ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: An innovative inlet total-pressure distortion measurement rake has been designed and developed for the F/A-18 A/B/C/D aircraft inlet. The design was conceived by NASA and General Electric Aircraft Engines (Evendale, Ohio). This rake has been flight qualified and flown in the F-18 High Alpha Research Vehicle (HARV) at NASA Dryden Flight Research Center. The rake's eight-legged, one-piece wagon wheel design was developed at a reduced cost and offers reduced installation time compared with traditional designs. The rake features 40 dual measurement ports for both low- and high-frequency pressure measurements with the high-frequency transducer mounted at the port. The high-frequency transducer offers direct absolute pressure measurements from low frequency to the highest frequency of interest, thereby allowing the rake to be used during highly dynamic aircraft maneuvers. Outstanding structural characteristics are inherent to the design through its construction and use of lightweight materials.
    Keywords: AERODYNAMICS
    Type: Fourth High Alpha Conference, Volume 2 17 p(SEE N95-14239 03-02); Fourth High Alpha Co
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Wall Mach number distributions were determined over a range of test-section free-stream Mach numbers from 0.2 to 0.92. The test section was slotted and had a nominal porosity of 11 percent. Reentry flaps located at the test-section exit were varied from 0 (fully closed) to 9 (fully open) degrees. Flow was bled through the test-section slots by means of a plenum evacuation system (PES) and varied from 0 to 3 percent of tunnel flow. Variations in reentry flap angle or PES flow rate had little or no effect on the Mach number distributions in the first 70 percent of the test section. However, in the aft region of the test section, flap angle and PES flow rate had a major impact on the Mach number distributions. Optimum PES flow rates were nominally 2 to 2.5 percent wtih the flaps fully closed and less than 1 percent when the flaps were fully open. The standard deviation of the test-section wall Mach numbers at the optimum PES flow rates was 0.003 or less.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TP-2666 , E-3145 , NAS 1.60:2666
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TP-2702 , E-3267 , NAS 1.60:2702
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted in the high speed leg of the 0.1 scale model of the proposed Altitude Wind Tunnel to evaluate flow conditioner configurations in the settling chamber and their effect on the flow through the short contraction section. The lowest longitudinal turbulence intensity measured at the contraction-section entrance, 1.2%, was achieved with a honeycomb plus three fine-mesh screens. Turbulence intensity in the test section was estimated to be between 0.1 and 0.2% with the honeycomb plus three fine mesh screens in the settling chamber. Adding screens, however, adversely affected the total pressure profile, causing a small defect near the centerline at the contraction section entrance. No significant boundary layer separation was evident in the short contraction section.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TP-2692 , E-3142 , NAS 1.60:2692
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An experimental study of a two-dimensional supersonic inlet with a short compact subsonic diffuser, length to exit diameter (dl/d) ratio of 1.25, was conducted to investigate the impact of the short diffuser on inlet performance at low speeds and to assess the diffuser subsonic performance for a simulated diffuser flow corresponding to high-speed inlet conditions near the design flight Mach number of 2.2. For the low-speed testing, a drooped lip was employed to improve the inlet performance at a high angle of attack. For the simulated high-speed testing, air was blown through slots or discrete nozzles as an active boundary-layer control. The results from the low-speed performance test were compared with the results from a previous test program on the same inlet with a long subsonic diffuser (dl/d = 4.5). The comparison indicates that inlet recovery was not affected by the use of the short diffuser for either the baseline (no droop) or the drooped cowl lip configuration. However, the inlet baseline distortion for the short diffuser configuration was substantially higher than for the long diffuser. A comparison of the two configurations with a 70 deg drooped lip showed no significant difference in distortion. For the portion of the experimental program in which diffuser conditions for high-speed flight were simulated, diffuser-induced flow separation occurred. This separation was predicted from an analytical study that used the Hess potential flow panel method and the Herring two-dimensional boundary-layer analysis computer codes. The flow separated mainly on the diffuser ramp. Subsequent tests in which boundary-control systems were utilized showed that blowing with either slots or discrete nozzles could suppress the flow separation in the short subsonic diffuser, thereby substantially improving the diffuser performance.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3247 , E-7111 , NAS 1.60:3247
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Type: NACA-RM-E55D26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Type: NACA-RM-E55B09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Type: NACA-RM-E55K09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: An innovative inlet total pressure distortion measurement rake has been designed and developed for the F/A-18 A/B/C/D aircraft inlet. The design was conceived by NASA and General Electric Aircraft Engines personnel. This rake has been flight qualified and flown in the F/A-18 High Alpha Research Vehicle at NASA Dryden Flight Research Center, Edwards, California. The eight-legged, one-piece, wagon wheel design of the rake was developed at a reduced cost and offered reduced installation time compared to traditional designs. The rake features 40 dual-measurement ports for low- and high-frequency pressure measurements with the high-frequency transducer mounted at the port. This high-frequency transducer offers direct absolute pressure measurements from low to high frequencies of interest, thereby allowing the rake to be used during highly dynamic aircraft maneuvers. Outstanding structural characteristics are inherent to the design through its construction and use of lightweight materials.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4722 , NAS 1.15:4722 , H-2078 , AIAA PAPER 94-2132 , NIPS-95-05907 , Biennial AIAA Flight Test Conference; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: An experimental investigation of the mixing of two coaxial gas streams was conducted over a range of subsonic jet Mach numbers and temperatures. Three configurations were investigated. One had no innerbody in the primary or inner pipe and was designed to give flat velocity profiles at the exit of the primary pipe. The other two configurations had innerbodies in the primary pipe. These were designed to give velocity profiles similar to those existing at the inlet of propulsive systems such as afterburners. Curves of axial velocity and temperature profiles across the radius are presented at various axial stations. For the two configurations with the innerbody, data are shown at stations out to approximately 8 primary-pipe diameters from the exit of the primary pipe. For the flat-velocity-profile configuration, data are shown at distances extending downstream at 22 primary-pipe diameters from the exit of the primary pipe.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-21-58E , L-104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...