ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11,477)
  • AERODYNAMICS  (5,790)
  • CYBERNETICS  (2,872)
  • INSTRUMENTATION AND PHOTOGRAPHY  (2,815)
  • 1990-1994  (6,046)
  • 1985-1989  (5,431)
Collection
  • Other Sources  (11,477)
Source
Years
Year
  • 1
    Publication Date: 2009-11-23
    Description: The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions that are of intrinsic concern to AI. We present examples of current AI work on specific design tasks, and discuss new directions of research, both as extensions of current work and in the context of new design tasks where domain knowledge is either intractable or incomplete. The domains discussed include Digital Circuit Design, Mechanical Design of Rotational Transmissions, Design of Computer Architectures, Marine Design, Aircraft Design, and Design of Chemical Processes and Materials. Work in these domains is significant on technical grounds, and it is also important for economic and policy reasons.
    Keywords: CYBERNETICS
    Type: NASA. Ames Research Center, Collection of Viewgraphs; 41 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The compressible dynamic stall flowfield over a NACA 0012 airfoil transiently pitching from 0 to 60 deg at a constant rate under compressible flow conditions has been studied using real-time interferometry. A quantitative description of the overall flowfield, including the finer details of dynamic stall vortex formation, growth, and the concomitant changes in the airfoil pressure distribution, has been provided by analyzing the interferograms. For Mach numbers above 0.4, small multiple shocks appear near the leading edge and are present through the initial stages of dynamic stall. Dynamic stall was found to occur coincidentally with the bursting of the separation bubble over the airfoil. Compressibility was found to confine the dynamic stall vortical structure closer to the airfoil surface. The measurements show that the peak suction pressure coefficient drops with increasing freestream Mach number, and also it lags the steady flow values at any given angle of attack. As the dynamic stall vortex is shed, an anti-clockwise vortex is induced near the trailing edge, which actively interacts with the post-stall flow.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 3; p. 586-593
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The effect of the porous leading edge of an airfoil on the blade-vortex interaction noise, which dominates the far-field acoustic spectrum of the helicopter, is investigated. The thin-layer Navier-Stokes equations are solved with a high-order upwind-biased scheme and a multizonal grid system. The Baldwin-Lomax turbulence model is modified for considering transpiration on the surface. The amplitudes of the propagating acoustic wave in the near field are calculated directly from the computation. The porosity effect on the surface is modeled in two ways: (1) imposition of prescribed transpiration velocity distribution and (2) calculation of transpiration velocity distribution by Darcy's law. Results show leading-edge transpiration can suppress pressure fluctuations at the leading edge during blade-vortex interaction and consequently reduce the amplitude of propagating noise by 30% at a maximum in the near field.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 3; p. 480-488
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: A method has been developed for calculating the viscous flow about airfoils with and without deflected flaps at -90 deg incidence. This method provides for the solution of the unsteady incompressible Navier-Stokes equations by means of an implicit technique. The solution is calculated on a body-fitted computational mesh using a staggered-grid method. The vorticity is defined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and the continuity equation at the mesh-cell centers. The method provides for the noniterative solution of the flowfield and satisfies the continuity equation to machine zero at each time step. The method is evaluated in terms of its stability to predict two-dimensional flow about an airfoil at -90-deg incidence for varying Reynolds number and laminar/turbulent models. The variations of the average loading and surface pressure distribution due to flap deflection, Reynolds number, and laminar or turbulent flow are presented and compared with experimental results. The comparisom indicate that the calculated drag and drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results at a similar Reynolds number.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 3; p. 449-454
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 51; 3; p. 439-465
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Rotor noise prediction codes predict the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predicitions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and cyclic flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the chordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of Central Processing Unit (CPU) time necessary for the various approximations.
    Keywords: AERODYNAMICS
    Type: American Helicopter Society, Journal (ISSN 0002-8711); 39; 3; p. 43-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The U.S. National Aeronautics and Space Administration (NASA) Balloon Program has been highly successful since recovering from the catastrophic balloon failure problems of the early to mid 1980s. Balloons have continued to perform at unprecedented success rates. The comprehensive research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. The long duration balloon project will be transitioning from a development effort to an operational capability this year. Recently, emphasis has been placed on the development and implementation of new support systems and facilities. A new permanent launch facility at Fort Sumner, New Mexico has been established. New ground station support equipment is being implemented, and a new heavy load launch vehicle is scheduled to be implemented in 1992. The progress, status and future plans for these and other aspects of the NASA program will be presented.
    Keywords: AERODYNAMICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)129-(2)135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.
    Keywords: AERODYNAMICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)137-(2)146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.
    Keywords: AERODYNAMICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)49-(2)52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1549-1551
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...