as being the only investigated factor reducing low trim limit. Various methods of reducing afterbody interference increased upper trim limit
    Keywords: Aerodynamics
    Type: NACA-WR-L-468
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: In order to determine the critical stresses caused by an outward acting pressure on the upper surface of a wing due to the difference in internal and external pressures, torsional tests were made on two curved-sheet specimens subjected to an outward acting normal pressure. Results show that an outward acting normal pressure appreciable raises the critical shear stress for an unstiffened curved sheet; the absolute increase in critical shear stress is slightly greater for a 30 in. rib spacing than for a 10 in. rib spacing.
    Keywords: Aerodynamics
    Type: NACA-WR-L-416
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Description: Two airfoil plans were used for propeller blades. One is modified Clark Y section designed for structural reliability and the second an NACA 16 airfoil section designed to produce minimum aerodynamic losses. At low air speeds, the propeller designed for aerodynamic effects showed a gain of from 1.5 to 4.0 percent in propulsive efficiency over the conventional type depending on the pitch. Because of the numerous variables involved, the effect of each one on the aerodynamic characteristics of the propellers could not be isolated.
    Keywords: Aerodynamics
    Type: NACA-WR-L-404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: Description is given of flight tests conducted on gun fairings, designed to correct the detrimental effects of the projecting and submerged wing guns on an F4F-3 fighter. It was found that the installation of unfaired guns on a clean wing resulted in a premature stall that increased the stalling speed in the carrier-approach and landing conditions of flight by suitably fairing the guns, it was possible to reduce the stalling speeds to values approaching very nearly the clean-wing values.
    Keywords: Aerodynamics
    Type: NACA-WR-L-247
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: Porpoising characteristics were observed on V-body fitted with tail surfaces for different combinations of load, speed, moment of inertia, location of pivot, elevator setting, and tail area. A critical trim was found which was unaltered by elevator setting or tail area. Critical trim was lowered by moving pivot either forward or down or increasing radius or gyration. Increase in mass and moment of inertia increased amplitude of oscillations. Complete results are tabulated and shown graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-702
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: Pressure distribution measurements were made over an airfoil with slotted Frise aileron up to 0.76 Mach at various angles of attack and aileron defections. Section characteristics were determined from these pressure data. Results indicated loss of aileron rolling power for deflections ranging from -12 Degrees to -19 Degrees. High stick forces for non-differential deflections incurred at high speed, which were due to overbalancing tendency of up-moving aileron, may precipitate serious control difficulties. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-266 , NACA-ACR-L4G12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: Methods are given of determining the potential flow plast an arbitrary cascade of airfoils and the inverse problem of determining an airfoil having a prescribed velocity distribution in cascade. Results indicated that Cartesian mapping function method may be satisfactorily extended to include cascades. Numerical calculation for computing cascades by Cartesian mapping function method is considerably greater than for single airfoils but much less than hitherto required for cascades. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-81 , NACA-ARR-L4K22B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: Flight tests were conducted on the OS2U-2 seaplane with simple circular-arc-type ailerons directly connected to the actuating torque tube. Two aileron test installations were made, differing only in the inclination of the projecting surface with the wing's upper surface. The lateral-control characteristics of the airplane were determined from data obtained in stalls and rudder-fixed aileron rolls. The revised ailerons were deficient in maximum rolling effectiveness, but were capable of controlling the rolling tendencies of the airplane near the stall.
    Keywords: Aerodynamics
    Type: NACA-WR-A-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-E56B03a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
    Keywords: Aerodynamics
    Type: NACA-RM-L55L16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: The temperature distributions encountered in thin solid wings subjected to aerodynamic heating induce thermal stresses that may effectively reduce the stiffness of the wing. The effects of this reduction in stiffness were investigated experimentally by rapidly heating the edges of a cantilever plate. The midplane thermal stresses imposed by the nonuniform temperature distribution caused the plate to buckle torsionally, increased the deformations of the plate under a constant applied torque, and reduced the frequency of the first two natural modes of vibration. By using small-deflection theory and employing energy methods, the effect of nonuniform heating on the plate stiffness was calculated. The theory predicts the general effects of the thermal stresses, but becomes inadequate as the temperature difference increases and plate deflections become large.
    Keywords: Aerodynamics
    Type: NACA-RM-L55E20c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: Skin-temperature measurements have been made at several locations on a flat-faced cone-cylinder nose which was flight tested on a fivestage rocket-propeller model to a Mach number of 14.64 and a free-stream Reynolds number of 2.0 x 10(exp 6), based on flat-face diameter, at an altitude of 66,300 feet. The copper nose had a 29 deg total-angle conical section which was 1.6 flat-face diameters long. The aerodynamic-heating rates determined from the temperature measurements reached 1,440 Btu/( sec) (sq ft) on the flat face. The heating rates near the center of the flat face agreed well at Mach numbers up to 13.6 with those obtained by a theory for laminar stagnation-point heating in equilibrium dissociated air (Avco Res. Rep. 1). At Mach numbers above 13.6, the heating rates at locations near the center of the flat face became progressively lower than stagnation-point theory and. were 29 percent lower at Mach number 14.6 at the end. of the test. The reason for this behavior of the heating on the central part of the flat face was not determined. Excluding the relatively low heating rates that occurred on the central part of the nose at the highest Mach numbers, the distribution of experimental heating along the innermost 0.79 of the flat-face radius, expressed as a percentage of stagnation-point heating, was in fair agreement with the distribution predicted by laminar theory. At a location of 0.71 radii from the stagnation point, the experimental heating was very near 130 percent of the theoretical stagnation-point rate at Mach numbers from 11 to 14.5. The experimental beating rates on the conical section of the nose were in good agreement with laminar-cone theory using the assumption of theoretical sharp-cone static pressure on the conical section.
    Keywords: Aerodynamics
    Type: NACA-RM-L57L03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: The pitching and the yawing moments of a vee-type and a conventional type of tail surface were measured. The tests were made in the presence of a fuselage and a wing-fuselage combination in such a way as to determine the moments contributed by the tail surfaces. The results showed that the vee-type tail tested, with a dihedral angle of 35.3 deg, was about 71 percent as effective in pitch as the conventional tail and had a yawing-moment to pitching-moment ratio of 0.3. The conventional tail, the panels of which were all congruent to those of the vee-type tail, had a yawing-moment to pitching-moment ratio of 0.48. These ratios are in fair agreement with values calculated by methods shown in this and previous reports. The values of the measured moments were reduced from 15 to 25 percent of the calculated value by fuselage interference.
    Keywords: Aerodynamics
    Type: NACA-TN-815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: Ice was formed on a full-scale unheated supersonic nose inlet in the NACA Lewis icing tunnel to determine its effect on compressor-face total-pressure distortion and recovery.Inlet angle of attack was varied from 0degrees to 12 degrees, free-stream Mach number from 0.17 to 0.28, and compressor-face Mach number from 0.10 to 0.47. Icing-cloud liquid-water content was varied from 0.65 to 1.8 grams per cubic meter at free-stream static air temperatures of 15 degrees and 0 degrees F. The addition of ice to the inlet components increased total-pressure-distortion levels and decreased recovery values compared withclear0air results, the losses increasing with time in ice. The combination of glaze ice, high corrected weight flow, and high angle of attack yielded the highest levels of distortion and lowest values of recovery. The general character of compressor-face distortion with an iced inlet was the same as that for the clean inlet, the total-pressure gradients being predominantly radial, with circumferential gradients occurring at angle of attack. At zero angle of attack, free-stream Mach number of 0.27, and a constant corrected weight flow of 150 pounds per second (compressor-face Mach number of 0.43), compressor-face total-pressure-distortion level increased from about 6 percent in clear air to 12 percent after 21 minutes of heavy glaze icing; concurrently, total-pressure recovery decreased from about 0.98 to 0.945. For the same operating conditions but with the inlet at 12 deg angle of attack, a change in distortion level occurred from about 9 percent in clear air to 14 percent after 2-1/4 minutes of icing, with a decrease in recovery from about 0.97 to 0.94.
    Keywords: Aerodynamics
    Type: NACA-RM-E57G09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: Tests were made in 8-ft high-speed wind tunnel to determine the drag reduction possible by eliminating the barrel jacket of a protruding 50-caliber aircraft gun. It was found that the drag of a standard aircraft gun protruding into the air stream at right angles to the flow can be reduced by 23% by discarding the barrel jacket. At 300 mph and sea-level conditions, this amounts to a decrease in drag of from 83 to 64 pounds. A rough surface finish on the barrel was found to have no adverse effects on the drag of the barrel, the drag being actually less at high Mach Numbers.
    Keywords: Aerodynamics
    Type: NACA-WR-L-581
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: Tank tests were made of a hull model of the Hughes-Kaiser cargo airplane for estimates of take-off performance and maximum gross load for take-off. At hump speeds, with the model free to trim, the trim and resistance were high, which resulted in a load-resistance ratio of approximately 4.0 for a gross load coefficient of 0.75. With a 4000,000-lb load, the full size craft may take off in 69 sec over a distance of 5600 ft.
    Keywords: Aerodynamics
    Type: NACA-WR-L-683
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: Tests were conducted on hydrofoil assemblies approximating an arrangement for use under seaplanes or surface boats. A series of hydrofoils, each supported by two struts, was towed at various depths ranging from partial submersions to a depth of 5-chord lengths. At depths greater than 4 or 5 chords, the influence of the surface of the water is small; hydrofoils operating at low speed will have characteristics similar to those of airfoils of the same section.
    Keywords: Aerodynamics
    Type: NACA-WR-L-758
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: Several tail modifications of the Brewster XSBA-1 scout-bomber were investigated and results compared. Modifications consisted of variation of the chord of the elevator and rudder while the total area of the surfaces is kept constant and variations of the total area of the vertical tail surface. Configuration number 2 reduced trim changes by 50 percent and reduced average elevator control force gradient from 30 to 27 pounds/g. Stick travel required to stall in maneuver was 4.6 inches.
    Keywords: Aerodynamics
    Type: NACA-WR-L-598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Analysis was made to determine characteristics required of a balancing-tab system for ailerons in order to reduce aileron stick forces to any desired magnitude. Series of calculations based on section data were made to determine balancing-tab systems of various chord tabs and ailerons that will give, for a particular airplane, zero rate of aileron hinge moment with aileron deflection and yet will produce same maximum rate of roll as a plain unbalanced 15-percent chord aileron of same span. Effects of rolling velocity and of forces in tab link on aileron hinge moments have been included.
    Keywords: Aerodynamics
    Type: NACA-WR-L-346
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Results of flight tests indicate that profile-drag coefficients which were obtained with the low-drag airfoils were lower than with the conventional types over the range of light coefficients tested. For comparable conditions of the lift coefficient and Reynolds Number, the low-drag airfoils have profile-drag coefficients which may be 27 percent lower than the profile drag of the conventional airfoils tested. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-139 , NACA-ACR-L4E31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-05-11
    Description: The flow about slender flat-top wing-body configurations traveling at high supersonic speeds and small angles of attack is investigated analytically. In the case of conical configurations, approximate algebraic solutions to the flow field are obtained. In the case of configurations which are conical at the vertex but curved in the stream direction, these solutions are combined with a slender-body approximation to the generalized shock-expansion method to obtain the flow downstream of the vertex. Surface pressures were obtained experimentally at Mach numbers from 3.0 to 6.0 and angles of attack up to 6 deg for several flat-top wing-body configurations. These configurations consisted of half-bodies of revolution mounted beneath thin highly swept wings. Three different bodies were employed. The two conical bodies consisted of one-half of a fineness-ratio-5 cone and one-half of a fineness-ratio-2-1/2 cone. The body of the third configuration consisted of one-half of a fineness-ratio-5 ogive. For the ogive configuration, the leading edges of the wing were curved and designed to just maintain the theoretically determined bow shock along the leading edge at a Mach number of 5.0 and an angle of attack of 3 deg. The predictions of the conical flow theory of this paper for the surface pressures are found to be in good agreement with experiment at Mach numbers of 5.0 and 6.0 up to angles of attack of approximately 3 deg. Estimated lift, drag, and pitching-moment coefficients, as well as maximum lift-drag ratio, are also in good agreement with existing experimental data at a Mach number of 5.0 for a conical configuration having an arrow plan-form wing. It is also found that the generalized shock-expansion method yields reasonable good agreement with experiment for the surface pressures on the half-ogive configuration at a Mach number of 5.0 and an angle of attack of 3 deg.
    Keywords: Aerodynamics
    Type: NACA-RM-A58F02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-05-11
    Description: A pressure-distribution investigation of a wing-body combination has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01. The model configuration consisted of an ogive-circular-cylinder body (fineness ratio of approximately ii) and a wing with 45 deg of sweepback at the quarter-chord line, an aspect ratio of 4, and a taper ratio of 0.2. Data were obtained on high-, mid-, and low-wing configurations and for the body and wing alone for a range of angles of attack and yaw from 0 deg to 15 deg. The tabulated pressure coefficients are presented in this report.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-15-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-05-11
    Description: Heat-transfer measurements were made on a simulated glide-rocket shape in free flight at Mach numbers up to 10 and free-stream Reynolds numbers of 2 x 10 based on distance along surface from apex and 3 x 10 based on nominal leading-edge diameter. The model simulated the bottom of a 75 deg delta wing at 8O deg angle of attack. The data indicated that for the test conditions a modified three-dimensional stagnation-point theory will predict to reasonable engineering accuracy the heating on a highly swept wing leading edge, the heating being reduced by sweep by the 3/2 power of the cosine of the sweep angle. The data also indicate that laminar heating rates over the windward surface of a highly swept flat glider wing at moderate angles of attack can be predicted with reasonable engineering accuracy by flat-plate theory using wedge local flow conditions and basing Reynolds numbers on lengths from the wing leading edge parallel to the surface center line.
    Keywords: Aerodynamics
    Type: NACA-RM-L58G03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-05-11
    Description: Chemical sublimation has been employed for boundary-layer-flow visualization on the wings of a supersonic fighter airplane in level flight at speeds near a Mach number of 2.0. The tests have shown that laminar flow can be obtained over extensive areas of the wing with practical wing-surface conditions. In addition to the flow visualization tests, a method of continuously monitoring the conditions of the boundary layer has been applied to flight testing, using heated temperature resistance gages installed in a Fiberglas "glove" installation on one wing. Tests were conducted at speeds from a Mach number of 1.2 to a Mach number of 2.0, at altitudes from 35,000 feet to 56,000 feet. Data obtained at all angles of attack, from near 0 deg to near 10 deg, have shown that the maximum transition Reynolds number on the upper surface of the wing varies from about 2.5 x 10(exp 6) at a Mach number of 1.2 to about 4 x 10(exp 6) at a Mach number of 2.0. On the lower surface, the maximum transition Reynolds number varies from about 2 x 10(exp 6) at a Mach number of 1.2 to about 8 x 10(exp 6) at a Mach number of 2.0.
    Keywords: Aerodynamics
    Type: NACA-RM-H58E28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: Rough conventional, smooth conventional, and laminar-flow or low-drag sections were tested. The items covered are rotor thrust for fixed power in hovering, range and endurance at cruising speed, and power required at high-forward speed. Calculations indicated that a smooth conventional section gives marked performance gains. Smaller gains are obtainable by using a low-drag section. At high speeds or loads the low-drag section is inferior to the smooth conventional section.
    Keywords: Aerodynamics
    Type: NACA-WR-L-26 , NACA-ACR-L4H05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: Tests of 10-ft. diameter, eight-blade, single - and dual - rotating propellers were conducted in 20-ft propeller research tunnel. Propellers were mounted at front end of a streamline body in spinners that covered hubs and parts of shanks. Effect of a symmetrical wing mounted in slipstream was investigated. Blade-angle settings ranged from 20 Degrees to 65 Degrees. Results indicated that dual rotation resulted in gains of from 1 to 8 percent in efficiency over single rotation for eight-blade propellers, but presence of a wing reduced gain about one-half. Greater power absorption caused by dual rotation over flight range and higher efficiency or thrust for range of take-off and climb was indicated
    Keywords: Aerodynamics
    Type: NACA-WR-L-384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.
    Keywords: Aerodynamics
    Type: NACA-WR-L-207 , NACA-ACR-L4F06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: Investigations were undertaken to improve the ailerons of a P-51 fighter so as to obtain greater effectiveness without increasing the stick forces. Modifications consisted of increasing the deflection range of the aileron to 70 percent and changing the original concave section to a thick section with beveled trailing edge. Results of the modified ailerons showed an increase in effectiveness over the original aileron of 70 percent at low speed and 55 percent at high speeds.
    Keywords: Aerodynamics
    Type: NACA-WR-L-636
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.
    Keywords: Aerodynamics
    Type: NACA-WR-L-431 , NACA-ACR-3F11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: Aerodynamics data are obtained for the design of linked balancing tabs and effect of varied tab span and location to produce suitable lateral control characteristics with reasonable stick pressures for high-speed aircraft. Simple and spring-linked balancing tabs may considerably reduce control pressures if aileron system is designed for low maximum aileron deflection. Spring-linked tabs also decrease variation of stick pressure with speed and impart better controlllability at low speeds.
    Keywords: Aerodynamics
    Type: NACA-WR-L-470
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-318 , NACA-ARR-4A26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: Tests were made of an 0.309-chord double-slotted flap on an NACA 65, 3-118, a equals 1.0 airfoil section to determine drag, lift, and pitching-moment characteristics for a range of flap deflections. Results indicate that combination of a low-drag airfoil and a double-slotted flap, of which the two parts moved as a single unit, gave higher maximum lift coefficients than have been obtained with plain, split, or slotted flaps on low-drag airfoils. Pitching moments were comparable to those obtained with other high-lift devices on conventional airfoils for similar lift coefficients.
    Keywords: Aerodynamics
    Type: NACA-WR-L-697 , NACA-ACR-3I20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.
    Keywords: Aerodynamics
    Type: NACA-WR-A-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-05
    Description: Tests were made in the NACA two-dimensional low-turbulence tunnel of three gun ports with a height of approximately 4 percent of the chord faired into an NACA 66,2-213 low-drag-airfoil section by bulging the section at the gun port. Gun ports faired in this manner had practically no effect on the maximum lift and the critical compressibility speed of the section and showed only small increase in the drag in the range of lift coefficients for high-speed and cruising-flight conditions.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: An investigation of cowlings for long-nose radial engines was made on the Curtiss XP-42 fighter in the NACA full-scale wind tunnel. The unsatisfactory aerodynamic characteristics of all the cowlings with scoop inlets tested led to the development of the annular high-velocity inlet cowlings. Tests showed that ratio of cooling-air velocity at cowling inlet to stream velocity should not be less than 0.5 for this type of cowling and that critical compressibility speed can be extended to more than 500 mph at 20,000 ft altitude.
    Keywords: Aerodynamics
    Type: NACA-WR-L-241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: Correlation is established between aerodynamic characteristics of control surfaces in two-dimensional and three-dimensional flow. Slope of lift curve was affected little by overhang and balance-nose shape, but increased by sealing flap-nose gap. Effectiveness of balancing tab was same for sealed plain flap and unsealed overhang flap. Changes in hinge-moment coefficient were diminished by sealing gap. Values measured by three-dimensional flow disagreed with two-dimensional flow values until aspect ratio corrections were made.
    Keywords: Aerodynamics
    Type: NACA-WR-L-186 , NACA-ARR-L4I11F
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: Characteristics are determined for various modifications of 0.155-chord blunt-nose aileron on semispan model of tapered fighter plane wing. Ailerons with 40 percent nose balance reduced high-speed stick forces. Increased balance chord increases effectiveness and reduces high-speed stick forces. Increased balance chord increases effectiveness and reduces adverse effects of gap at aileron hose. Increase of nose radii increased negative slope of curve hinge-movement coefficient plotted against deflection. Extended deflection range decreased aileron effectiveness for small deflections but increased it at large deflections. Peak pressures at noses of ailerons are relatively high at moderate deflections.
    Keywords: Aerodynamics
    Type: NACA-WR-L-262
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.
    Keywords: Aerodynamics
    Type: NACA-WR-L-7 , NACA-ARR-L4J05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: Results of subject tests indicate the difficulty of obtaining closely balanced rudder surfaces for most tail assemblies with shielded horns and maintaining a near zero rate-of-change of hinge-moment coefficient without an additional balancing device. A comparison is made between shielded and unshielded horn test results. Pressure distribution and tuft tests of flow over different shaped horns showed higher critical speed for medium-taper nosed horn. The trim tab nose shape had little effect on tab test results.
    Keywords: Aerodynamics
    Type: NACA-WR-L-516 , NACA-ACR-4C11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: Several airfoils, Including a conventional NACA 23021 and some low-drag airfoils for which the thickness had been increased to the point that they were considered doubtfully conservative with respect to separation, were investigated as smooth airfoils and after the application of a standard roughness. The results show some of the airfoils to be critical to separation resulting from such flow disturbances. It is concluded, pending the further investigation of separation difficulties, that airfoil sections falling definitely within the conservative range should be used.
    Keywords: Aerodynamics
    Type: NACA-WR-L-659
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: Wind-tunnel tests, investigating low drag wing performance in small-scale tests, showed a large increase in minimum drag coefficient, and a decrease of maximum lift coefficient occurred with decreasing Reynolds Number above certain designated values. The lift-curve slope varied up to 6% between high and low turbulence levels. Low Reynolds Number test data are unreliable for low drag airfoils either to estimate full-scale characteristics or to determine merits of airfoils for higher Reynolds numbers.
    Keywords: Aerodynamics
    Type: NACA-WR-L-138 , NACA-ACR-L4H11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: Tests were conducted at dynamic pressure of 50 lb per square foot with lift drag and pitch moment measurements throughout useful angle of attack range for constant flap deflection and position of a low-drag airfoil. Two slots were investigated and practical flap paths were selected for each Slot shape had a negligible effect on the maximum lift coefficient flap deflected, the rounded-entry slot had lower profile drag.
    Keywords: Aerodynamics
    Type: NACA-WR-A-80 , NACA-MR-A4L28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing movements of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained. The tests showed the following effects of increased rolling and yawing moments of inertia: no appreciable change in spiral stability; reductions in oscillatory stability that were serious at high values of dihedral; a reduction in the sensitivity of the model to gust disturbances; and a reduction in rolling acceleration provided by the ailerons, which caused a marked increase in time to reach a given angle of bank. The general flight behavior of the model became worse with increasing moments of inertia but, with combinations of small effective dihedral and large vertical-tail area, satisfactory flight characteristics were obtained at all moment-of-inertia conditions.
    Keywords: Aerodynamics
    Type: NACA-WR-L-388 , NACA-ARR-3H31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.
    Keywords: Aerodynamics
    Type: NACA-TN-880
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was subjected to sharp-edge vertical gusts while being operated at various forward speeds to study the effect of the gusts on the blade periodic bending moments and flapping angles. Variables studied included gust velocity, collective pitch angle, flapping hinge offset, and tip-speed ratio. Dimensionless coefficients are derived for the periodic components of the incremental changes in blade flapping angles and bending moments which arise when a rotor blade penetrates a sharp-edge gust. Mental changes in both the flapping angles and bending moments are essentially proportional to gust velocity, and the coefficients express the ratio of these increments to gust velccity. The results show that the flapping coefficient usually increases with an increase in collective pitch angle, is generally dependent on tip-speed ratio, and is essentially independent of the amount of flapping hinge offset. The bending-moment coefficient is also dependent on collective pitch angle and tip-speed ratio. Expected reductions in bending moments are realized by the use of flapping hinges, and further reductions in bending moments are achieved as the amount of flapping hinge offset is increased. Comparison of the experimental results of this investigation with limited available theoretical results shows substantial agreement but indicates that the assumption that the response of the rotor to a sharp-edge gust is independent of the collective pitch angle prior to gust entry is probably inadequate.
    Keywords: Aerodynamics
    Type: NASA-TN-D-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-27
    Description: An experimental investigation has been made in the Langley stability tunnel to determine the aerodynamic characteristics of the Army Chemical Corps model E-112 bomblets with span-chord ratio of 2:1. A detailed analysis has not been made; however, the results showed that all the models were spirally unstable and that a large gap between the model tips and end plates tended to reduce the instability.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: This report gives the results of tests on a rectangular wing model with a 20% full spun split flap, conducted on the whirling arm at the Daniel Guggenheim Airship Institute in Akron, Ohio. The effect of a ground board on the lift and pitching moment was measured. The ground board consisted of an inclined ramp rising up in the test channel to a level floor extending for some distance parallel to the model path. The path of the wing model with respect to the ground board accordingly represented with comparative exactness an airplane coming in for a landing. The ground clearances over the level portion of the board varied from 0 6 to 1,6 chord lengths. Results are given in the standard dimensionless coefficients plotted versus angle of attack for a particular ground clearance. The effect of the ground board is to increase the lift coefficient for a given angle of attack all the way up the stall. The magnitude of the increase varies both with the ground clearance and the angle of attack. The effect on the pitching moment coefficient is not so readily apparent due to experimental difficulties but, in general, the diving moment increases over the ground board. This effect is apparent principally at the high angles of attack. An exception to this effect occurs with flaps deflected at the lowest ground clearance (0.6 chords). Here the diving moment decreases over the ground board.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: At the present time there is considerable demand for improvement in the aerodynamic characteristics of cowlings for radial air-cooled aircraft engines. During the past year, numerous cowling arrangements have been investigated in various departments of the NACA laboratory. Although a few full-scale investigation have been carried out, most of the studies have been preliminary in nature and have been confined to the investigation of model arrangement in wind tunnels. Because of the existing national emergency it appears advisable to release immediately to the aircraft industry the information available on the more promising of the arrangements that have been studied. An investigation having as its aim the improvement in performance and flying qualities of single-engine air-cooled military pursuit airplanes is being conducted in the NACA 10-foot pressure wind tunnel. As a part of that investigation, studies have been made of the relative merits of a conventional NACA open-nose cowling arrangement and of a less conventional but better streamline NACA high-speed cowling arrangement in which the cooling air enters the cowling through an opening ahead of the propeller, passes internally through an element of the cowling which rotates with the propeller, and thence past the engine cylinders to the exit at the rear of the engine. These investigations indicate that at airplane speeds of around 400 miles per hour there is not a great deal to be gained in high-speed performance through the application of the latter cowling arrangement, but at speeds in excess of about 450 miles per hour a very appreciable gain is indicated. Present indications are that improved engine cooling can be obtained throughout the speed range as well as ground cooling through the use of the high-speed cowling. This paper summarizes the results obtained from wind-tunnel tests of models of the two cowling arrangements.
    Keywords: Aerodynamics
    Type: HQ-E-DAA-TN59228
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.
    Keywords: Aerodynamics
    Type: O.N.E.R.A. PAPERS PRESENTED AT THE JOURNEES INTERN. DE SCI. AERON., PT. 2 〈1957〈 (SEE N68-81276) P 1-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L56I18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-17
    Description: The influence of the deflected flow caused by the fuselage (especially by unsymmetrical attitudes) on the lift and the rolling moment due to sideslip has been discussed for infinitely long fuselages with circular and elliptical cross section. The aim of this work is to add rectangular cross sections and, primarily, to give a principle by which one can get practically usable contours through simple conformal mapping. In a few examples, the velocity field in the wing region and the induced flow produced are calculated and are compared with corresponding results from elliptical and strictly rectangular cross sections.
    Keywords: Aerodynamics
    Type: NACA-TM-1414 , Jahrbuch 1942 der Deutschen Luftfahrtforschung; 263-279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-17
    Description: The longitudinal aerodynamic characteristics of a wing-body-horizontal-tail configuration designed for efficient performance at transonic speeds has been investigated at Mach numbers from 0.80 to 1.03 in the Langley 16-foot transonic tunnel. The effect of adding an outboard leading-edge chord-extension to the highly tapered 45 deg. swept wing was also obtained. The average Reynolds number for this investigation was 6.7 x 10(exp 6) based on the wing mean aerodynamic chord. The relatively low tail placement as well as the addition of a chord-extension achieved some alleviation of the pitchup tendencies of the wing-fuselage configuration. The maximum trimmed lift-drag ratio was 16.5 up to a Mach number of 0.9, with the moment center located at the quarter-chord point of the mean aerodynamic chord. For the untrimmed case, the maximum lift-drag ratio was approximately 19.5 up to a Mach number of 0.9.
    Keywords: Aerodynamics
    Type: NASA-TM-X-130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-12
    Description: In this report a method is presented for the calculation of the profile drag of airfoil sections. The method requlres only a knowledge of the theoretical velocity distribution and can be applied readily once this dlstribution is ascertained. Comparison of calculated and experimental drag characteristics for several airfoils shows a satisfactory agreement. Sample calculatlons are included.
    Keywords: Aerodynamics
    Type: NACA ACR No. 4B05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: Lateral-stability flight tests were made over the Mach number range from 0.7 to 1.3 of models of three airplane configurations having 45deg sweptback wings. One model had a high wing; one, a low wing; and one, a high wing with cathedral. The models were otherwise identical. The lateral oscillations of the models resulting from intermittent yawing disturbances were interpreted in terms of full-scale airplane flying qualities and were further analyzed by the time-vector method to obtain values of the lateral stability derivatives. The effects of changes i n wing height on the static sideslip derivatives were fairly constant in the speed range investigated and agreed well with estimated values based on subsonic wind-tunnel tests. Effects of geometric dihedral on the rolling moment due to sideslip agreed well with theoretical and other experimental results and with a theoretical relation involving the damping in roll. The damping in roll, when compared with theoretical and other experimental results, shared good agreement at supersonic speeds but was somewhat higher at a Mach number of 1.0 and at subsonic speeds. The damping in yaw shared no large changes in the transonic region.
    Keywords: Aerodynamics
    Type: NACA-RM-L56E17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.
    Keywords: Aerodynamics
    Type: NACA-RM-SE55E23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-12
    Description: A linear stability analysis and flight-test investigation has been performed on a rolleron-type roll-rate stabilization system for a canard-type missile configuration through a Mach number range from 0.9 to 2.3. This type damper provides roll damping by the action of gyro-actuated uncoupled wing-tip ailerons. A dynamic roll instability predicted by the analysis was confirmed by flight testing and was subsequently eliminated by the introduction of control-surface damping about the rolleron hinge line. The control-surface damping was provided by an orifice-type damper contained within the control surface. Steady-state rolling velocities were at all times less than 1 radian per second between the Mach numbers of 0.9 to 2.3 on the configurations tested. No adverse longitudinal effects were experienced in flight because of the tendency of the free-floating rollerons to couple into the pitching motion at the low angles of attack and disturbance levels investigated herein after the introduction of control-surface damping.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55C22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-12
    Description: Investigations of the pressure distribution, the profile drag, and the location of transition for a 30-inch-chord 25-percent-thick N.A,C.A. 45-125 airfoil were made in the N.A.C.A 8-foot high-speed wind tunnel for the purpose of aiding in the development of a thick wing for high-speed airplanes. The tests were made at a lift coefficient of 0.1 for Reynolds Numbers from 1,750,000 to 8,690,000, corresponding to speeds from 80 to 440 miles per hour at 59 F. The effect on the profile drag of fixing the transition point was also investigated. The effect of compressibility on the rate of increase of pressure coefficients was found to be greater than that predicted by a simplified theoretical expression for thin wings. The results indicated that, for a lift coefficient of 0.1, the critical speed of the N.A.C,A. 45-125 airfoil was about 460 miles per hour at 59 F,. The value of the profile-drag coefficient at a Reynolds Number of 4,500,000 was 0.0058, or about half as large as the value for the N.A,C,A. 0025 airfoil. The increase in the profile-drag coefficient for a given movement of the transition point was about three times as large as the corresponding increase for the N.A.C,A. 0012 airfoil. Transition determinations indicated that, for Reynolds Numbers up to ?,000,000, laminar boundary 1ayers were maintained over approximately 40 percent of the upper and the lower surfaces of the airfoil.
    Keywords: Aerodynamics
    Type: NACA-SR-138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-14
    Description: Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
    Keywords: Aerodynamics
    Type: NACA-RM-L54B12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-14
    Description: A model of a cruciform missile configuration having a low-aspectratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal-force coefficient against angle of attack C(sub N(sub A)) was the same as for the slowly rolling model at O deg control deflection but C(sub N(sub A)) was much higher for the faster rolling model at about 5 deg control deflection. The slope of pitching-moment coefficient against angle of attack & same for both models at 0 deg control deflection but was lower for the faster rolling model at about 5 deg control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
    Keywords: Aerodynamics
    Type: NACA-RM-L55L16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-17
    Description: This report deals with the development of a method which gives a lucid and convenient solution of the flow conditions in the vicinity of a common, thick airfoil section wherein the thickness of the profile is taken into account. The method consists in making the airfoil the streamline in a parallel flow by disposing on its mean line certain source and vortex distributions the fields of which are superposed on the parallel flow. These distributions of singularities are secured for the generalized Karman-Trefftz profile by means of conformal transformation from the flow about a circle. Five different distribution functions are afforded for the density of superposition, which combine in a specified manner to the necessary distributions of singularity and represent a generalized Karman-Trefftz profile in parallel flow. For these profiles the speed for each of the five distributions is then computed independently of the angle of attack.
    Keywords: Aerodynamics
    Type: NACA-TM-1023
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-17
    Description: A diamond wing and body combination was designed to have an area distribution which would result in near optimum zero-lift wave-drag coefficients at a Mach number of 1.00, and decreasing wave-drag coefficient with increasing Mach number up to near sonic leading-edge conditions for the wing. The airfoil section were computed by varying their shape along with the body radii (blending process) to match the selected area distribution and the given plan form. The exposed wing section had an average maximum thickness of about 3 percent of the local chords, and the maximum thickness of the center-line chord was 5.49 percent. The wing had an aspect ratio of 2 and a leading-edge sweep of 45 deg. Test data were obtained throughout the Mach number range from 0.20 to 3.50 at Reynolds numbers based on the mean aerodynamic chord of roughly 6,000,000 to 9,000,000. The zero-lift wave-drag coefficients of the diamond model satisfied the design objectives and were equal to the low values for the Mach number 1.00 equivalent body up to the limit of the transonic tests. From the peak drag coefficient near M = 1.00 there was a gradual decrease in wave-drag coefficient up to M = 1.20. Above sonic leading-edge conditions of the wing there was a rise in the wave-drag coefficient which was attributed in part to the body contouring as well as to the wing geometry. The diamond model had good lift characteristics, in spite of the prediction from low-aspect-ratio theory that the rear half of the diamond wing would carry little lift. The experimental lift-curve slope obtained at supersonic speeds were equal to or greater than the values predicted by linear theory. Similarly the other basic aerodynamic parameters, aerodynamic center position, and maximum lift-drag ratios were satisfactorily predicted at supersonic speeds.
    Keywords: Aerodynamics
    Type: NASA-TM-X-105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-17
    Description: An investigation of a model of a standard size body in combination with a representative 45 deg swept-wing-fuselage model has been conducted in the Langley 8-foot transonic pressure tunnel over a Mach number range from 0.80 to 1.43. The body, with a fineness ratio of 8.5, was tested with and without fins, and was pylon-mounted beneath the fuselage or wing. Force measurements were obtained on the wing-fuselage model with and without the body, for an angle-of-attack range from -2 deg to approximately 12 deg and an angle-of-sideslip range from -8 deg to 8 deg. In addition, body loads were measured over the same angle-of-attack and angle-of-sideslip range. The Reynolds number for the investigation, based on the wing mean aerodynamic chord, varied from 1.85 x 10(exp 6) to 2.85 x 10(exp 6). The addition of the body beneath the fuselage or the wing increased the drag coefficient of the complete model over the Mach number range tested. On the basis of the drag increase per body, the under-fuselage position was the more favorable. Furthermore, the bodies tended to increase the lateral stability of the complete model. The variation of body loads with angle of attack for the unfinned bodies was generally small and linear over the Mach number range tested with the addition of fins causing large increases in the rates of change of normal-force coefficient and nose-down pitching-moment coefficient. The variation of body side-force coefficient with sideslip for the unfinned body beneath the fuselage was at least twice as large as the variation of this load for the unfinned body beneath the wing. The addition of fins to the body beneath either the fuselage or the wing approximately doubled the rate of change of body side-force coefficient with sideslip. Furthermore, the variation of body side-force coefficient with sideslip for the body beneath the wing was at least twice as large as the variation of this load with angle of attack.
    Keywords: Aerodynamics
    Type: NASA-MEMO-4-20-59L , L-206
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-17
    Description: An investigation was made of the effects of body shape on the drag of a 45 deg sweptback-wing-body combination at Mach numbers from 0.90 to 1.43. Both the expansion and compression fields induced by body indentation were swept back as the stream Mach number increased from 0.94. The line of zero pressure change was generally tangent to the Mach lines associated with the local velocities over the wing and body. The strength of the induced pressure fields over the wing were attenuated with spanwise distance and the major effects were limited to the inboard 60 percent of the wing semispan. Asymmetrical body indentation tended to increase the lift on the forward portion of the wing and reduce the lift on the rearward portion. This redistribution of lift had a favorable effect on the wave drag due to lift. Symmetrical body indentation reduced the drag loading near the wing-body juncture at all Mach numbers. The reduction in drag loading increased in spanwise extent as the Mach number increased and the line of zero induced pressure became more nearly aligned with the line of maximum wing thickness. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag of the basic and symmetrical M = 1.2 body and wing combinations at an angle of attack of 0 deg predicted the effects of indentation within 11 percent of the wing-basic-body drag throughout the Mach number range from 1.0 to 1.43. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag for the basic, symmetrical M = 1.2, and asymmetrical M = 1.4 body and wing combinations predicted the total pressure drag to within 8 percent of the experimental value at M = 1.43.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-23-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-17
    Description: The linearized theory for heat addition under a wing has been developed to optimize wing geometry, heat addition, and angle of attack. The optimum wing has all of the thickness on the underside of the airfoil, with maximum-thickness point well downstream, has a moderate thickness ratio, and operates at an optimum angle of attack. The heat addition is confined between the fore Mach waves from under the trailing surface of the wing. By linearized theory, a wing at optimum angle of attack may have a range efficiency about twice that of a wing at zero angle of attack. More rigorous calculations using the method of characteristics for particular flow models were made for heating under a flat-plate wing and for several wings with thickness, both with heat additions concentrated near the wing. The more rigorous calculations yield in practical cases efficiencies about half those estimated by linear theory. An analysis indicates that distributing the heat addition between the fore waves from the undertrailing portion of the wing is a way of improving the performance, and further calculations appear desirable. A comparison of the conventional ramjet-plus wing with underwing heat addition when the heat addition is concentrated near the wing shows the ramjet to be superior on a range basis up to Mach number of about B. The heat distribution under the wing and the assumed ramjet and airframe performance may have a marked effect on this conclusion. Underwing heat addition can be useful in providing high-altitude maneuver capability at high flight Mach numbers for an airplane powered by conventional ramjets during cruise.
    Keywords: Aerodynamics
    Type: NASA-MEMO-3-17-59E
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-17
    Description: The performance characteristics of several flush and shielded auxiliary exits were investigated at Mach numbers of 1.5 to 2.0, and jet pressure ratios from jet off to 10. The results indicate that the shielded configurations produced better overall performance than the corresponding flush exits over the Mach-number and pressure-ratio ranges investigated. Furthermore, the full-length shielded exit was highest in performance of all the configurations. The flat-exit nozzle block provided considerably improved performance compared with the curved-exit nozzle block.
    Keywords: Aerodynamics
    Type: NASA-MEMO-5-18-59E , E-139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-17
    Description: Two methods for reducing the external cowl angle, and hence the cowl pressure drag, were investigated on a two-dimensional model. One method used at both on- and off-design Mach numbers was the addition of a cowl visor that had the inner surface parallel to the free stream at 0 deg angle of attack. The other method investigated consisted in replacing the original cowl by a flatter cowl that also provided internal contraction. Both the visor and the internal-contraction cowl reduced the cowl pressure drag 64 percent or more. The visor had little effect on inlet performance at the design Mach number except to reduce the stability range slightly. At off-design, the visor caused an increase in critical pressure recovery.
    Keywords: Aerodynamics
    Type: NASA-MEMO-3-18-59E , E-173
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-17
    Description: A compilation of charts of the induced velocities near a lifting rotor is presented. The charts cover uniform as well as various non-uniform distributions of disk loading and should be applicable to many aerodynamic interference problems involving rotors.
    Keywords: Aerodynamics
    Type: NASA-MEMO-4-15-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-17
    Description: Semispan-wing models were tested at angles of attack from 0 to 180 deg at low subsonic speeds. Eight plan forms were considered, both swept and unswept with aspect ratios ranging from 2 to 6. Except for a delta-wing model of aspect ratio 2. all models had a taper ratio of 0.5 and an NACA 64AO10 airfoil section. The delta-wing model had an NACA 0005 (modified) airfoil section. With two exceptions, the models were tested both with and without a full-span trailing-edge flap deflected 25 deg. The Reynolds numbers based on the mean aerodynamic chord were between 1.5 and 2.2 million. Lift, drag, and pitching-moment coefficients are presented as functions of angle of attack. Approximate corrections for the effects of blockage were applied to the data.
    Keywords: Aerodynamics
    Type: NASA-MEMO-2-27-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-17
    Description: An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.
    Keywords: Aerodynamics
    Type: NASA-MEMO-12-26-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-17
    Description: The results of an experimental wind-tunnel investigation of the damping in pitch of two wing-body combinations are presented. The tests were conducted in the Ames 14-foot transonic wind tunnel over a Mach number range from 0.60 to 1.18. Reynolds numbers varied from 2.3 million to 5.5 million. One model with a triangular wing of aspect ratio 2 having NACA 0003-63 sections was oscillated at an amplitude of 1.5 and a frequency of 17 cycles per second. The second model with a straight, tapered wing of aspect ratio 3 having 3-percent biconvex circular-arc sections was oscillated at an amplitude of 1.0 deg and a frequency of 21 cycles per second. The tests were made with the models at a mean angle of attack of 0 deg. The models were oscillated with a dynamic balance that was actuated by an electrohydraulic servo valve. The results of this investigation indicate the usefulness of this new apparatus. The experimental results of a previous damping-in-pitch investigation conducted in the Ames 6- by 6-foot supersonic wind tunnel at Mach numbers from 1.2 to 1.7 are included along with the theoretical results for this Mach number range. In the region of Mach numbers available for comparison, good agreement is shown to exist between the data obtained in the two facilities, except for some inconsistency in the slopes of the curves at M = 1.2 for the triangular wing. The results of this investigation clearly show that for the models tested the maximum values of the damping in pitch occur at Mach numbers very close to 1.0, and that abrupt changes in the pitch damping are encountered near sonic velocity.
    Keywords: Aerodynamics
    Type: NASA-MEMO-11-30-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-17
    Description: Pressure distributions obtained in the Langley 8-foot transonic pressure tunnel on a thin, highly tapered, twisted, 450 sweptback wing in combination with a body are presented. The wing has a cubic spanwise twist variation from 0 deg. at 10 percent of the semispan to 60 at the tip. The tip is at a lower angle of attack than the root. Tests were made at stagnation pressures of 1.0 and 0.5 atmosphere, at Mach numbers from 0 0.800 to 1.200, and at angles of attack from -4 deg. to 20 deg.
    Keywords: Aerodynamics
    Type: NASA-MEMO-5-12-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-17
    Description: Surface pressures were measured over a blunt 60 deg delta wing with extended trailing edge at a Mach number of 5.7, a free-stream Reynolds number of 20,000 per inch, and angles of attack from -10 to +10 deg. Aft of four leading-edge thicknesses the pressure distributions evidenced no appreciable three-dimensional effects and were predicted qualitatively by a method described herein for calculation of pressure distribution in two-dimensional flow. Results of tests performed elsewhere on blunt triangular wings were found to substantiate the near two-dimensionality of the flow and were used to extend the range of applicability of the method of surface pressure predictions to Mach numbers of 11.5 in air and 13.3 in helium.
    Keywords: Aerodynamics
    Type: NASA-MEMO-5-12-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: A review of the physical condition's under which future airplanes will operate has been made and the necessity for considering fatigue in the design has been established. A survey of the literature shows what phases of elevated-temperature fatigue have been investigated. Other studies that would yield data of particular interest to the designer of aircraft structures are indicated.
    Keywords: Aerodynamics
    Type: NASA-MEMO-6-4-59W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-17
    Description: A brief review of airplane altitude errors due to typical pressure installations at the fuselage nose, the wing tip, and the vertical fins is presented. A static-pressure tube designed to compensate for the position errors of fuselage-nose installations in the subsonic speed range is described. This type of tube has an ogival nose shape with the static-pressure orifices located in the low-pressure region near the tip. The results of wind-tunnel tests of these compensated tubes at two distances ahead of a model of an aircraft showed the position errors to be compensated to within 1/2 percent of the static pressure through a Mach number range up to about 1.0. This accuracy of sensing free-stream static pressure was extended up to a Mach number of about 1.15 by use of an orifice arrangement for producing approximate free-stream pressures at supersonic speeds and induced pressures for compensation of error at subsonic speeds.
    Keywords: Aerodynamics
    Type: NASA-MEMO-5-10-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-17
    Description: An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.
    Keywords: Aerodynamics
    Type: NASA-MEMO-5-18-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-17
    Description: An investigation has been conducted to determine the effects of a high positioned horizontal tail on a wing-body configuration having a thin unswept wing of aspect ratio 3.09. Lift and pitching-moment coefficients were obtained for Mach numbers from 0.80 to 1.40 at Reynolds numbers of 1.0 and 1.5 million and for angles of attack to 20 deg. An experimental study of the pitching-moment contribution of the horizontal tail indicated that the marked destabilizing effect of the horizontal tail at high angles of attack for Mach numbers of 0.80 to 1.00 was associated with the formation of completely separated flow on the upper surface of the wing. Computations of the interference effects of the wing-body combination on the tail for Mach numbers of 0.80 and 0.94 and high angles of attack confirmed this conclusion. For a Mach number of 1.40, and high angles of attack, computations disclosed that the destabilizing effect primarily resulted from the trailing vortices of the wing. Two modifications to the basic wing plan form, which consisted of chord extensions, were generally unsuccessful in reducing the destabilizing contributions of the horizontal tail at high angles of attack.
    Keywords: Aerodynamics
    Type: NASA-TM-X-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-16
    Description: An investigation has been made in the Langley 20-foot free-spinning tunnel on a 1/25-scale dynamic model to determine the spin and recovery characteristics of the Chance Vought F8U-1P airplane. Results indicated that the F8U-IP airplane would have spin-recovery characteristics similar to the XF8U-1 design, a model of which was tested and the results of the tests reported in NACA Research Memorandum SL56L31b. The results indicate that some modification in the design, or some special technique for recovery, is required in order to insure satisfactory recovery from fully developed erect spins. The recommended recovery technique for the F8U-lP will be full rudder reversal and movement of ailerons full with the spin (stick right in a right spin) with full deflection of the wing leading- edge flap. Inverted spins will be difficult to obtain and any inverted spin obtained should be readily terminated by full rudder reversal to oppose the yawing rotation and neutralization of the longitudinal and lateral controls. In an emergency, the same size parachute recommended for the XFBU-1 airplane will be adequate for termination of the spin: a stable parachute 17.7 feet in diameter (projected) with a drag coefficient of 1.14 (based on projected diameter) and a towline length of 36.5 feet.
    Keywords: Aerodynamics
    Type: NASA-TM-SX-196 , L-714 , NASA-AD-3137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-16
    Description: Pressure distributions obtained in the Langley 8-foot transonic pressure tunnel on a thin highly tapered twisted 45 deg sweptback wing-body combination are presented. The wing has a quadratic spanwise twist variation from 0 deg at 10 percent of the semispan to 6 deg at the tip. The tip is at a lower angle of attack than the root. Tests were made at stagnation pressures of both 0.5 and 1.0 atmosphere at Mach numbers from 0.800 to 1.200 through an angle-of-attack range from -4 deg to 20 deg.
    Keywords: Aerodynamics
    Type: NASA-MEMO-2-24-59L , L-207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-16
    Description: A series of flight tests were conducted to determine the lift and drag characteristics of an F4D-1 airplane over a Mach number range of 0.80 to 1.10 at an altitude of 40,000 feet. Apparently satisfactory agreement was obtained between the flight data and results from wind-tunnel tests of an 0.055-scale model of the airplane. Further tests show the apparent agreement was a consequence of the altitude at which the first tests were made.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-8-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-16
    Description: Surface pressure measurements were obtained at three chordwise stations on the wings of the X-3 and X-lE airplanes at Mach numbers from 0.73 to 1.13 for the X-3, and from 0.82 to 1.90 for the X-IE. Leading-edge separation is present on the X-3 wing at a Mach number of about 0.73 and an angle of attack of about 6 deg. However., when the Mach number is increased to 0.88, the trailing-edge separation dominates the pressure distribution and no leading-edge separation is visible although it is anticipated at the higher angles of attack shown. Conversely, the X-lE wing shows no indication of leading-edge separation within the scope of this investigation, but an overexpansion immediately behind the leading edge is present at a Mach number of approximately 0.82. Two separate normal shocks are present on the X-3 wing at a Mach number of about 0.88 and at a low angle of attack as an effect of wing geometry. These shocks merge to form a single shock when the angle of attack is increased to about 6 deg. At supersonic speeds the upper-surface expansion on the X-lE wing is limited by the approach of the pressure coefficients to the pressure coefficient for a vacuum.
    Keywords: Aerodynamics
    Type: NASA-MEMO-5-1-59H
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-16
    Description: A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.
    Keywords: Aerodynamics
    Type: NASA-MEMO-1-10-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-14
    Description: Wing pressure distribution diagrams for several angles of attack and flap deflections of 0 degrees, 20 degrees, and 40 degrees are presented. The normal force coefficients agree with lift coefficients obtained in previous test of the same model, except for the maximum lifts with flap deflection. Pressure distribution measurements were made at Reynolds Number of about 6,000,000.
    Keywords: Aerodynamics
    Type: NACA-WR-L-678
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-14
    Description: Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
    Keywords: Aerodynamics
    Type: NACA-RM-L54B12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-14
    Description: Resilts have been obtained from an investigation in the Langley Unitary Plan wind tunnel at Mach numbers from 2.5 to 3.5 of a canard-type configuration designed for supersonic cruise flight. Tests extended over an angle-of-attack range from about -4 deg to 11 deg and an angle-of-sideslip range from -4 deg to 6 deg. For the present tests, the results indicate that forebody deflection was an efficient means of providing a sizable positive pitching-moment shift with little or no increase in drag. The test configuration had a trimmed lift-drag ratio of approximately 6.0 at Mach numbers near 3.0 and at a Reynolds number of 2.52 X 10(exp 6). The configuration was both longitudinally and directionally stable. The lift-drag ratios are believed to be somewhat low in as much as the models used for the present tests had large-grain size transition strips fixed to the various surfaces and these strips added wave drag. Also, the model boundary-layer diverter is oversized with respect to a full-scale configuration and therefore contributes additional drag.
    Keywords: Aerodynamics
    Type: NACA-RM-L58G16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-13
    Description: Tests were performed in the high. Mach number test section of the Langley Unitary Plan wind tunnel to determine the static lateral stability. and aileron characteristics of a 0.067-scale model of the Bell X-2 airplane at Mach numbers of 2.29, 2. 78, 3.22, and. 3.71. The results of this investigation indicated that the directional stability of the model was low with directional instability occurring at Mach numbers higher than 3.1 and. angles of attack higher than about 5.0 deg (equivalent lift coefficient of about 0.18). The yaw due to aileron deflection was adverse and, with 10 deg of differential aileron deflection, large enough to overbalance the available directional restoring moment at all angles of attack higher than about 5.0 deg (equivalent lift coefficient of about 0.21) and Mach numbers higher than 2. 5. The model also had positive effective dihedral for all test attitudes and. Mach numbers. A combination of the lateral-stability parameters with the aileron characteristics to form a lateral-stability criterion for a maneuver using ailerons alone indicated that the model has characteristics which would. give unstable aperiodic behavior (divergence) over a large part of the test Mach number and angle-of-attack range.
    Keywords: Aerodynamics
    Type: NACA-RM-L57J28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...