ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (82)
  • Fluid Mechanics and Heat Transfer
  • General Chemistry
  • Humans
  • Inorganic Chemistry
  • Life and Medical Sciences
  • 1985-1989  (8)
  • 1955-1959  (74)
Collection
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: The ability to provide cooling at cryogenic temperatures is a critical enabling technology for many of the next generation of space-based observatories and instruments. This report discusses the state of cryogenics technology and identifies and categorizes the various methods of cooling.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The Next Generation Space Telescope; 285-295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: In this paper an investigation of the velocity fluctuations in the free stream above an incompressible turbulent boundary layer developing at constant pressure is described. It is assumed that the fluctuations receive contributions from three statistically independent sources: (1) one-dimensional unsteadiness, (2) free-stream turbulence, and (3) the irrotational motion induced by the turbulent boundary layer. Measurements were made in a wind tunnel with a root-mean-square level of the axial velocity fluctuations of about 0.2%. All three velocity components were measured using an X-wire probe. The unsteadiness was determined from the spanwise covariance of the axial velocity fluctuations, measured using two single-wire probes. The results show that it is possible to separate the contributions to the rms level of the velocity fluctuations without resorting to the dubious technique of high-pass filtering. This separation could be extended to the spectral densities of the contributions if measurements of sufficient accuracy were available.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Physics of Fluids; Volume 31; No. 10; 2834-2840
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: The Reynolds-averaged Navier-Stokes equations are solved numerically for supersonic flow over a blunt fin mounted on a flat plate. The fin shock causes the boundary layer to separate. which results in a complicated, three-dimensional shock-wave and boundary-layer interaction. The computed results are in good agreement with the mean static pressure measured on the fin and the flat plate. The main features, such as peak pressure on the fin leading edge and a double peak on the plate. are predicted well. The role of the horseshoe vortex is discussed. This vortex leads to the development of high-speed flow and, hence, low-pressure regions on the fin and the plate. Different thicknesses of the incoming boundary layer have been studied. Varying the thicknesses by an order of magnitude shows that the size of the horseshoe vortex and, therefore, the spatial extent of the interaction are dominated by inviscid flow and only weakly dependent on the Reynolds number. Colored graphics are used to show details of the interaction flow field.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Journal of Fluid Mechanics; Volume 154; 163-185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: A conservative zonal-boundary condition that was used with explicit integration schemes is extended to implicit, upwind, relaxation schemes; in particular to the Osher scheme, The rate of convergence was found to increase considerably with the use of the implicit, relaxation-zonal-scheme when compared to the explicit scheme. The relaxation-zonal scheme has also been used in a time-accurate mode. Results demonstrating the time accuracy of the scheme and the feasibility of performing calculations in cases where some parts of the given system move relative to others (e.g., rotor-stator configurations) are presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Journal of Computational Physics (ISSN 0021-9991); Volume 66; 99-131
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Two kinds of length scales are used in turbulent flows; 'functional length scales' such as mixing length, dissipation length L(sub epsilon), etc., and 'flow-field length scales' derived from cross correlations of velocity, pressure, etc. in the flow. Some connection between these scales are derived here. We first consider the cross correlation R(sub vv)(y,y(sub 1)) of the normal components u at two heights y, y(sub 1) above a rigid surface, normalized by the velocity y(sub 1) (greater than y). For shear-free boundary layers it is found theoretically, and in field and numerical experiments that R(sub vv) approximately equals y/y(sub 1). For shear layers it is also found that R(sub vv) approximately equals f(y/y(sub 1)) less than or equal to y,y(sub 1). This function f differs slightly between low Reynolds number numerical simulations and field experiments. The lateral structure defined by R(sub vv)(y,r(sub 3); y(sub 1),0) is also self similar and shows that the eddies centered at about y(sub 1) appear to have constant lateral width a(sub 3) above and below y(sub 1), where a(sub 3, sup +) approximately equals 7+1/(1.4dU(sup +)/dy(sup +)), when normalized on u(sub *) and v, where U is the mean velocity. Results for L(sub epsilon, sup -1) from direct numerical simulation are found to compare well with the formula L(sub epsilon, sup -1) = A(sub B)/y + A(sub S)dU/dy/v, for unidirectional and reversing turbulent boundary layers and channel flow, except near where dU/dy approximately equals 0. The conclusion is that the large-scale eddy structure and length scales in these flows are determined by a combination of shear and blocking, and that the vertical component of turbulence has a self-similar structure in both kinds of boundary layer.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-111344 , NAS 1.15:111344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Equilibrium, radiating viscous shock layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well with two engineering correlations, except at high altitudes corresponding to low densities. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70% are observed between measured data and the viscous calculations. Because of boundary-layer absorption, viscous effects reduce the intensity to the wall by as much as 30% compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict an enhancement to the radiation owing to the chemical relaxation. Stagnation point solutions are also presented for future aeroassisted orbital transfer vehicle geometries with nose radii of 0.3-15 m.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: AIAA Paper 85-1064 , Progress in Astronautics and Aeronautics: Thermophysical Aspects of Re-Entry Flows; 103; 514-540|Thermophysics; Jun 19, 1985 - Jun 21, 1985; Williamsburg, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-3-17-59W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TR-R-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: An experimental investigation of the mixing of two coaxial gas streams was conducted over a range of subsonic jet Mach numbers and temperatures. Three configurations were investigated. One had no innerbody in the primary or inner pipe and was designed to give flat velocity profiles at the exit of the primary pipe. The other two configurations had innerbodies in the primary pipe. These were designed to give velocity profiles similar to those existing at the inlet of propulsive systems such as afterburners. Curves of axial velocity and temperature profiles across the radius are presented at various axial stations. For the two configurations with the innerbody, data are shown at stations out to approximately 8 primary-pipe diameters from the exit of the primary pipe. For the flat-velocity-profile configuration, data are shown at distances extending downstream at 22 primary-pipe diameters from the exit of the primary pipe.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-21-58E , L-104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: Techniques which have been used for finishing and quantitatively specifying surface roughness on boundary-layer-transition models are reviewed. The appearance of a surface as far as roughness is concerned can be misleading when viewed either by the eye or with the aid of a microscope. The multiple-beam interferometer and the wire shadow method provide the best simple means of obtaining quantitative measurements.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-1-19-59A , A-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...