ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18)
  • Finite Elements  (18)
  • Wiley-Blackwell  (18)
  • 1980-1984  (18)
  • 1945-1949
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (18)
  • Sociology
  • Computer Science
  • Physics
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (18)
Publisher
  • Wiley-Blackwell  (18)
Years
Year
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (18)
  • Sociology
  • Computer Science
  • Physics
  • Energy, Environment Protection, Nuclear Power Engineering
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 2 (1982), S. 25-42 
    ISSN: 0271-2091
    Keywords: Penalty Method ; Incompressible Flow ; Reduced Quadrature ; Finite Elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The frequently used reduced integration method for solving incompressible flow problems ‘a la penalty’ is critically examined vis-a-vis the consistent penalty method. For the limited number of quadrilateral and hexahedral elements studied, it is shown that the former method is only equivalent to the latter in certain special cases. In the general case, the consistent penalty method is shown to be more accurate. Finally, we demonstrate significant advantages of a new element, employing biquadratic (2-D) or triquadratic (3-D) velocity and linear pressure over that using the same velocity but employing bilinear (2-D) or trilinear (3-D) pressure approximation.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0271-2091
    Keywords: Finite Elements ; Infinite Elements ; Acoustics ; Wave Propagation ; Radiation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Finite element models are presented for the calculation of near and far field acoustical radiation. These models are applied to the specific problem of fan noise radiation from axisymmetric turbofan inlets. In all cases conventional acoustic finite elements are used within an inner region close to the inlet. The far field is represented by infinite elements or wave envelope elements. Theory and results are presented for the case with zero mean flow. Comparisons of computed data with analytic solutions and measured values establish the utility of both the infinite element and wave envelope element schemes in determining the near field values of acoustical pressure. The wave envelope scheme is shown to be effective also in the far field. Both schemes use meshes an order of magnitude more sparse that would be required in conventional numerical discretizations, and may consequently be applied at modest computational cost.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 3 (1983), S. 1-21 
    ISSN: 0271-2091
    Keywords: Turbomachines ; Finite Elements ; Transonic Flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical approximation is taken to the solution of the complex flows existing in gas turbine engines with transonic blading. The quasi-3D approach decouples the problem into through-flow and blade-to-blade solutions. An industrially practical finite element through-flow solution is developed and for blade-to-blade solutions a transonic finite areas method is utilized. The finite element code developed is capable of operating in an analysis or a design mode. In both modes a dynamic relaxation factor is employed and considerable reduction in solution time can be achieved. Comparisons to streamline curvature methods are carried out for simple analytical and complex industrial problems.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 3 (1983), S. 61-70 
    ISSN: 0271-2091
    Keywords: Tides ; Residual Currents ; Finite Elements ; Modal Separation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: From the linearized, time-independent, constant depth, shallow water tidal equations in an f-plane for a two-layer estuary, two independent modal Helmholtz equations are derived. These modal equations are solved using a fifth-degree finite element technique. The first and second space derivatives of the complex modal tidal elevations, and thus the modal currents and their first derivatives, are evaluated directly from the solution at each node of the finite element mesh.The Stokes drift, which is the major part of the residual tidal flow, is evaluated from these nodal values of the currents and their derivatives. Good agreement is obtained with the exact analytical solution for a wedge-shaped estuary with a wedge angle of π/3, using a mesh of 64 equilateral triangles with sides approximately 1/10 of the wavelength 2πC2/σ of a Kelvin wave solution for the short-wavelength mode.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 2 (1982), S. 151-171 
    ISSN: 0271-2091
    Keywords: Penalty method ; Incompressible Flow ; Finite Elements ; Convergence ; Existence ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper the penalty function method is reviewed in the general context of solving constrained minimization problems. Mathematical properties, such as the existence of a solution to the penalty problem and convergence of the solution of a penalty problem to the solution of the original problem, are studied for the general case. Then the results are extended to a penalty function formulation of the Stokes and Navier-Stokes equations. Conditions for the equivalence of two penalty-finite element models of fluid flow are established, and the theoretical error estimates are verified in the case of Stokes's problem.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 2 (1982), S. 263-276 
    ISSN: 0271-2091
    Keywords: Finite Elements ; Waves ; Coastline ; Dampers ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The problem of truncating nearshore finite element wave models is addressed. Incorrect treatment of the artificial boundaries of the model will cause spurious wave reflections. Three methods for dealing with these boundaries: application of constraints, use of the Smith condition and longshore dampers, are proposed. Numerical results show the dampers to be the best method.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 3 (1983), S. 265-282 
    ISSN: 0271-2091
    Keywords: Optimization ; Finite Elements ; Partial Differential Equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Described in this paper is a methodology for solving a particular class of optimum design problems in Fluid Mechanics, namely optimum design problems for aerofoils when the corresponding fluid flow is potential. The methods described in this paper operate directly in the physical space, and take advantage of the variational formulation of the partial differential equation modelling the flow. The techniques of optimal control, optimization and the finite element method are used. Numerical examples are also given.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 1-12 
    ISSN: 0271-2091
    Keywords: Review ; Finite Elements ; Meteorology ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The application of the finite-element method to the simulation of meterological fluid flow problems is reviewed. Early studies were aimed primarily at demonstrating the viability of the method for one- and two-dimensional flows, whereas more recent studies have been aimed at demonstrating the efficiency and viability of the method for more complex three-dimensional simulations. There has also been a shift towards exploiting such models to better understand and predict the underlying meteorological phenomena, rather than restricting attention to the development of the algorithms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 247-269 
    ISSN: 0271-2091
    Keywords: Finite Elements ; Navier-Stokes ; Driven Cavity ; Flow Past a Cylinder ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We present a simple and efficient finite element method to solve the Navier-Stokes equations in primitive variables V, p. It uses (a) an explicit advection step, by upwind differencing. Improvement with regard to the classical upwind differencing scheme of the first order is realized by accurate calculation of the characteristic curve across several elements, and higher order interpolation; (b) an implicit diffusion step, avoiding any theoretical limitation on the time increment, and (c) determination of the pressure field by solving the Poisson equation. Two laminar flow calculations are presented and compared to available numerical and experimental results.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 291-302 
    ISSN: 0271-2091
    Keywords: Finite Elements ; MHD Flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite element method is given to obtain the numerical solution of the coupled equations in velocity and magnetic field for unsteady MHD flow through a pipe having arbitrarily conducting walls. Pipes of rectangular, circular and triangular sections have been taken for illustration. Computations have been carried out for different Hartmann numbers and wall conductivity at various time levels. It is found that if the wall conductivity increases, the flux through a section decreases. The same is the effect of increasing the Hartmann number. It is also observed that the steady state is approached at a faster rate for larger Hartmann numbers or larger wall conductivity. Selected graphs are given showing the behaviour of velocity, induced magnetic field and flux across a section.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 349-357 
    ISSN: 0271-2091
    Keywords: Finite Elements ; Non-steady Flow ; Fractional Step Method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The algorithm for solving the three-dimensional non-steady Navier-Stokes equations by the explicit forward Euler method is shown and the Galerkin finite element formulation is presented. As a numerical example, an entrace flow in a square duct is illustrated.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 499-509 
    ISSN: 0271-2091
    Keywords: Critical Flow Rate ; Finite Elements ; Free Surface ; Weir ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Computing critical flows in hydraulics involves three problems in one: the internal flow problem, the location of the free surface and the determination of the critical flow rate. The subject can involve such difficulties as non-uniqueness, non-existence, ill-conditioning and catastrophes.This paper discusses the difficulties relating to computing critical flows over weirs. A new rapidly convergent method of determining the critical flow rate is presented and various results are shown using it with finite element discretization and with a new streamline shifting method. Numerical results are in good agreement with published data, both numerical and experimental.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 749-764 
    ISSN: 0271-2091
    Keywords: Hyperbolic Conservation Equation ; Finite Elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Several explicit schemes are presented for triangular P0 and P1 finite elements. A first-order accurate upwind P0 scheme is compared to a FLIC type method. A second-order accurate Richtmyer scheme is constructed. Applications are given for the Euler system of conservation laws in the 2-dimensional case.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 813-832 
    ISSN: 0271-2091
    Keywords: Waves ; Diffraction ; Refraction ; Finite Elements ; Infinite Elements ; Breakwater ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite and infinite element model is derived to predict wave patterns around a semi-infinite breakwater in water of constant depth. Both circular and square meshes of elements are used. The wave theory used is that of Berkhoff. The appropriate boundary conditions for finite and infinite boundaries are described. The singularity in the velocity at the breakwater tip is modelled effectively using the technique of Henshell and Shaw originally developed in elasticity. The results agree well with the analytical solution. In addition the problem of waves incident upon a semi-infinite breakwater and parabolic shoal, where both diffraction and refraction are present, is solved. There is no analytical solution for this case. The combination of finite and infinite elements is found to be an effective and accurate technique for such problems.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 1065-1081 
    ISSN: 0271-2091
    Keywords: Viscoelastic Fluids ; Polymer Flow ; Finite Elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The proficiency of available mixed methods for solving the flow of a Maxwell fluid is evaluated through their application to the same problem. The reasons for the usual degeneracy of the numerical results beyond some level of elasticity are investigated. The best-performing technique is applied to the flow through an abrupt 4/1 contraction.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 1 (1981), S. 101-115 
    ISSN: 0271-2091
    Keywords: Subsidence ; Finite Elements ; Reservoirs ; Hydrocarbons ; Pore Pressure ; Consolidation ; Aquifer ; Waterdrive ; Permeability ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A fully coupled consolidation model has been developed for the simulation of the surface subsidence above gas reservoirs. The model is based on the Biot Theory and the material balance equation for hydrocarbon reservoirs. The model is extremely versatile and can handle such complex situations as vertical cross-sections where several gas reservoirs and aquifers are exploited at different levels. Computer runs were used to generate several reservoir formation profiles and the surface subsidence bowl for a variety of conditions. These results indicate the importance of various parameters which are disregarded in proelasticity models.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 1 (1981), S. 117-127 
    ISSN: 0271-2091
    Keywords: Finite Elements ; Conservation Forms ; Inviscid Boussinesq Flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The finite element discretization of the inviscid Boussinesq equations is studied with particular emphasis on the conservation properties of the discrete equations. Methods which conserve the total energy, total temperature and total temperature squared, or two of the above mentioned quantities, are presented. The effect of time discretization, and other numerical errors, on the conservation laws is considered. Finally, the theory is supported and illustrated by several numerical experiments.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 2 (1982), S. 209-219 
    ISSN: 0271-2091
    Keywords: First Order Equation ; Hyperbolic Conservation Equation ; Discontinuous Solutions ; Least Squares ; Finite Differences ; Finite Elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Least square methods have been frequently used to solve fluid mechanics problems. Their specific usefulness is emphasized for the solution of a first-order conservation equation. On the one hand, the least square formulation embeds the first-order problem into equivalent second-order problem, better adapted to discretization techniques due to symmetry and positive-definiteness of the associated matrix. On the other hand, the introduction of a least square functional is convenient for finite element applications.This approach is applied to the model problem of the conservation of mass (the unknown is the density ρ) in a nozzle with a specified velocity field (u, v), possibly including jumps along lines simulating shock waves. This represent a preliminary study towards the solution of the steady Euler equations.A finite difference and a finite element method are presented. The choice of the finite difference scheme and of a continuous finite element representation for the groups of variables (ρu, ρv) is discussed in terms of conservation of mass flux. Results obtained with both methods are compared in two numerical tests with the same mesh system.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...