ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (72)
  • Nitrification  (72)
  • Springer  (72)
  • Annual Reviews
  • EDP Sciences
  • 1985-1989  (47)
  • 1980-1984  (25)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (72)
  • Computer Science
Collection
  • Articles  (72)
Keywords
Publisher
  • Springer  (72)
  • Annual Reviews
  • EDP Sciences
Years
Year
Topic
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (72)
  • Computer Science
  • Biology  (26)
  • Geosciences  (21)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 335-338 
    ISSN: 1432-0789
    Keywords: Autotrophy ; Lime ; Lolium perenne ; Nitrate reductase ; Nitrification ; Stagnohumic gley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three different nitrification assays (short-term nitrifier activity, assimilatory nitrate reductase activity of Lolium perenne, and nitrate accumulation in the absence of plants) were performed either on soil from a naturally acidic stagnohumic-gley or on leaves from L. perenne grown in this soil. Before the investigation the soil was limed and fertilised in a manner consistent with established agricultural pasture improvement strategies. Short-term nitrifier activity was only detected in soils above pH 5.6. However, nitrate reductase activity and nitrate accumulation both showed a near linear increase between soil pH 3.8 and 6.8. These findings are attributed to the nature of the assays, each of which considers a different component of the soil nitrifier population.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 247-254 
    ISSN: 1432-0789
    Keywords: Nitrification ; Abiotic factors ; Ammonium concentration ; Vmax of nitrification ; Michaelis-Menten constant for ammonium oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of temperature, water potential and ammonium concentrations were studied in field and laboratory experiments on arable soil. The two field experiments used different sampling intervals, one at daily (short-term) and the other at monthly (long-term) intervals. In the short-term field experiment, the numbers and activities of nitrifiers were assessed before and after natural rain or irrigation. The nitrifiers were apparently outcompeted by heterotrophs during the first days after wetting the soil. Potential nitrification was affected only slightly by changes in water potential, whereas the numbers of ammonium and nitrite oxidizers appeared more sensitive to these changes. The numbers of ammonium and nitrite oxidizers correlated strongly during the daily samplings. The potential nitrite-oxidation rates correlated with water potentials whereas the potential ammonium oxidation rates did not. Extractable ammonium decreased in proportion to increasing nitrate concentrations in both the rain-fed and the irrigated plots. In the long-term field experiments, the numbers of ammonium oxidizers correlated with water potentials but not with in situ temperature or with ammonium concentrations. The potential ammonium-oxidation rates correlated with water potentials and with ammonium-oxidizer numbers. The potential nitrite-oxidation rates correlated strongly with the potential ammonium-oxidation rates. The field experiments implied that nitrite oxidizers obtained substrate from ammonium oxidizers but also from nitrate reduction. In laboratory experiments nitrate accumulated at a Q 10 of about 2 and the V max for nitrification was observed at a water potential of −0.11 MPa (65% of water-holding capacity). The K m for ammonium oxidation at pH 8.2 was 1.72 mg l−1 soil water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 195-202 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Nitrification ; Organic quality ; New Mexico
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest floor and mineral soil from ponderosa-pine, Douglas-fir, aspen and spruce-fir ecosystems located along a rising gradient in New Mexico were tested with laboratory assays for factors controlling N mineralization and nitrification. We concluded that low pH in combination with factors associated with organic quality controlled N mineralization and almost completely limited nitrification in spruce-fir soils, while N mineralization in the forest floor of ponderosa-pine was limited by low nutrient availability (other than N). Organic quality of the substrate and temporal changes in organic quality appeared to control N-mineralization and nitrification processes in forest-floor and mineral soils from all other sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 65-70 
    ISSN: 1432-0789
    Keywords: Fertilized soil ; Nitrification ; Denitrification ; N2O production ; C2H2 blockage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A sandy soil amended with different forms and amounts of fertilizer nitrogen (urea, ammonium sulphate and potassium nitrate) was investigated in model experiments for N2O emission, which may be evolved during both oxidation of ammonia to nitrate and anaerobic respiration of nitrate. Since C2H2 inhibits both nitrification and the reduction of N2O to N2 during denitrification, the amount of N2O evolved in the presence and absence of C2H2 represents the nitrogen released through nitrification and denitrification. Results show that amounts of N2O-N lost from soils incubated anaerobically with 0.1% C2H2 and treated with potassium nitrate (23.1 µg N-NO 3 − /g dry soil) exceeded those from soils incubated in the presence of 20% oxygen and treated with even larger amounts of nitrogen as urea and ammonium sulphate. This indicates that nitrogen losses by denitrification may potentially be higher than those occurring through nitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 77-82 
    ISSN: 1432-0789
    Keywords: Ecosystem production ; Mineralization ; Nitrification ; Ion exchange resin bag method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Estimates of ammonium and nitrate availability in conifer and hardwood forests using an ion exchange resin (IER) bag method and with on-site incubations of soil cores in buried bags were compared. Correlations between the two methods were generally high. Correlation coefficients (r) between IER nitrate and buried-bag mineralized nitrate ranged from 0.87 to 0.92. Both methods also correlated well with aboveground net primary production, litter fall N content, and fine root biomass. The major differences between the methods related to the relative importances of ammonium and nitrate forms of available N. The IER method indicated that both ammonium and nitrate were important on all sites, with nitrate predominating in most soils. The buried-bag results indicated that available N was primarily in the form of nitrate (all ammonium was oxidized), but that nitrate was insignificant on infertile sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 97-104 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Nitrification ; Water-soluble inhibitors ; Allelochemic control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Bioassay experiments were performed to test for inhibition of the processes of nitrogen mineralization and nitrification by organics in the forest floor of a ponderosa pine ecosystem. Water-extractable organics in the forest floor were tested by applying filtered extracts to the assay soil. The extract decreased nitrate production by 17.0% and decreased net mineralization by 4.1%. Inhibition by volatile organics was tested by placing vials containing forest floor or selected terpenoids of ponderosa pine in sealed jars containing the assay soil. Nitrate production was inhibited by 87.4% and 100%, and net nitrogen mineralization was inhibited by 73.3% and 67.7% in the jars with forest floor and terpenoids, respectively. Organics which are partially water-soluble and are volatile (such as terpenoids) would be very effective inhibitors of nitrogen cycling processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 87-95 
    ISSN: 1432-0789
    Keywords: Fire effects on mineralization ; Ammonification ; Nitrification ; Ponderosa pine soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of a prescribed fire in a ponderosa pine ecosystem on the rates of decomposition and nitrogen mineralization (including ammonification and nitrification) in the forest floor and mineral soil horizons were evaluated. The prescribed fire immediately increased the rates of nitrogen mineralization and nitrification in the forest floor of all burned plots and in the mineral soil of one plot. The rates of decomposition, as measured by CO2 evolution, in both the forest floor and mineral soil were not significantly different immediately after the burn when expressed on an organic matter basis. The rates of nitrogen mineralization in the forest floor and mineral soil were higher 6 and 10 months after the burn. The rate of decomposition (as measured by respiration) was lower in the forest floor but not in the mineral soil 6 and 10 months after the burn. Volatile organics that may inhibit rates of nitrogen mineralization may have been consumed by prescribed fire.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 33-38 
    ISSN: 1432-0789
    Keywords: Microbial activity ; Nitrification ; Taiga ; Tillage system ; Crop residue management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C and N mineralization potentials were determined, in a 12-week laboratory incubation study, on soil samples obtained from recently cleared land which had been cropped to barley for 4 years (field soils) and from nearby undisturbed taiga (forest soils). Treatments for the cropped soils were conventional and no-tillage with and without crop residues removed. An average of about 3% of the total C was evolved as CO2 from the field soils compared with 〉 10% and 4% for the upper (Oie) and lower (Oa) forest-floor horizons, respectively. Significantly more C was mineralized from the Ap of the no-till treatment with residue left on the surface than from the other field Ap horizons. Both forest-floor horizons showed rather long lag periods for net mineralization compared with the field soils, but at the end of the incubation, more mineral N was recovered from the forest Oie despite a rather wide C:N ratio, than from the field soils. After 12 weeks about 115, 200 and 20 μg mineral N/g soil were recovered from the field Ap, the forest Oie and the forest Oa horizons, respectively. Very little C or N was mineralized from the B horizon of the forest or the field soils. Nitrification was rapid and virtually complete for the field soils but was negligible for both forest-floor O horizons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 201-204 
    ISSN: 1432-0789
    Keywords: Fertilizer ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha−1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha−1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha−1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O. Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha−1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 195-199 
    ISSN: 1432-0789
    Keywords: Fertilizer N ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha−1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils. Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 μg NH4OH-N g−1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 μg NH4OH-N g−1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1988), S. 344-349 
    ISSN: 1432-0789
    Keywords: Nitrification ; Deamination ; Grassland ; N fertilisers ; pH ; Denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil nitrification was compared in soils from 89-year-old grassland experimental plots with diverse chemical characteristics. Measurements of NaClO3-inhibited short-term nitrifier activity (SNA) and deamination of 1,2-diamino-4-nitrobenzene were used to study nitrification and deamination activities, respectively, in soil from each of 12 plots. Using multiple regression analysis, an expression for the relationship between SNA, soil pH and fertiliser N additions was derived which indicated that both the frequency and the quantity of farmyard manure additions were important in determining the rate of nitrification. SNA was greatest where there were large and frequent additions of farmyard manure. In soil with pH below 5.2 SNA was very low or insignificant. The effect of (NH4)2SO4 additions could not be assessed because they acidified the soil. We suggest that additions of farmyard manure increase the potential for NO3 − leaching or for denitrification. Deaminase assays indicated that soils with a higher pH showed greater N mineralisation than soils with a lower pH, except at the low extreme. There was no obvious relationship between SNA and deaminase activity at higher levels of pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0789
    Keywords: Ammonium ; Nitrate ; N-mineralization ; Nitrification ; Fertilization ; Irrigation ; Forest ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest-floor and 0–10 cm depth mineral soil horizons in two stands of Douglas fir were sampled for available NH4 +-N and NO3 −-N, N-mineralization potentials, and nitrification potentials for 2 years. The plots in each stand were sampled for 1 year, treated with either ammonium sulfate, carbohydrate (sawdust-sucrose), irrigation, carbohydrate plus irrigation, or no treatment (control), and then sampled for 1 year following treatment. In general, the direction of change following the treatments was the same for both the forest-floor and the mineral soils. Fertilization increased the NH4 +-N and NO3 −-N pools, nitrification potential, and N-mineralization potential, while treatment with carbohydrate decreased all of these characteristics. Irrigation generally increased NH4 +-N pools, nitrification potential, and N-mineralization potential, but decreased these characteristics in the soil at one site. Irrigation plus carbohydrate gave similar results to those of carbohydrate alone. Treatments altered pool sizes and/or potentials, but did not reduce within-year variance in any of these characteristics. Distinct seasonal patterns occurred in all measurements, suggesting that control of short-term variation in N-transformation processes is by factors which are dynamic in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 106-111 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil water content ; N2O production ; Acetylene ; Ammonium fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of soil water content [60%–100% water-holding capacity (WHC)] on N2O production during autotrophic nitrification and denitrification in a loam soil was studied in a laboratory experiment by selectively inhibiting nitrification with a low C2H2 concentration (2.1 Pa). Nitrifiers usually produced more N2O than denitrifiers. During an initial experimental period of 0–6 days the nitrifiers produced more N2O than the denitrifiers by a factor ranging from 1.4 to 16.5, depending on the water content and length of incubation. The highest N2O production rate by nitrifiers was observed at 90% WHC, when the soil had become partly anaerobic, as indicated by the high denitrification rate. At 100% WHC there were large gaseous losses from denitrification, while nitrification losses were smaller except for the first period of measurement, when there was still some O2 remaining in the soil. The use of 10 kPa C2H2 to inhibit reduction of N2O to N2 stimulated the denitrification process during prolonged incubation over several days; thus the method is unsuitable for long-term studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0789
    Keywords: Denitrification ; Nitrification ; Selective inhibitors ; Nitrapyrin ; Acetylene ; Nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1988), S. 79-87 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Mineralization ; Nitrification ; Subarctic ; Volcanic ash
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C and N pool sizes and rates of mineralization were studied in volcanic-ash deposits found in different subarctic habitats in southwestern Alaska. Surface ash samples were taken from white-spruce, alder, and moist- and dry-tundra habitats and were analysed for total and microbial C and N. C and N dynamics were studied using a 28-day aerobic laboratory incubation, with weekly measurement of evolved CO2 and determination of inorganic-N pools initially and after 10 and 28 days. Total and microbial C and N and cumulative respired CO2 all followed a similar pattern among the different habitats, with the moist-tundra habitat having the highest values and the spruce site the lowest. The size of the microbial biomass C and N pool in the spruce habitat was among the lowest reported for any ecosystem. Little net N mineralization occurred in the spruce-forest and dry-tundra ash over 28 days. Ash from the moist-tundra habitat immobilized a significant amount of N during the first 10 days of incubation, yet showed a large net release of N after 28 days. In contrast, the ash from the alder site exhibited net mineralization after both periods, with N production after 28 days being about 3.5 times that after 10 days. In addition, the alder-habitat ash was the only soil that showed net nitrification. Rates of total C and N accretion in the tundra and alder habitats were rapid relative to rates found for primary successions. The results of this study show that habitat has a profound effect on C and N cycling in subarctic environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1989), S. 254-258 
    ISSN: 1432-0789
    Keywords: N-mineralisation ; Nitrification ; Arginine ammonification ; Inorganic pollutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Long-term effects of 12 inorganic pollutants on N transformations were studied in a sandy cambisol. As, Be, Br, Cd, Cr, F, Pb, Hg, Se, Sn, and V were added to the soil as inorganic salts in 1975 and 1976. Soil samples were taken in 1984 to determine total N mineralisation and nitrification. All pollutants except Se and Sn inhibited N mineralisation. The most toxic elements under investigation were Be and Hg. Nitrification was reduced to a lower degree than total N mineralisation. As, Be, Cd, Cr, F, Pb, Se, and Sn failed to inhibit this process at all. It is assumed that nitrifying bacteria became adapted to these pollutants in the course of time. The arginine-ammonification method was less sensitive in detecting the effects of pollutants on N transformation than the N mineralisation test.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 204-211 
    ISSN: 1432-0789
    Keywords: Nitrification ; Heterocyclic N compounds ; Pyrazoles ; Triazoles ; Pyridines ; Thiadiazoles ; 2-Ethynylpyridine ; Nitrapyrin ; Etridiazole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The relationship between the structures of diverse heterocyclic nitrogen (N) compounds and the effectiveness of these compounds for the inhibition of nitrification in soil was studied by determining the effects of different amounts of 12 unsubstituted and 33 substituted heterocyclic N compounds on the production of (NO 2 − +NO 3 − )-N in soils incubated at 25 °C for 21 days after treatment with ammonium sulfate. The results showed that unsubstituted heterocyclic N compounds containing two adjacent ring N atoms inhibit nitrification in soil and that two of these compounds, pyrazole and 1,2,4-triazole, are potent inhibitors. They also showed that several substituted pyrazoles and thiadiazoles are good inhibitors of nitrification in soil (e.g., 3-methylpyrazole and 3,4-dichloro-1,2,5-thiadiazole).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 205-212 
    ISSN: 1432-0789
    Keywords: Nitrate production ; Nitrification ; Humisol ; Methane oxidation ; Methanotrophs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The coexistence of chemoautotrophic nitrifiers and methanotrophs in a cultivated humisol was investigated. Under laboratory conditions which supported the growth and activity of methanotrophs, the nitrifiers were partially or completely inhibited. The inhibition was related to a competition for available oxygen and a high assimilatory requirement for inorganic nitrogen by the Methanotrophs. Dissolved methane concentrations as high as 250 μM had no direct effect on the oxidation of ammonium. Simultaneous nitrification and methane oxidation was observed only if relatively high levels of ammonium and oxygen were maintained. Coupled nitrification-assimilatory/dissimilatory nitrate reduction resulted from the high oxygen demand of the actively growing methanotrophs. This study suggests that the potential competitive effects of methanotrophs may influence nitrification by chemoautotrophic nitrifiers in certain environmental systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 341-346 
    ISSN: 1432-0789
    Keywords: Nitrification ; Phosphatase ; Dehydrogenase ; Aerosol ; Soil thickness ; Soil enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil was exposed to red phosphorous/butyl rubber (RP/BR) aerosols at various relative humidities in a recirculating environmental wind tunnel. Soil microbial and enzymatic activities were measured immediately after exposure and periodically thereafter for 56 days. The nitrification potential was significantly reduced in soil amended with ammonium sulfate and exposed to RP/BR smoke, and could be related to a decline in soil pH. The rate of nitrate formation in unamended soil with time was also reduced, but by 57 days postexposure, concentrations were similat to those of unexposed controls in all but the thinnest soil lense. Soil dehydrogenase and phosphatase enzyme activities were sensitive to RP/BR smoke and in some treatments no activity was detected. The measured activities did not recover within the 56-day postexposure period and in some cases declined. Soil lense thickness was the greatest factor controlling the degree of RP/BR effects, indicating that injury to soil microbial and enzymatic activities may be surficial. Deposition of smoke particles increased with increasing relative humidity, which had a significant impact on the activities measured.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1573-0867
    Keywords: Nitrification ; nitrate movement ; urea ; ammonium sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two successive applications of urea and ammonium sulphate (AS) at varying intervals were given in two soils, one of which was salt affected. The nitrification and nitrate leaching after both the applications of fertilizers was studied. The nitrification of first application of AS was faster than urea on both soils. However, the nitrification rate of both fertilizers was slow in salt effected soil. The same trend of results was observed with second application of fertilizers. However, the nitrification of second application given within 6 weeks of the first application proceeded at a much faster rate than that of the first application. The amount of NO 3 - that moved down with periodic water application was related with nitrification rate and the amount of fertilizer nitrified at the time of water application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 17 (1988), S. 177-188 
    ISSN: 1573-0867
    Keywords: Ammonium concentration ; Incubation experiments ; Kinetic model ; Lysimeter experiments ; Nitrification ; Maize (Zea mays)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Lysimeter experiments with maize and incubation experiments showed that increased ammonium concentrations in soil reduced nitrification rates. A modified Lees and Quastel kinetic model was proposed for predicting the relation between initial ammonium concentration in soil and nitrification rate. A term Mi strongly dependent on initial ammonium concentration ([NH40]) was introduced into the model which took the form: dy/dt = R(A − y)(Mi + y), where R is a rate constant, y represents the concentration of formed nitrate and A is an asymptotic value of initial ammonium concentration. Mi was obtained by a curve fitting procedure applied to experimental data. An exponential decay of Mi with [NH4]0 was formulated. The modified model thus obtained provides an effective tool for predicting nitrification rates related to a wide range of ammonium concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 3-7 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil profile
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha−1 (330 kg N ha−1) and NH4NO3 (80 kg N ha−1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m−2s−1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 131-140 
    ISSN: 1432-0789
    Keywords: Nitrification ; MPN of ammonium oxidizers ; Chlorate inhibition ; Arable soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The number of ammonium-oxidizing bacteria was measured with the most probable number (MPN) method while potential ammonium oxidation rates were determined with a chlorate inhibition technique in two arable soils. A new method for measuring actual in situ ammonium oxidation in soil cores is presented. One soil was cropped for 4 years with one of four crop-fertilizer combinations: Unfertilized lucerne ley, unfertilized barley, nitrate-fertilized grass ley, or nitrate-fertilized barley. The highest ammonium oxidizer numbers and potential rates were found in the grass ley. The unfertilized barley had one-third the number and activity of the grass ley. Actual rates were in general 5–25 times lower than potential rates. The other soil was that undergoing a 27-year-old field trial with a fallow and four different cropping treatments: No addition, nitrate, nitrate + straw, or manure. Ammonium oxidizer numbers were highest in the manure and straw treatments. MPN numbers and potential rates were lowest in the fallow treatment. Typical specific potential rates were 30 ng N oxidized cell−1 h−1. Actual rates were in general 40 times lower than potential rates. Actual ammonium oxidation measurements seem to correspond to actual in situ activity at the moment of sampling, whereas the MPN technique and the potential measurements reflect events that occurred weeks to months before the sampling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 54 (1980), S. 249-258 
    ISSN: 1573-5036
    Keywords: Antibiotic ; Fermentation ; Microbial respiration ; Mineralization ; Nitrification ; Temperature ; Tylosin ; Waste
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Aerobic decomposition of tylosin fermentation waste was studied by O2 uptake and CO2, NH4 + and NO3 − release over 10 weeks in a light compost-soil at 3 concentrations and 4 temperatures. Comparisons of O2 uptake and CO2 release at each temperature showed that aerobic conditions were maintained in the system. Maximal rates of respiration (C mineralization) increased with temperature. At 23°C 50% of the substrate C had been mineralized in 10 weeks. At 10–15°C and at 4°C C mineralization was approximately 38% and 22% respectively. Except at 4°C mineralization had almost ceased within 10 weeks. There was evidence of a permanent inhibition of C mineralization at 10–15°C compared with 23°C, and a temporary inhibition at 10°C compared with 15°C. At 10 weeks 25% of the N had been mineralized at 23, 15 and 10°C, while 14% had been mineralized at 4°C. The time taken to reach maximum N mineralization was reduced by increase in temperature and by 10 weeks mineralization had almost ceased at 15 and 23°C. In terms of the fertilizing effect of tylosin fermentation, 25% of the total N was available within 10 weeks at 10–23°C. Nitrification was strongly inhibited at 4 and 10°C. Both C and N mineralization were in direct proportion to the concentration of tylosin fermentation waste added to the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 61 (1981), S. 43-52 
    ISSN: 1573-5036
    Keywords: Adaptation ; Allelopathy ; Ecophysiology ; Grassland ; Plantago ; Nitrate production ; Nitrate reductase ; Nitrate uptake ; Nitrification ; Nitrifying bacteria ; Rhizosphere ; Root environment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The production of nitrate in an old established dune grassland soil and its uptake by plants was studied by comparing amounts of mineral nitrogen and numbers of nitrifying bacteria in the rhizosphere on the one hand, and on the other accumulated nitrate and levels of nitrate reductase (NaR) of individual plants of three Plantago species,i. e., P. major, P. lanceolata andP. coronopus. For these three Plantago species andP. media basal levels of NaR in the absence of nitrate were determined in plants grown in culture solutions. The basal NaR levels ofP. major andP. media (species occurring on nutrient-rich soils) were significantly higher than those ofP. lanceolata andP. coronopus (species found on nutrient-poor soils). NaR activity increased in the presence of nitrate and was suppressed by ammonium. From the numbers of nitrifying bacteria in the rhizosphere and NaR activity in the leaves it was concluded that nitrate was produced in the root environments of the three Plantago species and that the compound was taken up by the plants. NaR activities and numbers of nitrifying bacteria were higher for individuals ofP. major than for those ofP. lanceolata andP. coronopus. No correlation was found between the ammonium levels and the numbers of nitrifying bacteria in the soil, and no indications of inhibition of nitrifying bacteria in the rhizosphere were obtained. For individuals ofP. lanceolata a correlation was found between the numbers of nitrifying bacteria in the soil and NaR activity in the leaves. The results are discussed in relation to the ecological habitats of the three species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1573-5036
    Keywords: Denitrification ; Nitrification ; Nitrogen isotope fractionation ; Nitrogen-15 natural abundance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A few principles relative to the presentation and use of nitrogen stable isotopic data are briefly reviewed. Some classical relationships between the isotope composition of a substrate undergoing a single-step unidirectional reaction, are introduced. They are illustrated through controlled experiments on denitrification in a soil, and through nitrification by pure cultures ofNitrosomonas europaea. In the latter case, the isotope fractionation is calculated from the isotopic composition of the residual substrate, then of the product and the result is shown to be statistically the same for the two procedures. The isotopic enrichment factor for denitrification is −29.4±2.4‰ at 20°C, and −24.6±0.9‰ at 30°C; for nitrification this factor is −34.7±2.5‰ under the experimental conditions employed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 62 (1981), S. 439-451 
    ISSN: 1573-5036
    Keywords: Agrostis tenuis ; Ammonification ; China clay waster ; Festuca rubra ; Nitrification ; Nitrogen mineralisation ; Reclamation ; Trifolium repens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrogen accumulation and nitrogen mineralisation rates were measured in a series of waste heaps, produced by the china clay mining industry, which had been reclaimed at different times with a sward ofAgrostis tenuis, Festuca rubra, andTrifolium repens. The best swards tended to have high ammonification rates and rapid N turnover (which is represented by a nitrogen turnover index) —nitrification rates or nitrogen accumulation were not such good predictors of sward quality. Ammonification increased with pH and with organic nitrogen accumulation whereas N turnover was not related to these factors. Nitrification levels were generally low and it was concluded that nitrification was not important to sward health. Organic nitrogen increased with age in all swards, ammonification in certain types only and nitrification not at all. Levels of all are well short of those in adjacent grazing land. Rates of turnover had however a tendency to decline towards those in the grazings owing probably to the build up of resistant humus. The proportion of the total nitrogen which is in the biomass (30%) is also higher than in adjacent grazings (6%). Rapid nitrogen cycling is thus needed to maintain productivity and greenness, and the disadvantages of this are discussed. The adequacy of nitrogen cycle development to date is considered, and possible future strategies outlined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 62 (1981), S. 469-471 
    ISSN: 1573-5036
    Keywords: Aerobic incubation ; Anaerobic incubation ; Nitrification ; Release of ammonium ; Slow release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Study of the mineralization of biuret N under aerobic and anaerobic conditions in a sandy loam showed that higher amounts of mineral N accumulated under anaerobic incubation than under aerobic conditions. Under waterlogged incubation, 46.8% of the 100 ppm biuret N was mineralized while under aerobic conditions only 18.3% of biuret-N was converted into mineral N during 5 weeks at 30°C. The results of the study bring out slow-release nature of biuret-N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 1573-5036
    Keywords: Coking pollution ; Nitrification ; S-oxidation ; Soil fertility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Atmospheric pollution deposits, largely consisting of soot, were removed from sycamore leaves growing downwind of a coking plant, and added to soil. Increases in plant available S-ions (S2O3 2−; S4O6 2− and SO4 2−) and N (NH4 + and NO3 −) occurred due to the action of soil microorganisms on the deposits. Although the detrimental effects of air pollution on plant growth have been previously emphasised, supply of nutrients resulting from the microbial transformation of particulate pollutants may prove important to the growth of pollution-resistant plant communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 271-281 
    ISSN: 1573-5036
    Keywords: Cacao ; Erythrina ; Leaching ; Mineralization ; N-cycling ; Nitrification ; Shade trees
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen Se realizaron investigaciones sobre la mineralización y la lixiviación de nitrógeno en parcelas fertilizadas con N, P y K y en parcelas sin fertilizar en plantaciones de cacao de 30 años en la región sur de Bahia, Brasil. Los suelos del cacaotal eran CEPEC (Tropudalf), comunes en la zona. Las mediciones se realizaron durante un año. Se instalaron minilisimetros a 10, 20 y 40 cm de profundidad y se colectó el agua lixiviada semanalmente o después de intensas lluvias. La mineralización neta se midió en muestras de suelo tomadas a 0–5 y 5–15 cm de profundidad colocadas nuevamente en bolsas plásticas en el sitio de colecta. El grado de lixiviación se correlacionó con la cantidad de precipitación y aun cuando no es posible cuantificar las pérdidas por unidad de área, se estimó que estas pérdidas eran de menor cuantia. Tanto la tasa de amonificación como la de nitrificación fueron altas durante la mayor parte del año; la nitrificación fué particularmente intensa en el área fertilizada. Los análisis de la hojarasca fresca de Erythrina y de los cacaoteros mostraron que estos componentes contribuyen notablemente al ciclo del nitrógeno en la plantación de cacao. Se detectaron altas concentraciones de nitrógeno en muestras de suelo tomadas cerca de los árboles de sombra; en promedio los suelos de la zona sombreada contenian 480 mg N kg−1 suelo por encima del promedio de los suelos en plantaciones sin sombra. La cantidad de nitrógeno exportado por cosecha es notable. Se recomienda tomar en consideración la información procedente de los ciclos de nitrógeno para formular recomendaciones de fertilización.
    Notes: Abstract Studies of nitrogen mineralization and leaching were conducted in the cacao-growing region in the south of Bahia, Brazil, on plots fertilized with N, P and K and on plots without fertilizer in plantations 30–40 yrs old on CEPEC soil (Tropudalf) over a period of one year. Mini-lysimeters were installed at depths of 10, 20 and 40 cm and the leachate was collected weekly or after heavy rain. Net mineralization was measured in soil samples taken at depths of 0–5 and 5–15 cm and incubated for 30 days in plastic bags placed at the site of collection. The degree of leaching was correlated with the amount of rainfall and, although it is difficult to quantify the losses per unit area, we estimate that these losses are minor. Ammonification and nitrification were both high during most of the year; nitrification was very rapid and was especially intensive on the fertilized area. Analyses of Erythrina and cacao litter show that these components make a considerable contribution to the nitrogen recycled in a cacao plantation. High concentrations of total nitrogen were detected in soil samples taken close to shade trees and, on average, the soil of shaded areas had more than 480 mg N kg soil−1 than soil of non-shaded areas. Removal of nitrogen in harvest can also be considerable. It is advisable to take nitrogen-cycle data into account when compiling tables of fertilizer recommendations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 293-303 
    ISSN: 1573-5036
    Keywords: Burning ; Denitrification ; N-cycling ; N2-fixation ; Nitrification ; Oxisol ; Rhizobium ; Savanna ; South America ; Ultisol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen Las sabanas ocupan alrededor de 300 millones de hectáreas de Sudamérica. Los suelos son básicamente oxisoles y ultisoles de muy baja fertilidad y alta acidez. La vegetación natural varía en densidad y en la cantidad de biomasa producida anualmente, la cual puede llegar a ser igual a la producida por bosques de la región. Entre los microorganismos fijadores de nitrógeno, los únicos bien estudiados son las bacterias del género Rhizobium. En el manejo de la biomasa de estas áreas, es importance considerar la fijación del nitrógeno, como una fuente posible que reemplace al que fué exportado en las cosechas. La nitrificación y la denitrificación en estos, es intensa pero no bien estudiada. La distribución de lluvias durante la estación de crecimiento parece tener una influencia considerable en la provisión de nitrógeno de los suelos. Se registran considerables pérdidas de nitrógeno en este ambiente, cuando amplias áreas son quemadas anualmente.
    Notes: Abstract Savannas cover about 300 million hectares of South America. The soils are mainly oxisols and ultisols and their natural fertility is very low with high acidity. The natural vegetation varies in density and in the amount of biomass produced annually, which can be equal to that produced by forests in the region. Among the nitrogen-fixing micro-organisms, the only ones well-studied are Rhizobium bacteria. In managing the biomass in these areas, it is important to consider biological nitrogen-fixation as a possible source of nitrogen to replace that removed in crops. Nitrification and denitrification in these soils are intense but not well studied. The rainfall distribution during the growing season seems to have a considerable influence of the nitrogen supply to the soils. A considerable loss of nitrogen occurs in this environment when vast areas are burned annually.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-5036
    Keywords: Ammonification ; Cadmium ; Heavy metals ; Kinetics ; Lead ; Nitrification ; Perfusion incubations ; Polluted soils ; Selection ; Toxicity ; Zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The sensitivity of the mineralization of nitrogen by a range of soils contaminated with heavy metals (up to 340 μg Cd g−1, 7500 μg Pb g−1 and 34000 μg Zn g−1) to the addition of heavy metals in solution were studied using pot incubations (ammonification) and a soil perfusion technique (nitrification). The ammonification of peptone showed little correlation between treatments with Cd, Zn (1000 and 5000 μg g−1) and Pb (10000 and 20000 μg g−1) and origin of the soil. Nitrification was considerably more sensitive to heavy metals than ammonification. All the soils had active, often large, populations of ammonifying and nitrifying organisms which showed substantial similarities between the soils. The rate of nitrifying activity (NO3−N production) was logrithmic in most cases. The presence of tolerant populations of nitrifying organisms in the contaminated soils was demonstrated. Tolerance was also eventually acquired after a longer lag phase, by the non-contaminated soil populations although the rate of activity was often reduced. Metals added in solution were adsorbed by the soil within 4 hours. Differences in toxicity between metal salts (chlorides, sulphates and acetate) were attributed to the amount left in solution. However, in many instances, acetate was found to stimulate all the stages in the mineralisation of nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 75 (1983), S. 417-426 
    ISSN: 1573-5036
    Keywords: Ammonification ; Bacterial population ; Bacterial spore ; Dynamic equilibrium of soil ; Nitrification ; Partial sterilization effect ; Pentachlorophenol ; Percolated soil ; Pesticide ; Soil bacteria ; Soil microflora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Although pentachlorophenol (PCP) retarded the initial increase in total viable bacteria and gram-negative bacteria in the percolated soil, populations exceeded those in the percolated soils without the addition of PCP at a later period. This seems to be a phenomenon similar to “the partial sterilization effect”. On the other hand, spore counts were continuously lower in the percolated soils when PCP had been added. Ammonification of glycine was also slightly inhibited, but nitrification of ammonium was strongly depressed by PCP. Other physicochemical changes of the percolate proceeded according to those of bacterial populations and biochemical reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 92 (1986), S. 341-362 
    ISSN: 1573-5036
    Keywords: Eucalypt forests ; Fire Immobilizxtion ; Nitrogen mineralization ; Nitrogen turnover ; Nitrification ; Nitrogen conservation ; Resilience
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrogen mineralization was measured in the laboratory andin situ in eight eucalypt forests covering a wide range of climates and soil types. Aerobic and anaerobic incubations as well as chemical indices showed consistently higher rates of mineralization and nitrification and higher mineralization potentials in the wetter, high productivity forests. Nitrification was not confined to these forests and appears best related to soil C/N ratios and the rate of N turnover. Immobilization is recognized as a major process in eucalypt forest soils; in two forests which were burnt by bushfire during this study immobilization prevented over-accumulation of inorganic-N and possible leaching of NO 3 − −N. Calculated fromin situ incubations, annual uptake of inorganic-N ranged from 27 to 160 kg N ha−1; in two of four forests nitrate uptake was not apparent, in a third forest nitrate accounted for 10% of total uptake and in the remaining forest nitrate comprised about one-third of inorganic-N taken up. Ammonium is thus the dominant inorganic form taken up in eucalypt forests of this region. There was general agreement between laboratory andin situ incubations as to the occurrence of nitrification and the difference in mineralization rates between forests. In conjunction with previous studies, the turnover and maintenance of N-pools in eucalypt forests is discussed; forests with low N-capital appear to be resistant to possible N-loss after perturbation, forests with higher N-capital are more susceptible to loss but recover quickly. Immobilization of inorganic-N is central to the recovery process. These results agree with recent hypotheses proposed by Vitousek and Boerner.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 93 (1986), S. 133-135 
    ISSN: 1573-5036
    Keywords: Azadiractin ; Heterotrophic flora ; Neemcake ; Nimbidin ; Nitrification ; Nitrifying bacteria ; Zymogenous flora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Application of neem products like neem leaf and neem cake to wetland soil did not have any adverse effect on the population of heterotrophic microflora; nitrifying bacteria, on the other hand, decreased significantly due to addition of neem cake and fresh and dried neem leaf with urea. It is suggested that neem leaf could be used as an inhibitor of nitrification for enhancing nitrogen use efficiency of fertilizers where neem leaf is available in plentiful supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 109-123 
    ISSN: 1573-5036
    Keywords: Denitrification ; Isobutylidene diurea ; N balance ; Nitrification ; 15N Oxamide ; Rice ; Slow-release N ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Two15N-labelled slow-release nitrogen (N) sources, oxamide and isobutylidene diurea (IBDU), each at two particle sizes, and15N-labelled urea were compared at two rates as sources of N for rice (Oryza sativa) under two watering regimes which simulated a transplant (continuous flood, CF) and a direct-seeded (A/F) system of paddy rice culture. Highest grain yields were obtained from −8+10-mesh oxamide particles applied at the rate of 2,000 mg of N/5 kg of soil, CF series; this yield was slightly higher than that obtained from −3+4-mesh oxamide, A/F series. Incubating the N fertilizers in moist (22% water) soil for 21 days immediately before flooding and transplanting rice greatly reduced N supply because of nitrification during the preflood period, followed by denitrification after flooding. This resulted in less plant uptake of N and less grain yield from urea, fine oxamide and IBDU, A/F series. For coarse oxamide, N release during the preflood period resulted in higher N uptake and grain yield in the A/F rather than in the corresponding CF series. The pattern of fertilizer N uptake by rice plants was affected by kind of fertilizer, particle size of oxamide and IBDU, and watering regime. Uptake of fertilizer N generally paralleled uptake of soil N throughout the growth period. Plant tops continued to accumulate some N during the period of grain filling, but much of the N in plant tops was translocated to the grain after heading. There was a large decrease in dry weight, N content, and15N content of tops after heading. Root weight and N content increased rapidly at first, and then at a diminishing rate until maturity. Unexplained N deficits occurred in the CF series (14–23% of the N applied, depending on N rate and source), and in the A/F series for IBDU (37–43% of the N applied).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 66 (1982), S. 373-381 
    ISSN: 1573-5036
    Keywords: Ammonium ; Eucalypt ; Forest ; Nitrate ; Nitrate reductase ; Nitrification ; Pine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three tree species,Eucalyptus regnans (F. Muell.),E. obliqua (L'Herit.),Pinus radiata (D. Don) were grown in sand culture with different proportions of nitrate and ammonium. Nitrate Reductase Activity (NRA) was induced in root tissue of all species and in leaf tissue of the eucalypts. An increasing proportion of nitrate resulted in increasing NRA in all species and hence NRA alone is no indication of N-preference. The highest NRA was found withE. regnans, a result which has also been obtained in the mature forest. The growth ofE. regnans was least with NH4 + alone, whereas that ofE. obliqua was least with NO3 − alone. The soils of matureE. regnans forest have a high potential for nitrification while those ofE. obliqua forest show little nitrification. Thus the preference for particular N sources shown by seedlings in culture is supported by related properties of mature forests. It is postulated however, that the inducibility of a high level of RNA in seedlings is more likely a result of a preference for NO3 − than a cause.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 209-220 
    ISSN: 1573-5036
    Keywords: Ammonification ; Crop residues ; Denitrification ; Flooded soil ; 15-N ; N-fertilizers ; N2-fixation ; Nitrification ; Rice ; Volatilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen Se revisaron varios aspectos del ciclo de nitrógeno estudiados con15N en un ecosistema de arroz de innundación en suelos franco limosos Crowley en Louisiana, USA, conel fin de construir un balance de masas para el nitrógeno. Las tranformaciones que se incluyeron en el modelo fueron: 1) amonificación neta (0,22 mg NH4−N kg−1 suelo seco dia−1), 2) nitrificación neta (2,07 mg NO3−N kg−1 suelo seco dia−1), 3) desnitrificación (0,37 mg N kg−1 suelo seco dia−1) y 4) fijación biológica de nitrógeno (0,16 mg N kg−1 suelo seco dia−1). Las entradas de nitrógeno al sistema serían aquellas por aplicación de fertilizantes, incorporación de residuos de cosecha, fijación biológica de nitrógeno, deposición. Las salidas serían por cosecha, perdidas gaseosas por volatilización de NH3 y la ocurrencia simultanea de nitrificación y desnitrificación, lixiviación y escorrentía. El balance de masas indicó que el 33% del nitrógeno inorgánico disponible fué recuperado por el arroz y el resto se perdió del sistema. Las pérdidas por volatilización de NH3 fueron minimas porque el fertilizante fué incorporado al suelo. Una proporción significativa del nitrógeno inorgánico se perdió por difusión de NH4 de la capa anaeróbica a la aeróbica en respuesta al gradiente de concentraciones; luego ocurre nitrificación en la capa aeróbica, difusión y finalmente desnitrificación y pérdida en forma gaseosa. Las perdidas por lixiviación y escorrentía fueron minimas.
    Notes: Abstract 15N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH4 +−N kg dry soil−1 day−1), 2) net nitrification (2.07 mg NO3 −−N kg−1 dry soil−1 day−1), 3) denitrification (0.37 mg N kg dry soil−1 day−1), and 4) biological N2 fixation (0.16 mg N kg dry soil−1 day−1). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 15-34 
    ISSN: 1573-5036
    Keywords: Acetylene ; Denitrification ; Immobilization ; Mineralization ; Microbial processes N-cycling ; N2-fixation ; Nitrification ; Nitrate reduction ; Oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen La mayoría de las transformaciones del nitrógeno en el suelo ocurren a través de los micro-organismos. Se requiere asi un conocimiento de los procesos microbiológicos con el fin de desarrollar las prácticas de manejo de los sistemas agrícolas que optimicen la absorción de nitrógeno por las raices y que minimicen las pérdidas de nitrógeno de los sistemas. Se discuten algunos aspectos de ciertos procesos microbiológicos en el ciclo de nitrógeno como su importancia para el manejo eficiente de agroecosistemas. Varios grupos de microorganismos compiten por el nitrógeno disponible y se requieren dados cuantitativos sobre la cinética de absorción de estos grupos de manera de estimar su capacidad de competir bajo diferentes condiciones. La influencia de los factores abióticos tales como la concentración de oxígeno, la concentración de nitrógeno inorgánico y el pH se discuten en relación a los diferentes procesos. Se discute también la importancia del acetileno como herramienta para estudiar el ciclo de nitrógeno.
    Notes: Abstract Most nitrogen transformations in soil are carried out by micro-organisms. An understanding of the microbiological processes is thus necessary in order for us to devise management practices in agricultural ecosystems, which will optimize plant root uptake of nitrogen and minimize nitrogen losses from the systems. Some aspects of the individual microbiological processes in the nitrogen cycle are discussed and their importance for an efficient management of agroecosystems. In soil various groups of organisms compete for available inorganic nitrogen and quantitative data are needed on the uptake kinetics for these various groups in order to be able to assess their competitive ability under different conditions. The influence of abiotic factors such as oxygen concentration, inorganic nitrogen concentration and pH is discussed in relation to the different processes. The importance of acetylene as a tool in nitrogen cycling studies is discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1573-5036
    Keywords: Ammonium sulfate ; Nitrification ; Nitrogen ; Slow-release fertilizers ; Sulfur-coated urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We have compared sulfur-coated urea granules (SCU) with ammonium sulfate granules (AS) in regard to nitrogen (N) release, diffusion, nitrification and the effect of irrigation. In the experiments plastic containers were filled with six layers of soil, separated from each other by fine nylon cloths. The fertilizer granules were placed between the two central layers, and irrigation was simulated by application of tap water to the uppermost layer. Nitrogen release from the SCU was slow, and after three months, 29.5% of the applied N remained in the granules. At the end of the experiment there was a deficit of 37.1% N in the case of the AS granules, while there was virtually none with the SCU. Throughout the experiment, N from SCU remained at a relatively even level, while 95% of the N applied as AS had disappeared after irrigation. Nitrification was rapid in both cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-5036
    Keywords: Denitrification ; Fertilizer ; N losses ; Flooding regimes ; 15N ; Nitrification ; Nitrogen balance ; Nitrogen efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 77 (1984), S. 193-206 
    ISSN: 1573-5036
    Keywords: Band placement ; Fall application ; Inhibitor ; Nitrification ; Mineral N losses ; Thiourea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Incubation and field experiments were conducted on the influence of thiourea in inhibiting nitrification of urea N, and subsequently on reducing over-winter losses of fallapplied N. Under incubation, most of the added urea placed in bands was nitritified within five or six weeks. However, thiourea when pelleted with urea (2∶1 urea to thiourea by weight) reduced the amount of nitrification to less than one-half during the same period. In two uncropped field experiments in an early dry fall, the application of pelleted urea+thiourea (2∶1) in bands resulted in almost complete inhibition of nitrification of urea for four weeks. In two other uncropped field experiments begun in June with the same fertilizer in bands, half or less of applied N appeared as nitrate after eight weeks. In 10 cropped field experiments with 56 kg N ha−1, urea+thiourea placed in bands depressed nitrification of fall-applied urea over the winter. By early May, the urea mixed into the soil in the previous fall was nearly all nitrified, while only one-half of the banded urea+thiourea was nitrified. The loss of mineral N by early May was 38% with urea mixed into the soil, but only 18% with bands of urea+thiourea. The 10 sites were cropped to spring barley. The increase in yield of grain or the increase in %N uptake from fertilier N was approximately only one-half as much with fall-applied urea mixed into the soil as compared to spring-applied urea added in the same way. Specifically, fall-applied mixed urea produced 930 kg ha−1 less grain yield and 32% less N uptake from fertilizer N than did mixed urea in spring. On fall-application there was some benefit from banding of urea or with mixing urea+thiourea pellets into the soil, but the banding of urea+thiourea pellets gave more benefit. Among the fall applications, banded urea+thiourea pellets produced 670 kg ha−1 more grain yield and 26% more N uptake in grain from fertilizer N than did urea mixed into the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 92 (1986), S. 153-157 
    ISSN: 1573-5036
    Keywords: Liming ; Nitrate leaching ; Nitrification ; N-mineralization ; Rain forest ; Soil acidity ; Tropics ; Ultisol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the effect of liming on the rates of mineralization and nitrification in a coarse-textured kaolinitic Ultisol. Soil samples were taken from field plots which received lime rates from 0 to 4mt/ha three years prior to the study. The pH of the soil samples varied from 4.2 to 6.1. Ammonification of soil organic N and added urea source proceeded readily and was not affected by lime rate. Nitrification occurred in both limed and unlimed soils but the rate of nitrification depended upon the rate of lime application. Soil pH, exchangeable Ca and exchangeable A1 were significantly correlated with the amount of NO3-N accumulated at the end of the 65 days incubation period. Nitrification of NH4-N from ammonium sulfate was absent in soils receiving lower rates of lime which gave pH values ranging from 4.2 to 4.8. Added ammonium source was nitrified readily after a 3-week delay period in the soil (pH 6.1) which received a higher rate of lime (4 mt/ha).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 313-320 
    ISSN: 1573-5036
    Keywords: Alkali soil ; Ammonia volatilization ; Nitrification ; Phenylphosphorodiamidate ; Rice ; Urea ; Urease inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In order to improve nitrogen recovery by rice, the effect of a urease inhibitor phenylphosphorodiamidate (PPD) on the efficiency of fertilizer urea was studied in laboratory and greenhouse. Addition of PPD to urea (5% w/w) delayed urea hydrolysis by 3 to 4 days and reduced ammonia volatilization from 45% (without PPD) to 8.5% (with PPD). Ammonia volatilization obeyed first order kinetics. Urea hydrolysis was sufficiently strongly inhibited to match the nitrification potential of the soil. N application to rice by three different modes showed that a delayed mode (4 splits) was superior to two conventional modes (3 splits) in nitrogen recovery and fertilizer efficiency since it met nitrogen requirement of plants at reproductive stage. In 2 out of 3 modes of application, there was a 14% increase (relative) in grain yields and dry matter, and 6.8% increase in N uptake efficiency on application of PPD along with urea. The results indicate that urease inhibitors like PPD can be effectively used to block urea hydrolysis, reduce ammonia volatilization losses and improve N use efficiency by rice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 80 (1984), S. 321-335 
    ISSN: 1573-5036
    Keywords: Alfisol ; Ammonification ; Nitrification ; Nitrogen mineralization ; Temperate forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 82 (1984), S. 117-123 
    ISSN: 1573-5036
    Keywords: Nitrification ; Nitrification inhibition ; N-Serve ; Urea fertilizer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Urea hydrolysis was studied in samples taken from a coastal sand dune succession, from uncolonized sand; the rhizosphere ofAmmophila arenaria and soil from the mature dune. Comparisons were made with urea hydrolysis in a fertile loam soil. Urea was hydrolyzed in all sand and soil samples, with complete hydrolysis occurring after 6 and 3 weeks in the rhizosphere sand and dune soil compared with only 4 days in the fertile loam. A third of the added urea, however, was still present in the uncolonized sand samples 6 weeks after the beginning of the incubation period. Urea hydrolysis broadly correlated with urease activity. The liberated NH 4 + was oxidized to NO 3 − −N in all samples. Urea stimulated the release of N from native organic matter in the two soils, but not sands, due presumably to the low organic matter content of the latter. Nitrite accumulated in the dune sands and soil, but not in the fertile loam. Although N-Serve (Nitrapyrin) had no effect on urea hydrolysis in any of the treated samples, it inhibited the nitrification of released NH 4 + −N. The relevance of these findings to the use of urea as a fertilizer to improve plant growth and dune stabilization is commented upon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-5036
    Keywords: Ammonification ; Clay soil ; Exchangeable ammonium ; Grassland ; Incubation ; Kinetics ; Nitrate ; Nitrification ; N cycle ; N mineralization ; Soil Moisture ; Soil temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Net mineralization of N and net nitrification in field-moist clay soils (Evesham-Kingston series) from arable and grassland sites were measured in laboratory incubation experiments at 4, 10 and 20°C. Three depth fractions to 30 cm were used. Nitrate accumulated at all temperatures except when the soil was very dry (θ=0.13 cm3 cm−3). Exchangeable NH4-ions declined during the first 24 h and thereafter remained low. Net mineralization and net nitrification approximated to zero-order reactions after 24 h, with Q10 values generally 〈1.6. The effect of temperature on both processes was linear although some results conformed to an Arrhenius-type relationship. The dependence of net mineralization and net nitrification in the field soil on soil temperature (10 cm depth) and moisture (0–15, 15–25, 25–35 cm depths) was modelled using the laboratory incubation data. An annual net mineralization of 350 kg N ha−1 and net nitrification of 346 kg N ha−1 were predicted between September 1980 and August 1981. The model probably overstressed the effect of soil moisture relative to soil temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 86 (1985), S. 425-439 
    ISSN: 1573-5036
    Keywords: Ammonium ; Chloride ; Growth ; Inhibition ; Monod model ; Nitrification ; Soil ; Sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Following the addition of 0–75 μmole N g−1 as ammonium chloride or ammonium sulphate to a sandy loam soil the nitrate formed was measured daily for a period of 15–17 days. The nitrate produced as a function of time was described using the Monod equation for microbial growth. An optimisation technique is described for obtaining, from the nitrification time course data, the maximum specific growth rate, the affinity constantant and an index limited by the concentration of ammonium in soil solution. Additions of more than 7.3 μmoles N g−1 soil as ammonium chloride were found to inhibit nitrification. The inhibition was interpreted as being caused by osmotic pressure or by chloride ion. A similar effect was not found with ammonium sulphate, because the salt concentration in the soil solution was restricted by the precipitation of calcium sulphate. The model developed was capable of accounting for nitrate production in the soil under non-steady state conditions of substrate concentrations and nitrifier biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1573-5036
    Keywords: Bacteria ; Fungi ; Mineralization ; Nitrification ; Thuja plicata ; Tsuga heterophylla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial numbers in the forest floor and mineral soil (Al horizon) under large individual western hemlock (Tsuga heterophylla) and western redcedar (Thuja plicata) trees were compared. The lower pH and base saturation of hemlock samples was associated with higher fungal spore counts while cedar samples had higher total microbial counts and populations of ammonium oxidizing bacteria. Nitrogen mineralization rates were greater in laboratory incubations of hemlock soil but nitrification was only observed in incubations of cedar soil. These differences in nitrogen mineralization and nitrification are aspects of species-specific nutrient cycling regimes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-5036
    Keywords: Arthrocnemum ; Nitrification ; Rhizosphere ; Salinity ; Suaeda
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The nitrification rate in the rhizosphere of Suaeda and Arthrocnemum plants growing in saline soils, as affected by microbial populations, temperature, pH, and organic matter, was examined in the field throughout the year. The genera Nitrosomonas and Nitrobacter were most common in the rhizosphere soil. The bacterial counts in the rhizosphere of both plants fluctuated during the study period, reaching peak values during February–March and in August. The nitrate concentration in the rhizosphere soil could be related with the observed increase in the numbers of ammonium-oxidizers and nitrite-oxidizers in the latter part of the study period. The pH of the rhizosphere soils did not have any influence on the nitrification rate at the values measured. The rhizosphere organic content varied between 1.8 and 4% (w/w), showing the continuous availability of organic matter in the soil. The seasonal changes in bacterial populations in the rhizospheres of both plants was described as the result of the combination of several factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1573-5036
    Keywords: Ammonification ; Groundwater pollution ; Hydrolyzable-N ; Nitrification ; Phosphatase ; Urease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The aim of this work has been to determine the effect of sterilized and non-sterilized, acrobically or anaerobically digested sewage sludges on urease and phosphatase activities, on populations of nitrite oxidizers and on some chemical properties in laboratory conditions and for long incubation periods. Both urease an phosphatase activities were affected when anaerobic sludges were added to the soil. The inhibitory effects on both enzyme activities attributed to the presence of heavy metals were probably masked by the additional source of organic matter both with acrobic and anaerobic sludges. The level of the NO 2 − oxidizer populations was higher in the aerobic than in the anaerobic sludge amended soil. Ammonia-N concentration were increased when the soil received sludges reflecting a higher mineralization rate probably due to a stimulation of the indigencous ammonia producing microorganisms since differences between non-sterilized and sterilized treatments were minimal or absent. Nitrate-N concentrations increased in amended soils and care must be taken to restrict as much as possible the downward movement of nitrate in order to minimize ground-water pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 85 (1985), S. 219-227 
    ISSN: 1573-5036
    Keywords: Leaching ; Nitrification ; Nitrogen fertilizer ; Salinity ; Urea hydrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the transport and transformation of urea under steady-state conditions in two soils and at three water salinities (1.0, 5.0, and 10.0 dS/m) using laboratory soil columns. A mathematical model that considers diffusion, convection, adsorption and first-order kinetic transformation of nitrogen was used to describe measured effluent concentration of the two nitrogen species. Increasing salt levels in the applied water decreased the hydrolysis of urea in the two soils studied with first-order rate coefficients decreasing from 0.015 to 0.009 h−1 in the fine sandy loam, and from 0.075 to 0.015 h−1 in a silty loam. Similarly, the nitrification rate decreased by 50% and 70% in the two soils as salinity increased. The rate coefficients measured in the leaching studies were much smaller than measured in incubation-type experiments. Calculated half-lives for urea and NH 4 + provided a method interpreting the kinetic rate coefficients as a function of the experimental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 83 (1985), S. 47-53 
    ISSN: 1573-5036
    Keywords: EUF-N fractions ; Nitrification ; NO3 leaching ; Slurry-N ; Dicyandiamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Increasing quantities of slurry (30, 60 and 90 m3/ha as well as 60 m3/ha + DIDIN) were applied to two sandy soils both in September and in December 1982. During the 1982/83 winter EUF-N was determined in soil horizons (0–30 cm, 30–60 and 60–90 cm). EUF-NO3 and EUF-Norg clearly reflected the different quantities of slurry applied. The retarding effect of DIDIN on nitrification could also be demonstrated by means of the EUF-N contents. Due to the mild and humid climate prevailing in the winter of 1982/83 slurry-NO3 of the September applications had obviously been leached out of the 0–60 cm soil layer in all treatments by February and even out of the 60–90 cm layer by March 24. Translocation of NO3 was also observed for slurry applied in December. But in this case on March 24 the EUF-NO3 contents in the 60–90 cm layer still reflected the quantities of slurry applied four months earlier. After slurry application the EUF-Norg fraction of a soil initially consists mainly of NH 4 + which is rapidly oxidized to NO3 and transferred in this form to deeper layers. As a consequence a rapid decline in EUF-Norg fraction is observed. It could therefore be expedient to consider the Norg and EUF-NH 4 + fractions separately when slurry applications are concerned.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 369-382 
    ISSN: 1573-5036
    Keywords: Azido nitro benzene ; Nitrapyrin ; Nitrification ; Nitro and nitroso aromatic compounds ; Organic nitrogen ; Phenolic compounds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The conversion of substantial amounts of ammonia nitrogen into organic nitrogen as a direct result of nitrification at neutral pH-values, was monitored in soil suspensions amended with ammonium nitrogen. The influence of the chemolithotrophic nitrifying bacteria was verified by applying nitrapyrin as a selective inhibitor in control experiments. In addition, the role of phenolic compounds was examined by adding α naphthol. The factors influencing the nitrification processi.e. pH, NH 4 + −N, NO 2 − −N, NO 3 − −N were measured during a 60 days incubation period. Nitrification started to be active after 5 and 10 days in the normal and the naphthol spiked soil suspensions respectively; it was inhibited in the nitrapyrin controls. Parallel with nitrification, formation of organic nitrogen was observed. The humic matter fractions were extracted and analyzed by I.R. spectroscopy which revealed the valence vibration ranges of nitro and nitroso groups fixed in different positions on aromatic compounds, both for normal and naphthol spiked samples. High resolution gas chromatography combined with mass spectroscopic analysis indicated the formation of nitrosonaphtholes. In addition a novel organic nitro compound was identifiedi.e. an azido nitro benzene. No nitrogen was fixed in the samples treated with nitrification inhibitor. A mechanism for the fixation of nitrite nitrogen during nitrification is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 383-399 
    ISSN: 1573-5036
    Keywords: Nitrapyrin ; Nitrification ; Organic nitrogen formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The formation of mineral nitrogen species and of organic nitrogen was studied in three different types of soils in relation to the application of the nitrification inhibitor nitrapyrin. The results indicate that nitrification brings about a deficit in total mineral nitrogen and a concomitant surplus in non biomass organic nitrogen. This phenomenon increases with increasing levels of applied ammonium nitrogen and soil organic matter. The phenomenon is considered to be due to the reaction of the transient nitrite formed with soil phenolic compounds and appears to be of significance in all soils in which nitrification occurs, even neutral to alkaline and low carbon soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 401-409 
    ISSN: 1573-5036
    Keywords: Immobilization ; Labelled fertilizer ; Mineralization ; Mineral nitrogen incorporation %15Natom excess ; Nitrapyrin ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of nitrification on the status of soil organic nitrogen is examined by applying NH 4 + -15N to the soil in the absence and the presence of a selective inhibitori.e. nitrapyrin. Parallel with nitrification, formation of organic nitrogen from the added fertilizer was followed. In the soil examined (pH 6.5, 4% organic carbon),ca. 55% of the fertilizer-N was immobilized during the 60 days incubation period, as a consequence of the nitrification process. Nitrification not only appeared to contribute to the binding of added mineral nitrogen onto soil organic matter, but also to re-immobilization of mineralised soil nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 97 (1987), S. 37-45 
    ISSN: 1573-5036
    Keywords: Ammonium ; Chloride ; Inhibition ; Nitrification ; Osmotic pressure ; Sorbitol ; Sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A short term nitrification assay (〈18 h) was used to assess the effect of high concentrations of different solutes on the rate of nitrate production. High solute concentrations were found to inhibit nitrification and the degree of inhibition was related both to the osmotic pressure of the soil solution and the osmoticum used. Ammonium chloride, ammonium sulphate and sorbitol were used as sources of osmotic pressure. The results showed that, with ammonium salts, no inhibition was observed with pressures less than 2 atm. Above these values, the severity of the inhibition followed the order ammonium chloride〉ammonium sulphate〉sorbitol up to the maximum osmotic pressure studied (25 atm). With ammonium chloride, a pressure of 3.5 atm. was sufficient to cause a 90% inhibition of nitrification rate. The inhibition produced by mixtures of ammonium chloride and sorbitol, each mixture generating an osmotic pressure of 5 atm. in the assay, was also investigated. The results suggest that inhibition by Cl-ion is disproportionate to its contribution to the osmotic pressure of the soil solution. The recovery of the nitrification rate, following exposure to high osmotic pressure solutions, was also investigated. It was found that the recovery of the nitrification rate was only partial, with the extent of the recovery diminishing as the severity of the initial osmotic stress applied increased. These results suggest that both reversible and irreversible mechanisms are involved in the inhibition of nitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 97 (1987), S. 189-200 
    ISSN: 1573-5036
    Keywords: Immobilization ; Leaching ; Nitrification ; 15N ; N fertilizers ; Winter wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field experiments with winter wheat (Triticum aestivum L.) were conducted in two years at two locations using15N-enriched (NH4)2SO4 on Smolan silt loam (Pachic Argiustoll) and Ost loam (Typic Arguistoll) soils. The objective was to relate differences in crop utilization of fertilizer to movement and transformations of the N in a complete factorial experiment having fall and spring applications, banded and broadcast, with and without nitrapyrin. Plant uptake of the 60 kg N/ha applied varied from 31% to 62% with greatest uptake when fertilizer was banded in the spring without nitrapyrin and least uptake from fall and spring broadcast treatments using nitrapyrin. Analysis of single factor effects showed greater crop contents of fertilizer N for spring than fall applications. That was related to immobilization of the applied N. Much more fertilizer N was in inorganic forms during the period of rapid wheat growth with spring applications than with fall. Banding the fertilizer at a depth of 0.05 m resulted in greater plant uptake than broadcasting or banding it on the soil surface. A significant portion of the applied N was immobilized near the point of application. That limited the downward movement of the N placed on the surface, making it less available to plant roots than the N placed 0.05 m deep where soil moisture was more favorable. Use of nitrapyrin resulted in lowered amounts of fertilizer N as NO3-until mid-May for fall treatments and until harvest with spring treatments. That appeared to be the reason for lowered plant uptake when nitrapyrin was used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1573-5036
    Keywords: Denitrification ; Leaching ; Legumes ; Nitrification ; Nitrogen ; Tillage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrogen (N) dynamics were studied in conventional and no-tillage agroecosystems on the Georgia Piedmont. Nitrogen inputs in the form of ammonium nitrate (95 kg-N/ha) and winter legume (crimson clover) residues were compared. The legume provided adequate N for summer crop (grain sorghum) production, but water use by the legume reduced the ability of sorghum to utilize the N. Legume N inputs became availabe to plants more gradually than fertilizer inputs. Weed growth and potential denitrification activity were higher in legume-N treatments than in fertilizer-N treatments. Tillage affected the timing of N avaialbility more than the total amount of available N. Summer crops took up more N under conventional tillage while winter crops took up more N under no-tillage. Denitrification activity was higher under no-tillage but was not a significant output from the agroecosystems. Leaching losses of N differed seasonally between treatments but were not significant in any of the agroecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 55 (1980), S. 225-233 
    ISSN: 1573-5036
    Keywords: Ammonification ; Mineral nitrogen recovery ; Nitrapyrin (N-Serve) ; Nitrification ; Soil drying ; Soil pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A study of changes in NH4 + and NO3 −−N in Maahas clay amended with (NH4)2SO4 and subjected to 4 water regimes in the presence and absence of the nitrification inhibitor N-Serve (Nitrapyrin) showed that the mineral N was well conserved in the continoous regimes of 50% and 200% (soil weight basis) but suffered heavy losses due to nitrification-denitrification under alternate drying and flooding. N-Serve was effective in minimizing these losses. Another incubation study with 3 soils showed that after 10 cycles of flooding and drying (either at 60°C or 25°C), the ammonification of soil N was enhanced. Nitrification of soil as well as fertilizer NH4 + was completely inhibited upto 4 weeks by the treatments involving drying at high temperature. Flooding and air drying at 25°C, on the other hand, enhanced ammonification of soil N but retarded nitrification. These treatments, however, enhanced both ammonification and nitrification of the applied NH4 + fertilizer N. Under flooded conditions rate of NH4 + production was faster in soils that were dried at 60°C or 25°C and then flooded as compared to air dried soils. It is concluded that N losses by nitrification-denitrification and related N transformations may be considerably altered by alternating moisture regimes. Flooding and drying treatments seem to retard nitrification of soil N but conserve that of fertilizer NH4 + applied after these treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1573-5036
    Keywords: Acidity control ; Ammonium sulphate ; Calcium carbonate ; Nitrate ; Nitrification ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary When calcium carbonate incorporated nutrient solution containing ammonium sulphate was added to sand in pots marked nitrification of the added ammonium was noted. It resulted in improved growth of tea plants and the toxicity effects of ammonium ions were completely eliminated. Where urea was used as the form of N supply, moderate (50%) nitrification was observed to occur even in the absence of calcium carbonate, however it was very rapid in its presence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 56 (1980), S. 165-168 
    ISSN: 1573-5036
    Keywords: Flooded soil ; Insecticides ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of a commercial granular formulation of hexachlorocyclohexane (HCH) on nitrification in a flooded soil was studied at 10 and 100 ppm a.i. The oxidation of the added ammonium to nitrate was inhibited significantly at 10 ppm and almost completely at 100 ppm, concomitant with a proportional decrease in the, populations of ammonium- and nitrite-oxidising autotrophic bacteria. Of special interest is the synergistic increase in the inhibition of nitrification by a combined application of HCH and carbofuran.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 57 (1980), S. 143-146 
    ISSN: 1573-5036
    Keywords: Aerobic incubation ; Anaerobic incubation ; Low pH ; Nitrification ; Organic matter ; Release of ammonium ; Total N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Mineralization of soil nitrogen studies with two acid sulfate soils under anaerobic and aerobic incubation at 30°C for 2 weeks showed that the mineral N was released and accumulated entirely as NH 4 + in both soils. Nitrification did not occur in either of the soils under conditions that stimulate nitrification. The acid sulfate soils studied release good amounts of mineralizable N, and, because of lack of nitrifying activity, denitrification may not be a serious problem in these soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 59 (1981), S. 407-414 
    ISSN: 1573-5036
    Keywords: Incubation ; Nitrification ; Rice-soil ; Redox potential ; Submergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil samples from the surface (0–0.5 cm) and subsurface (0.5–5.0 cm) in a wetland field cultivated with rice and submerged for different periods up to 6 weeks were incubated for 2 weeks in the laboratory under flooded or unflooded condition, with added NH4 +−N. The ammonium and nitrate-N of the incubated-soils indicate that in the surface soil (a) nitrification is retarded when submerged for 4 weeks or more (b) nitrification did not resume to former levels within 2 weeks after air drying for a period of 1 week. In the subsurface soil, submergence for 2 weeks caused a retardation of nitrification but longer submergence did not reduce nitrification any further. During submergence, redox potential at 2 mm remained at relatively high values but began to decline 30 days after submergence. At 5 cm, Eh indicated reduced conditions from the time of submergence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 59 (1981), S. 495-498 
    ISSN: 1573-5036
    Keywords: A.M. ; Dicyandiamide ; Inhibition ; Karanjin ; Nitrapyrin ; Nitrification ; Sandy clay loam
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Comparative evaluation of Kranjin and three patented nitrification inhibitors for retardation of nitrification of urea in a sandy clay loam showed that the effectiveness of the compounds tested decreased in the order: Nitrapyrin〉Karanjin〉A.M.〉dicyandiamide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 93 (1986), S. 347-357 
    ISSN: 1573-5036
    Keywords: Dew ; Grasslands ; Nitrification ; Nitrogen ; Semiarid ecosystems ; Soil texture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The depth distributions of rates of net nitrogen mineralization and nitrification were measured in a series of field and laboratory incubations. Field studies suggested that the highest rates of mineralization and nitrification occurred in the surface 2.5 cm such that forty to sixty percent of the N mineralization in 20-cm soil column occurred in the surface 2.5cm. Some upward nitrate movement occurred but laboratory studies suggested that surface rates were not an artifact of nitrate mobility alone. Microclimatic data indicate that either dew or upward movement and condensation of soil water vapor may drive biological activity at the soil surface. High rates of N mineralization even in dry horizons were sustained as long as water was stored within the 0-to 20-cm depth. High rates of nitrification were found in all incubations, and field measurements showed NO 3 − to be the predominant form of inorganic N, despite previous characterization of the shortgrass steppe as an NH 4 + -dominated system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1573-5036
    Keywords: Nitrification ; Organic matter ; Sulphur cycle ; Sulphur oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 97 (1987), S. 445-450 
    ISSN: 1573-5036
    Keywords: Dentrification ; Enzyme assays ; Most probable numbers ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three methods for assaying nitrification and denitrification were compared in agricultural field plots in the Southeastern USA. Nitrification was measured using the chlorate inhibition enzyme assay, by measuring (NO 3 − −N) production in controlled incubations and by most probable number (MPN) determinations. Denitrification was measured by the phase I enzyme assay, by incubation of soil cores and by MPN determinations. The methods were compared in terms of their representation of seasonal patterns and treatment differences. The enzyme assays were most effective for showing treatment differences because they measure maximum potential enzyme biomass activity which is an integrated product of treatment effects. The incubation methods required minimal alteration ofin situ soil conditions but were confounded by other biological processes and by high spatial and temporal variabiltiy. MPN determinations were time consuming and were least effective for illustrating treatment differences and seasonal patterns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1573-5036
    Keywords: Ammonium ; Disease suppression ; Gaeumannomyces graminis var.tritici ; Liming ; N fertilizer sources ; Nitrate ; Nitrification ; Triticum aestivum L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil pH, NH 4 + and NO 3 − concentrations in soil, and take-all root rot of winter wheat grown in the field were measured concurrently from sowing to anthesis in order to relate disease development to liming and N fertilization practices. Experimental variables included soil pH (5.5 and 6.0) and three N sources (NH4NO3, (NH4)2SO4, NH4Cl) banded with the seed at sowing in factorial combination with the same three N sources topdressed in the spring. Take-all severity was increased by increasing soil pH and by fertilization with NO 3 − . Disease severity on crown roots increased exponentially following spring N fertilization and was affected more by soil pH and N-form than was severity on seminal roots. Grain yield ranged from 4.70 Mgha−1 with spring NH4NO3 at soil pH 6.0 to 7.65 Mgha−1 with spring NH4Cl at soil pH 5.5. Sixty-six percent of the variability in grain yield was explained by the number of take-all infected crown roots per tiller at anthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1573-5036
    Keywords: Barley (Hordeum disticum) ; Denitrification ; Green house experiment ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary To examine the effect of barley roots on denitrification, a pot experiment was designed to compare N2O production and denitrification in soils with and without barley plants. Denitrification, N2O resulting from denitrification and nitrification, and respiration were estimated by incubating pots with soil with and without intact plants in plastic bags at high moisture levels. C2H2-inhibition of nitrous oxide reductase (partial pressure of 10 kPa C2H2) was used to determine total denitrification rates while incubations with ambient air and with C2H2 at partial pressures of 2.5–5 Pa were used to estimate the amounts of N2O released from autotrophic nitrification and from denitrification processes. Other sources of N2O were presumed to be negligible. Potential denitrification, nitrification and root biomass were measured in subsamples collected from four soil depths. A positive correlation was found between denitrification rates and root biomass. N2 was the predominant denitrification product found close to roots; N2O formed by non autotrophic nitrifiers, assumed to be denitrifiers originated in soil not affected by growing roots. Apparently, roots promote denitrification because they consumed oxygen, thereby increasing the anaerobic volume of the soil. The ratio of actual to potential denitrification rates increased over time, especially in the presence of roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1573-5036
    Keywords: Ammonium oxidation ; Clusters ; Modelling ; Nitrification ; pH effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The time course of nitrate production is different in different soils; in some soils, nitrate is produced at a constant rate while in others, this rate increases with time, often exponentially. Mechanistic models, based on the Monod equations, cannot account for a constant rate of nitrification. All such mechanistic models make the implicit assumption that the nitrifying organisms are distributed uniformly as single cells throughout the soil volume, while in reality, the cells might be expected to occur in small clusters formed by repeated cell division. This paper examines the effects of allowing the ammonium oxidising cells to occur in evenly distributed clusters of cells of equal volume. One effect of clustering would be the lowering of soil pH around the cluster, caused by differences in the rates of acid production and diffusion. The effects of this pH depression were examined using a mathematical model. In general, it was found that the effect of clustering was to reduce the rate of ammonium oxidation. In extreme cases, in which the fraction of the soil volume occupied by the cells was assumed to be small, the model predicted a constant rate of ammonium oxidation with time in contrast to the increasing rate with time predicted by a model based on a uniform single cell distribution. The clustering model was therefore capable of reproducing the different time courses of ammonium oxidation reported in the literature. The differences between the time courses of ammonium oxidation predicted using the two different assumptions was affected by the initial pH of the soil. This observation suggested a possible experimental test of the clustering hypothesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1573-5036
    Keywords: Acidification ; Air pollution ; Aluminium ; Ammonium sulphate ; Nitrification ; Nutrient leaching ; Pinus nigra var.Maritima ; Potassium deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary As a result of air pollution, considerable deposition of ammonium sulphate occurs on vegetation and soil in the vicinity of chicken farms and fields dressed with animal slurry. A clear relation exists between this ammonium sulphate deposition and the distance to certain agricultural activities. Field investigations and ecophysiological experiments both show that the needles ofPinus nigra var.maritima (Ait.) Melville take up ammonium and excrete potassium, magnesium and calcium. This often results in potassium and/or magnesium deficiencies and may lead to premature shedding of needles. The high levels of nitrogen in the needles are strongly correlated to fungal diseases. Whether the observed cation leaching will result in disturbed nutrient budgets depends mainly on soil conditions. Leaching of K, Mg and Ca from the soil, caused by ammonium sulphate, may further inhibit nutrient uptake. Field investigations show a clear correlation between increased ratios of NH4 to K, Mg and Ca in the soil solution and the damage to pine forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...