ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (258)
  • American Association for the Advancement of Science (AAAS)  (258)
  • Copernicus
  • Periodicals Archive Online (PAO)
  • 1985-1989  (258)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (258)
  • Copernicus
  • Periodicals Archive Online (PAO)
Years
Year
  • 1
    Publication Date: 1988-07-01
    Description: Expression of the interleukin-2 receptor (IL-2R alpha) gene is activated by the transcriptional activator protein, Tax (previously referred to as the tat gene product), encoded by the human T-cell leukemia virus (HTLV-I). Multiple protein binding sites for specific DNA-protein interactions were identified over the upstream IL-2R alpha transcriptional regulatory sequences. However, only one region, which includes the sequence motif GGGGAATCTCCC, was required for activation by both the tax gene product and mitogenic stimulation. Remarkably, this sequence also bound the nuclear factor NF kappa B, which is important for induction of kappa-immunoglobulin gene expression. A model is presented whereby regulation of cellular gene expression by the HTLV-I tax gene product occurs via an indirect mechanism that may involve a post-translational modification of preexistent cellular transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruben, S -- Poteat, H -- Tan, T H -- Kawakami, K -- Roeder, R -- Haseltine, W -- Rosen, C A -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2838905" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cell Line ; DNA/genetics/metabolism ; Deltaretrovirus/*genetics ; Gene Expression Regulation/*drug effects ; Gene Products, tat ; Immunoglobulin kappa-Chains/genetics ; Mutation ; Plasmids ; Promoter Regions, Genetic ; Receptors, Immunologic/*genetics ; Receptors, Interleukin-2 ; Regulatory Sequences, Nucleic Acid ; Transcription Factors/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-02-19
    Description: Point mutations were introduced into the overlapping trans-regulatory genes (tat-III and trs) of human immunodeficiency virus type 1 (HIV-1), and the mutants were evaluated for virus expression. The results showed that tat-III has a positive transacting role and is required for transcriptional activation. A chain terminating mutation early in the trs gene resulted in an increase in transcription of viral messenger RNA as measured by nuclear transcription experiments, but only one major species of viral messenger RNA (1.8 kilobases) was detected, and little or no viral structural proteins were made. Thus, the trs gene product is essential for expression of virus structural proteins but, at the same time, may have a negative trans-regulatory role in transcription. Cotransfection of the point mutant proviruses defective in tat or trs with each other or with a complementary DNA clone containing tat and trs sequences restored the normal transcription pattern and subsequent virus production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sadaie, M R -- Benter, T -- Wong-Staal, F -- New York, N.Y. -- Science. 1988 Feb 19;239(4842):910-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3277284" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics ; Acquired Immunodeficiency Syndrome/immunology ; Animals ; Cell Line ; Chloramphenicol O-Acetyltransferase ; Codon ; DNA/genetics ; *Genes, Regulator ; *Genes, Viral ; HIV/*genetics ; Humans ; Immunosorbent Techniques ; *Mutation ; Plasmids ; RNA, Messenger/genetics ; RNA, Viral/genetics ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-05-13
    Description: Mitotic spindle disassembly requires major structural alterations in the associated cytoskeletal proteins and mitosis is known to be associated with Ca2+-sequestering phenomena and calcium transients. To examine the possible involvement of a ubiquitous Ca2+-activated protease, calpain II, in the mitotic process, synchronized PtK1 cells were monitored by immunofluorescence for the relocation of calpain II. The plasma membrane was the predominant location of calpain II in interphase. However, as mitosis progressed, calpain II relocated to (i) an association with mitotic chromosomes, (ii) a perinuclear location in anaphase, and (iii) a mid-body location in telophase. Microinjection of calpain II near the nucleus of a PtK1 cell promoted the onset of metaphase. Injection of calpain II at late metaphase promoted a precocious disassembly of the mitotic spindle and the onset of anaphase. These data suggest that calpain II is involved in mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schollmeyer, J E -- New York, N.Y. -- Science. 1988 May 13;240(4854):911-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture, Roman L. Hruska Meat Animal Research Center, Clay Center, NE 68933.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2834825" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase/drug effects ; Animals ; Calcium/pharmacology ; Calcium-Binding Proteins/pharmacology ; Calpain/antagonists & inhibitors/pharmacology/*physiology ; Cell Line ; Cell Membrane/enzymology ; Cell Nucleus/enzymology ; Chromosomes/metabolism ; Enzyme Activation ; Fluorescent Antibody Technique ; Fluorescent Dyes ; Interphase ; Metaphase/drug effects ; *Mitosis ; Muscles/enzymology ; Rhodamines ; Spindle Apparatus/drug effects ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-26
    Description: Retroviruses contain two copies of the plus stranded viral RNA genome. As a means of determining whether both of these RNA's are used in the reverse transcription reaction, cells were infected with heterozygous virus particles that varied in nucleotide sequence at two separate locations at the RNA termini. The DNA proviruses formed from a single cycle of reverse transcription were then examined. Of the 12 proviruses that were characterized, all exhibited long terminal repeats (LTR's) that would be expected to arise only if both RNA templates were used for the generation of minus strand DNA. In contrast, only a single minus strand DNA appeared to be used as template for the plus strand DNA in the generation of fully double-stranded viral DNA. These results indicate that the first strand transfer step in reverse transcription is an intermolecular event while that of the second transfer is intramolecular. Thus, retroviruses contain two functionally active RNA's, and both may be required for the generation of a single linear DNA molecule. Formation of heterozygotes during retrovirus infection would be expected to result in the efficient generation of LTR recombinants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Panganiban, A T -- Fiore, D -- New York, N.Y. -- Science. 1988 Aug 26;241(4869):1064-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2457948" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA Restriction Enzymes ; DNA, Viral/*genetics/metabolism ; Deoxyribonuclease HindIII ; Genes, Viral ; Nucleic Acid Hybridization ; Polymorphism, Restriction Fragment Length ; RNA, Viral/*genetics/metabolism ; RNA-Directed DNA Polymerase/*metabolism ; Repetitive Sequences, Nucleic Acid ; Retroviridae/*genetics ; Templates, Genetic ; *Transcription, Genetic ; Transfection ; Virion/genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-06-24
    Description: Inclusion of normal rabbit serum (NRS) in culture medium after interspecific fusion of hyperimmunized rabbit spleen cells with murine SP2/0 myeloma cells produced 271 rabbit-mouse hybridomas (RMHs) that secreted rabbit immunoglobulin against group A Streptococcus (GAS). Continued use of NRS-supplemented medium during cloning yielded stabilized monoclonal RMH lines that have secreted GAS-specific rabbit antibody at concentrations similar to murine hybridomas (3 to 8 micrograms per 10(6) cells per 24 hours), for over 4 months of culture in vitro. The use of NRS as a medium supplement during initial culture, cloning, and stabilization of RMHs enables production of considerably more specific rabbit monoclonal antibody (mAb)-secreting RMHs than have previously been reported.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raybould, T J -- Takahashi, M -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1788-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Allelix Inc., Diagnostics Division, Mississauga, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3289119" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Bacterial/*immunology ; Antibodies, Monoclonal/*immunology ; Antibody Specificity ; Cell Fusion ; Cell Line ; Hybridomas/*immunology ; Karyotyping ; Mice/*immunology ; Rabbits/*immunology ; Streptococcus pyogenes/immunology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-02-12
    Description: Mesoderm induction in the amphibian embryo can be studied by exposing animal region explants (destined to become ectoderm) to appropriate stimuli and assaying the appearance of mesodermal products like alpha-actin messenger RNA. Transforming growth factor beta 2 (TGF-beta 2), but not TGF-beta 1, was active in alpha-actin induction, while addition of fibroblast growth factor had a small synergistic effect. Medium conditioned by Xenopus XTC cells (XTC-CM), known to have powerful mesoderm-inducing activity, was shown to contain TGF-beta-like activity as measured by a radioreceptor binding assay, colony formation in NRK cells, and growth inhibition in CCL64 cells. The activity of XTC-CM in mesoderm induction and in growth inhibition of CCL64 cells was inhibited partially by antibodies to TGF-beta 2 but not by antibodies to TGF-beta 1. Thus, a TGF-beta 2-like molecule may be involved in mesoderm induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosa, F -- Roberts, A B -- Danielpour, D -- Dart, L L -- Sporn, M B -- Dawid, I B -- New York, N.Y. -- Science. 1988 Feb 12;239(4841 Pt 1):783-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3422517" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics ; Amphibians/*embryology ; Animals ; Cell Division/drug effects ; Cell Line ; Embryo, Nonmammalian/physiology ; Growth Substances/*physiology ; Mesoderm/*physiology ; Peptides/pharmacology/*physiology ; RNA, Messenger/genetics ; Transforming Growth Factors ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-11-25
    Description: The gp120 envelope glycoprotein of the human immunodeficiency virus (HIV), which is expressed on the surface of many HIV-infected cells, binds to the cell surface molecule CD4. Soluble derivatives of recombinant CD4 (rCD4) that bind gp120 with high affinity are attractive vehicles for targeting a cytotoxic reagent to HIV-infected cells. Soluble rCD4 was conjugated to the active subunit of the toxin ricin. This conjugate killed HIV-infected H9 cells but was 1/1000 as toxic to uninfected H9 cells (which do not express gp120) and was not toxic to Daudi cells (which express major histocompatibility class II antigens, the putative natural ligand for cell surface CD4). Specific killing of infected cells can be blocked by rgp120, rCD4, or a monoclonal antibody to the gp120 binding site on CD4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Till, M A -- Ghetie, V -- Gregory, T -- Patzer, E J -- Porter, J P -- Uhr, J W -- Capon, D J -- Vitetta, E S -- CA-09082/CA/NCI NIH HHS/ -- CA-28149/CA/NCI NIH HHS/ -- CA-41081/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1166-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2847316" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation, T-Lymphocyte/*administration & dosage/immunology ; Binding Sites ; Cell Line ; Cell Survival ; Electrophoresis, Polyacrylamide Gel ; HIV/*immunology ; HIV Envelope Protein gp120 ; Histocompatibility Antigens Class II/immunology ; Humans ; Recombinant Proteins/administration & dosage/immunology ; Retroviridae Proteins/*immunology/metabolism ; Ricin/metabolism/*pharmacology ; T-Lymphocytes/immunology/microbiology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-10-21
    Description: The translational diffusion of wild-type and underglycosylated molecules of a membrane-integral glycoprotein the Ld class I major histocompatibility complex (MHC) antigen has been measured. The Ld mutant molecules, which lack one or more glycosylation sites, had larger translational diffusion coefficients, D, than did wild-type Ld molecules glycosylated at three sites. The increase in D is linear with loss of glycosylation. The highest value of D approaches that for translational diffusion of molecules constrained only by viscosity of the membrane lipid bilayer. These results indicate that the external portions of cell surface glycoproteins interact significantly with other nearby molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wier, M -- Edidin, M -- AI-14584/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Oct 21;242(4877):412-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The Johns Hopkins University, Baltimore, MD 21218.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3175663" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Membrane/immunology ; Diffusion ; Glycosylation ; *Histocompatibility Antigens Class I/genetics ; Humans ; Lipid Bilayers ; Major Histocompatibility Complex ; Membrane Glycoproteins/genetics/*metabolism ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-05-05
    Description: Tumor promoters may bring about events that lead to neoplastic transformation by inducing specific promotion-relevant effector genes. Functional activation of the transacting transcription factor AP-1 by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) may play an essential role in this process. Clonal genetic variants of mouse epidermal JB6 cells that are genetically susceptible (P+) or resistant (P-) to promotion of transformation by TPA were transfected with 3XTRE-CAT, a construct that has AP-1 cis-enhancer sequences attached to a reporter gene encoding chloramphenicol acetyltransferase (CAT). Transfected JB6 P+, but not P- variants, showed TPA-inducible CAT synthesis. Epidermal growth factor, another transformation promoter in JB6 cells, also caused P+ specific induction of CAT gene expression. These results demonstrate an association between induced AP-1 function and sensitivity to promotion of neoplastic transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernstein, L R -- Colburn, N H -- New York, N.Y. -- Science. 1989 May 5;244(4904):566-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johns Hopkins University, Department of Biology, Baltimore, MD 21218.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2541502" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cell Transformation, Neoplastic ; Chloramphenicol O-Acetyltransferase/genetics ; Cloning, Molecular ; DNA-Binding Proteins/genetics/*physiology ; Epidermal Growth Factor/pharmacology ; Epidermis ; Gene Expression Regulation ; Genetic Variation ; Kinetics ; Mice ; Nucleic Acid Hybridization ; Plasmids ; Promoter Regions, Genetic ; Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-jun ; Simplexvirus/genetics ; Tetradecanoylphorbol Acetate/*pharmacology ; Transcription Factors/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-10
    Description: This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, J T -- Sladek, J R Jr -- P01-NS24032/NS/NINDS NIH HHS/ -- P01-NS25778/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 10;246(4931):775-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, NY 14642.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683082" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Congenital Abnormalities/diagnosis ; Female ; *Fetal Diseases ; *Fetal Research ; *Fetus/cytology/surgery ; Genetic Diseases, Inborn ; Humans ; Nontherapeutic Human Experimentation ; Pregnancy ; Prenatal Diagnosis ; *Research ; *Risk Assessment ; Therapeutic Human Experimentation ; Vaccines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...