ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (503)
  • Amino Acid Sequence  (343)
  • Transcription, Genetic  (151)
  • American Association for the Advancement of Science (AAAS)  (882)
  • Copernicus
  • 1985-1989  (882)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (882)
  • Copernicus
  • Springer  (28)
Years
Year
  • 1
    Publication Date: 1988-08-26
    Description: In situ hybridization was used to assess total amyloid protein precursor (APP) messenger RNA and the subset of APP mRNA containing the Kunitz protease inhibitor (KPI) insert in 11 Alzheimer's disease (AD) and 7 control brains. In AD, a significant twofold increase was observed in total APP mRNA in nucleus basalis and locus ceruleus neurons but not in hippocampal subicular neurons, neurons of the basis pontis, or occipital cortical neurons. The increase in total APP mRNA in locus ceruleus and nucleus basalis neurons was due exclusively to an increase in APP mRNA lacking the KPI domain. These findings suggest that increased production of APP lacking the KPI domain in nucleus basalis and locus ceruleus neurons may play an important role in the deposition of cerebral amyloid that occurs in AD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmert, M R -- Golde, T E -- Cohen, M L -- Kovacs, D M -- Tanzi, R E -- Gusella, J F -- Usiak, M F -- Younkin, L H -- Younkin, S G -- 5T32GM07250/GM/NIGMS NIH HHS/ -- AG06656/AG/NIA NIH HHS/ -- MH43444/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 26;241(4869):1080-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2457949" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics ; Amyloid/*genetics ; Bacteriophage lambda/genetics ; Brain/metabolism ; Cerebral Cortex/metabolism ; *Gene Expression Regulation ; Humans ; Locus Coeruleus/metabolism ; Neurons/metabolism ; Nucleic Acid Hybridization ; Operator Regions, Genetic ; Plasmids ; Protein Precursors/*genetics ; RNA/genetics ; RNA, Complementary ; RNA, Messenger/*genetics/metabolism ; Repressor Proteins/metabolism ; Transcription, Genetic ; Trypsin Inhibitors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-07-15
    Description: Odorant-binding protein (OBP) is found in nasal epithelium, and it selectively binds odorants. Three complementary DNAs encoding rat odorant-binding protein have now been cloned and sequenced. One clone contains an open reading frame predicted to encode an 18,091-dalton protein. RNA blot analysis confirms the localization of OBP messenger RNA in the nasal epithelium. This OBP has 33 percent amino acid identity to alpha 2-microglobulin, a secreted plasma protein. Other members of an alpha 2-microglobulin superfamily bind and transport hydrophobic ligands. Thus, OBP probably binds and carries odorants within the nasal epithelium to putative olfactory receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pevsner, J -- Reed, R R -- Feinstein, P G -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- GM-07626/GM/NIGMS NIH HHS/ -- P01 CA16519-13/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 15;241(4863):336-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/*genetics ; Cloning, Molecular ; Ligands ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Nasal Mucosa/*physiology ; Rats ; *Receptors, Odorant ; Smell/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: The alpha helix, first proposed by Pauling and co-workers, is a hallmark of protein structure, and much effort has been directed toward understanding which sequences can form helices. The helix hypothesis, introduced here, provides a tentative answer to this question. The hypothesis states that a necessary condition for helix formation is the presence of residues flanking the helix termini whose side chains can form hydrogen bonds with the initial four-helix greater than N-H groups and final four-helix greater than C-O groups; these eight groups would otherwise lack intrahelical partners. This simple hypothesis implies the existence of a stereochemical code in which certain sequences have the hydrogen-bonding capacity to function as helix boundaries and thereby enable the helix to form autonomously. The three-dimensional structure of a protein is a consequence of the genetic code, but the rules relating sequence to structure are still unknown. The ensuing analysis supports the idea that a stereochemical code for the alpha helix resides in its boundary residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Presta, L G -- Rose, G D -- AG 06084/AG/NIA NIH HHS/ -- GM 29458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1632-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Hershey Medical Center, Pennsylvania State University, Hershey 17033.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2837824" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carboxypeptidases ; Carboxypeptidases A ; Cytochrome c Group ; Flavodoxin ; Humans ; Hydrogen Bonding ; Models, Chemical ; Molecular Sequence Data ; Muramidase ; Myoglobin ; Pancreatic Polypeptide ; Parvalbumins ; Plastocyanin ; *Protein Conformation ; Ribonucleases ; Scorpion Venoms ; Tetrahydrofolate Dehydrogenase ; Triose-Phosphate Isomerase ; Trypsin Inhibitors ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-19
    Description: The question of how the primary amino acid sequence of a protein determines its three-dimensional structure is still unanswered. One approach to this problem involves the de novo design of model peptides and proteins that should adopt desired three-dimensional structures. A systematic approach was aimed at the design of a four-helix bundle protein. The gene encoding the designed protein was synthesized and the protein was expressed in Escherichia coli and purified to homogeneity. The protein was shown to be monomeric, highly helical, and very stable to denaturation by guanidine hydrochloride (GuHCl). Thus a globular protein has been designed that is capable of adopting a stable, folded structure in aqueous solution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regan, L -- DeGrado, W F -- New York, N.Y. -- Science. 1988 Aug 19;241(4868):976-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research & Development Department, Wilmington, DE 19898.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3043666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemical Phenomena ; Chemistry ; Chromatography, Gel ; Escherichia coli/genetics ; Molecular Sequence Data ; Plasmids ; *Protein Conformation ; *Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: A definition based on alpha-carbon positions and a sample of 215 alpha helices from 45 different globular protein structures were used to tabulate amino acid preferences for 16 individual positions relative to the helix ends. The interface residue, which is half in and half out of the helix, is called the N-cap or C-cap, whichever is appropriate. The results confirm earlier observations, such as asymmetrical charge distributions in the first and last helical turn, but several new, sharp preferences are found as well. The most striking of these are a 3.5:1 preference for Asn at the N-cap position, and a preference of 2.6:1 for Pro at N-cap + 1. The C-cap position is overwhelmingly dominated by Gly, which ends 34 percent of the helices. Hydrophobic residues peak at positions N-cap + 4 and C-cap - 4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richardson, J S -- Richardson, D C -- GM-15000/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1648-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3381086" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Amino Acids ; Asparagine ; Hydrogen Bonding ; Proline ; *Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-02-19
    Description: Point mutations were introduced into the overlapping trans-regulatory genes (tat-III and trs) of human immunodeficiency virus type 1 (HIV-1), and the mutants were evaluated for virus expression. The results showed that tat-III has a positive transacting role and is required for transcriptional activation. A chain terminating mutation early in the trs gene resulted in an increase in transcription of viral messenger RNA as measured by nuclear transcription experiments, but only one major species of viral messenger RNA (1.8 kilobases) was detected, and little or no viral structural proteins were made. Thus, the trs gene product is essential for expression of virus structural proteins but, at the same time, may have a negative trans-regulatory role in transcription. Cotransfection of the point mutant proviruses defective in tat or trs with each other or with a complementary DNA clone containing tat and trs sequences restored the normal transcription pattern and subsequent virus production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sadaie, M R -- Benter, T -- Wong-Staal, F -- New York, N.Y. -- Science. 1988 Feb 19;239(4842):910-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3277284" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics ; Acquired Immunodeficiency Syndrome/immunology ; Animals ; Cell Line ; Chloramphenicol O-Acetyltransferase ; Codon ; DNA/genetics ; *Genes, Regulator ; *Genes, Viral ; HIV/*genetics ; Humans ; Immunosorbent Techniques ; *Mutation ; Plasmids ; RNA, Messenger/genetics ; RNA, Viral/genetics ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-02-05
    Description: Identification of genes that function to protect cells from radiation damage is an essential step in understanding the molecular mechanisms by which mammalian cells cope with ionizing radiation. The intrinsic radiation resistance (D0) of NIH 3T3 cells was markedly and significantly increased by transformation with ras oncogenes activated by missense mutations. This radiobiologic activity appeared to be a specific consequence of the ras mutations rather than of transformation, since revertant cells that contained functional ras genes (but were no longer phenotypically transformed) retained their increased D0's.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sklar, M D -- CA 41166/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 5;239(4840):645-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3277276" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival/*radiation effects ; Cell Transformation, Neoplastic ; Cells, Cultured ; Clone Cells ; Dose-Response Relationship, Radiation ; *Genes, ras ; Mice ; Mice, Inbred Strains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1988-04-29
    Description: Spontaneous diabetes mellitus was blocked in nonobese diabetic mice by treatment with a monoclonal antibody against the L3T4 determinant present on the surface of T-helper lymphocytes. Sustained treatment with the monoclonal antibody led to cessation of the lymphocytic infiltration associated with the destruction of the insulin-producing beta cells. Moreover, the mice remained normoglycemic after the antibody therapy was stopped. These studies indicate that immunotherapy with monoclonal antibodies to the lymphocyte subset may not only halt the progression of diabetes, but may lead to long-term reversal of the disease after therapy has ended.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shizuru, J A -- Taylor-Edwards, C -- Banks, B A -- Gregory, A K -- Fathman, C G -- AI11313/AI/NIAID NIH HHS/ -- DK39959/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 29;240(4852):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Stanford University Medical Center, CA 94305-5111.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2966437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*therapeutic use ; Antigens, Differentiation, T-Lymphocyte/*immunology ; Cyclosporins/therapeutic use ; Diabetes Mellitus, Experimental/pathology/*therapy ; Female ; *Immunotherapy ; Islets of Langerhans/pathology ; Lymphocytes/pathology ; Mice ; Mice, Inbred ICR ; T-Lymphocytes, Helper-Inducer/*immunology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1988-08-05
    Description: Primary mouse oocytes contain untranslated stable messenger RNA for tissue plasminogen activator (t-PA). During meiotic maturation, this maternal mRNA undergoes a 3'-polyadenylation, is translated, and is degraded. Injections of maturing oocytes with different antisense RNA's complementary to both coding and noncoding portions of t-PA mRNA all selectively blocked t-PA synthesis. RNA blot analysis of t-PA mRNA in injected, matured oocytes suggested a cleavage of the RNA.RNA hybrid region, yielding a stable 5' portion, and an unstable 3' portion. In primary oocytes, the 3' noncoding region was susceptible to cleavage, while the other portions of the mRNA were blocked from hybrid formation until maturation occurred. Injection of antisense RNA complementary to 103 nucleotides of its extreme 3' untranslated region was sufficient to prevent the polyadenylation, translational activation, and destabilization of t-PA mRNA. These results demonstrate a critical role for the 3' noncoding region of a dormant mRNA in its translational recruitment during meiotic maturation of mouse oocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strickland, S -- Huarte, J -- Belin, D -- Vassalli, A -- Rickles, R J -- Vassalli, J D -- HD-17875/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):680-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Histology and Embryology, University of Geneva Medical School, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2456615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Mice ; Nucleic Acid Hybridization ; Oocytes/*metabolism ; Poly A/metabolism ; Protein Biosynthesis/drug effects ; RNA/*pharmacology ; RNA, Antisense ; RNA, Messenger/*antagonists & inhibitors/metabolism ; Tissue Plasminogen Activator/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-04
    Description: As a way of studying nucleosome assembly and maintenance in Saccharomyces cerevisiae, mutants bearing deletions or duplications of the genes encoding histones H2A and H2B were analyzed. Previous genetic analysis had shown that only one of these mutants exhibited dramatic and pleiotropic phenotypes. This mutant was also the only one that contained disrupted chromatin, suggesting that the original phenotypes were attributable to alterations in chromosome structure. The chromatin disruption in the mutant, however, did not extend over the entire genome, but rather was localized to specific regions. Thus, while the arrangement of nucleosomes over the HIS4 and GAL1 genes, the telomeres, and the long terminal repeats (delta sequences) of Ty retrotransposons appeared essentially normal, nucleosomes over the CYH2 and UBI4 genes and the centromere of chromosome III were dramatically disrupted. The observation that the mutant exhibited localized chromatin disruptions implies that the assembly or maintenance of nucleosomes differs over different parts of the yeast genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norris, D -- Dunn, B -- Osley, M A -- GM40118/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 4;242(4879):759-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2847314" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/ultrastructure ; Chromatin/physiology/*ultrastructure ; Chromosome Deletion ; DNA Transposable Elements ; Galactose ; Gene Expression Regulation ; Genes, Fungal ; Histidine ; Histones/*genetics ; Mutation ; Phenotype ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae/genetics/*ultrastructure ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...