ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (224)
  • Other Sources
  • photosynthesis  (224)
  • Springer  (224)
  • 1995-1999  (224)
  • 101
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 62 (1999), S. 1-29 
    ISSN: 1573-5079
    Keywords: chloroplast ; chlorosome ; chromatophore ; granules ; inositol ; Neurospora ; path of carbon ; photosynthesis ; polythdroxyalkanoate (PHA) ; prokaryote cellular inclusions ; protozoan biochemistry ; ribulose 1 ; 5-bis-phosphate ; Tetrahymena
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract What follows is a very personal account of my professional life and the early years that preceded it. I have described the social and economic conditions in America and how the nineteen twenties and thirties nurtured our scientific future. The description of the early part of post-World War II research covers my experience in the areas of nutritional biochemistry, biochemical genetics and proceeds to photosynthesis. The latter era lasted around 35 years. For me the most memorable research accomplishments in which I was a participant during this period was the first demonstration of the primary carboxylation enzyme in an in vitro system in algal and higher plants as well to show that it was structurally associated with the chloroplast.Our group while at Oak Ridge and the University of Massachusetts assembled data that described the complete macromolecular assembly of the photosynthetic apparatus of the unusual photosynthetic green bacterium Chloroflexus aurantiacus and created a model of that system which differed greatly from the chomatophore system for the purple bacteria. For the last decade, my scientific journey, with numerous new colleagues has turned to the exciting area of biomaterials.We characterized and modeled the completely new bacterial intracellular inclusions responsible for the synthesis and degredation of biosynthetic, biodegradable and biocompatible bacterial polyesters in the cytoplasm of Pseudomonads.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    ISSN: 1573-5079
    Keywords: (bacterio)chlorophyll ; energy transfer ; light harvesting ; membrane proteins ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Unlike the α and β polypeptides of the core light-harvesting complex (LH1) of Rhodobacter (Rb.) sphaeroides, the α and β polypeptides of the peripheral light-harvesting complex (LH2) of this organism will not form a subunit complex by in vitro reconstitution with bacteriochlorophyll. Guided by prior experiments with the LH1 β polypeptides of Rb. sphaeroides and Rhodospirillum rubrum, which defined a set of interactions required to stabilize the subunit complex, a series of mutations to the Rb. sphaeroides LH2 β polypeptide was prepared and studied to determine the minimal changes necessary to enable it to form a subunit-type complex. Three mutants were prepared: Arg at position −10 was changed to Asn (numbering is from the conserved His residue which is known to be coordinated to bacteriochlorophyll); Arg at position −10 and Thr at position +7 were changed to Asn and Arg, respectively; and Arg at position −10 was changed to Trp and the C-terminus from +4 to +10 was replaced with the amino acids found at the corresponding positions in the LH1 β polypeptide of Rb. sphaeroides. Only this last multiple mutant polypeptide formed subunit-type complexes in vitro. Thus, the importance of the C-terminal region, which encompasses conserved residues at positions +4, +6 and +7, is confirmed. Two mutants of the LH1 β polypeptide of Rb. sphaeroides were also constructed to further evaluate the interactions stabilizing the subunit complex and those necessary for oligomerization of subunits to form LH1 complexes. In one of these mutants, Trp at position −10 was changed to Arg, as found in LH2 at this position, and in the other His at position −18 was changed to Val. The results from these mutants allow us to conclude that the residue at the −10 position is unimportant in subunit formation or oligomerization, while the strictly conserved His at −18 is not required for subunit formation but is very important in oligomerization of subunits to form LH1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    ISSN: 1573-5095
    Keywords: Key words ; Water relations ; photosynthesis ; chlorophyll a fluorescence ; artificial forest regeneration ; cold storage ; frost hardiness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Logistic problems of large-scale reforestation necessitate freezer-storage of conifer seedlings. Frozen stock is typically thawed slowly at low temperatures for up to several weeks before shipping to the plantation site, but the necessity of this practice is questionable. Experiments were conducted to study effects of different thawing regimes on photosynthetic recovery, frost hardiness, water relations and growth initiation in “interior spruce” (white spruce (Picea glauca (Moench) Voss) and Engelmann spruce (Picea engelmannii Parry) hybrid complex). One year-old container-grown seedlings were planted after 9 days post-storage thawing at 5–15 °C or still frozen, directly from the freezer. During a 29 day observation period after planting, both groups showed changes in xylem water potential (Ψw), carbon fixation (A), stomatal conductance (g s ), chlorophyll a fluorescence and xanthophyll cycle pigments. Treatment differences in fluorescence and pigments peaked within one hour after planting. All differences in Ψw, A, g s , ratio of internal to external CO2 concentration (Ci/Ca), fluorescence, pigments and root number disappeared after 5 to 8 days. Terminal bud burst occurred 2.6 days earlier in the pre-thawed seedlings. When seedlings were rapidly thawed in the dark at 21 °C they achieved maximum Ψw (−0.2 MPa) in 3–4 hour. When evaluated 45 min after planting, A, g s , Ci/Ca and fluorescence values of rapidly thawed seedlings were intermediate between those for seedlings planted frozen or after 9 days slow thawing, showing that the recovery process was well underway a few hours after removal from the freezer. These results suggested that a suitable on-site operational protocol for rapid thawing might be to lay frozen bundles on the ground at ambient temperature overnight. In field trials of this method, rapidly thawed seedlings broke bud 3.3 days later than slowly thawed stock and also had greater frost hardiness at time of planting. Height, shoot and root mass did not differ after 3 months growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    Springer
    New forests 10 (1995), S. 79-98 
    ISSN: 1573-5095
    Keywords: Abies, acclimation ; photosynthesis ; shade tolerance ; Tsuga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Successful regeneration of coastal montane sites harvested using alternative silvicultural systems may depend on the degree to which tree species can acclimate morphologically and physiologically to a variety of light environments. In a study to determine shade acclimation in montane conifers, one-year-old amabilis fir (Abies amabilis (Dougl.) Forbes) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings were grown in a nursery under four shade treatments: full sunlight (0% shade), 60% and 30% shade using shade cloth, and 30% shade using lath slats. Shading influenced shoot development, foliar physiology and morphological characteristics of both amabilis fir and western hemlock but in general, the effects were small. Shade levels of 60% were required to induce significant acclimation, and western hemlock appeared to respond more positively than amabilis fir and therefore was considered more shade tolerant than amabilis fir. Light quality had little influence on growth and development, as indicated by a lack of significant differences in physiology or morphology between seedlings grown under shade cloth or lath slats. There were indications that adequate nutrition levels may mitigate the effects of shade on seedling morphology and physiology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 398-399 (1999), S. 361-373 
    ISSN: 1573-5117
    Keywords: production ; mathematical model ; Ecklonia cava ; light ; temperature ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dependence of photosynthesis on light and temperature is modelled through analysis of transition probabilities of photosystems. In the model, two transition probabilities are functions of light, and one transition probability is a function of temperature. The estimated light-saturated photosynthesis of Ecklonia cava blades at 20 °C was 0.037 mg C cm−2 h−1. The value of the activation energy, the standard enthalpy and the standard entropy were estimated to be 56.5 kJ mol−1, 204 kJ mol−1 and 678 J mol−1 K−1, respectively. A production model (an integral photosynthesis model) for an E. cava stand was developed using the photosynthesis model. Production calculated by the model agreed well with observed data during the growing period of an E. cava stand at a field observation site on the west side of Miura Peninsula, Japan. Results of the analysis of the effects of irradiance and temperature on the production of the E. cava community by the model are: 1. Production decreased with irradiance decrease. The estimated compensation irradiance was 26.5 μmol photons m−2 s−1 when the biomass was 3 kg wet mass m−2 (blade:stipe ratio = 2 kg m−2:1 kg m−2) and the temperature was 20 °C. 2. The optimum temperature decreased when irradiance decreased and when biomass increased. The highest estimated value for the optimum temperature was 24.0 °C. The estimated optimum temperature was 18.2 °C when the biomass was 12 kg wet mass m−2 and the photon irradiance was 200 μmol photons m−2 s−1. 3. The amount of biomass that resulted in the maximum production was influenced by irradiance and temperature. At 400 μmol photons m−2 s−1 and 20 °C, the estimated value of the biomass (blade:stipe = 2:1) giving the maximum pr oduction was about 5.3 kg wet mass m−2. However, at 100 μmol photons m−2 s−1 and 24 °C, the estimated value was about 3.0 kg wet mass m−2. The estimated values of the maximum production under the two conditions were 1.05 and 0.30 g C m−2 h−1, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 44 (1995), S. 55-65 
    ISSN: 1573-5079
    Keywords: asymmetry ; bacteriopheophytins ; electron transfer ; pigment replacement ; photosynthesis ; plant-type pheophytins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The native bacteriopheophytin a in reaction centers of Rb. sphaeroides R26 has been exchanged with modified bacteriopheophytins (bacteriochlorins), as well as with plant-type pheophytins (chlorins). Emphasis is on four pigments, which differ by their C-3 substituents (vinyl or acetyl) or their state of oxidation (chlorin or bacteriochlorin). The native BPhe a, which is a member of this group, can be replaced by the other three at both binding sites, HA and HB. However, exchange at HB proceeds more readily. Optical spectra (absorption, cd) show characteristic shifts, and the cd spectra indicate induced interactions between HA,B and BA,B and possibly also with P. Upon flash illumination, all modified reaction centers show reversible electron transfer to QB with recombination times comparable to native reaction centers. Forward rates and electron-transfer yields are also reported for some of the pigments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    ISSN: 1573-5079
    Keywords: photosynthesis ; specific mutagenesis ; chloroplast DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chloroplast transformation of Chlamydomonas reinhardtii has developed into a powerful tool for studying the structure, function and assembly of thylakoid protein complexes in a eukaryotic organism. In this article we review the progress that is being made in the development of procedures for efficient chloroplast transformation. This focuses on the development of selectable markers and the use of Chlamydomonas mutants, individually lacking thylakoid protein complexes, as recipients. Chloroplast transformation has now been used to engineer all four major thylakoid protein complexes, photosystem II, photosystem I, cytochrome b 6/f and ATP synthase. These results are discussed with an emphasis on new insights into assembly and function of these complexes in chloroplasts as compared with their prokaryotic counterparts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    ISSN: 1573-5079
    Keywords: D1 degradation fragments ; D1 proteolysis ; photosynthesis ; thylakoid membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and CP43 proteins were also degraded under such conditions of solubilization. Degradation of the D2 protein generated 24, 17 and 15.5 kDa fragments, and degradation of the CP43 protein gave rise to 28, 27.5, 26 and 16 kDa fragments. The presence of Ca2+ and urea protected the D1, D2 and CP43 proteins against degradation. Degradation of the D1 protein was also inhibited by the presence of a serine protease inhibitor suggesting that the putative protease involved belonged to the serine class of proteases. The protease had the optimum activity at pH 7.5; it was active at low temperature (0°C) but a brief heating (65°C) during solubilization destroyed the activity. Interestingly, the protease was active in isolated thylakoid membranes in complete darkness, suggesting that proteolysis may be a non-ATP-dependent process. Proteolytic activity present in thylakoid membranes seemed to reside outside of the PS II complex, as demonstrated by the 2-dimensional gel electrophoresis. These results represent the first (in vitro) demonstration of strong activity of a putative ATP-independent serine-type protease that causes degradation of the D1 protein in cyanobacterial thylakoid membranes without any induction by visible or UV light, by active oxygen species or by any chemical treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 57 (1998), S. 323-333 
    ISSN: 1573-5079
    Keywords: ATPase phosphorylation ; chloroplast ; envelope ATPase ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract P-ATPases such as the plasma membrane proton pump are known to generate a phosphorylated intermediate as a step in their reaction mechanism; phosphoenzyme formation is a basis for classification of an ATPase as a member of this subfamily of ion pumps. The chloroplast inner envelope is known to contain a H+-ATPase which acts to maintain an alkaline stroma and, thus, optimal photosynthesis. Our characterization of this chloroplast envelope proton pump described in this report focused on determining whether purified chloroplast inner envelope membrane protein preparations containing this ATPase form a phosphorylated intermediate. Incubation of envelope membranes with [γ-32P]ATP documented the formation of P-type ATPase phosphoenzyme intermediates by these membrane protein preparations. Our work cannot discount the possibility that more than one chloroplast inner envelope ATPase contributes to this phosphoenzyme formation. However, the kinetics of this phosphoenzyme formation, along with the sensitivity of phosphoenzyme formation to inhibitors and other assay conditions suggested that one of the envelope membrane proteins which is covalently radiolabeled by [γ-32P]ATP is a P-type H+-ATPase. Autoradiography of chloroplast envelope membrane proteins size fractionated on lithium dodecyl sulfate-PAGE indicated that the phosphoenzyme intermediate corresponds to a 103 kDa polypeptide. P-type proton pumps are known to be comprised of a single type of ∼100 kDa subunit. Experimental evidence presented in this report is consistent with the classification of a chloroplast inner envelope H+-ATPase as a P-type proton pump.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    ISSN: 1573-5079
    Keywords: circadian rhythms ; fluorescence ; gene regulation ; N2 fixation ; photosynthesis ; state transitions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract N2 fixation and oxygenic photosynthesis are important metabolic processes that are at odds with each other, since the N2-fixing enzyme, nitrogenase, is highly sensitive to oxygen. This review will discuss the strategies devised by the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142, to permit N2 fixation and photosynthesis to coexist in the same cell. This strain, like a number of other unicellular and filamentous (non-heterocystous) cyanobacteria, has developed a type of temporal regulation in which N2 fixation and photosynthesis occur at different times throughout a diurnal cycle. For nitrogenase, everyday dawns anew. The nifHDK operon is tightly regulated, such that transcription and translation occur within the first four hours of the dark period; nitrogenase is then proteolytically degraded. Photosynthesis also varies throughout the day reaching a minimum at the peak of nitrogenase activity and a maximum by late afternoon. This review will mainly concentrate on the various changes that occur in the photosynthetic apparatus as the cell modulates O2 evolution. The results indicate that the redox poise of the plastoquinone pool and the overall cellular energy needs are the basic driving forces behind these changes in the photosynthetic apparatus. Throughout the course of the diurnal cycle, Photosystem II becomes very heterogeneous as determined by 77 K fluorescence spectra, PAM fluorescence and O2-flash yield experiments. This system provides some important insight into cyanobacterial state transitions and, especially, on the organization of the photosystems within the membrane. Overall, PS II is altered on both the oxidizing and reducing sides of the photosystem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 58 (1998), S. 293-302 
    ISSN: 1573-5079
    Keywords: CO2 solubilization ; carbonic anhydrase ; Far-red light ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoacoustic signals were measured in expanded tobacco leaves, exposed to a controlled atmosphere by being only partly enclosed within the photoacoustic cell. It was aimed to corroborate the conjecture of Reising and Schreiber (Photosynthesis Research 42: 65-73, 1994) that under exceptionally high CO2 levels (ca. 1–5%) the photobaric uptake contribution reflects CO2 uptake induced by light dependent stromal alkalinization. This is shown here by: (1) the shallower damping of the uptake signal vs. the modulation frequency, compared to a normal oxygen evolution signal; (2) the partial inhibition of the uptake signal under 5% CO2 by nigericin; (3) the complete absence of uptake signals under 5% CO2 in a carbonic-anhydrase-deficient mutant, which gave rather a normal oxygen evolution signal. The photoacoustic signals from the wild type and the transgenic tobacco in air could not be distinguished, indicating that the CO2 uptake signal is negligible under this condition. Uptake photobaric signals were also measured in modulated far-red light (ca. 715–750 nm), following addition of white background light (in light limiting intensity). In normal tobacco under 5% CO2, the background light induced an uptake transient, lasting about a minute, then declining to a low steady level. Significantly smaller transients were obtained under normal air, and in the carbonic-anhydrase deficient mutant also under 5% CO2. Extrapolation to zero frequency of the signal damping vs. modulation frequency, in both tobacco genotypes, suggests however similar magnitudes of the uptake transients. On the other hand, no proportional steady-state uptake was observed for the last two cases. Presumably, the steady uptake under 5% CO2 in modulated far-red light reflects CO2 solubilization, while it is an open question whether the transient could be partly contributed also by oxygen photoreduction by PS I (Mehler reaction). It is reasoned that, under conditions of low light, the respiratory activity results in accumulation of CO2 in the photoacoustic cell, which is sufficient to induce an uptake phenomenon, giving a more satisfactory interpretation for the so-called 'low light state' [Cananni and Malkin (1984) Biochim Biophys Acta 766: 525–532].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; cyclic electron flow ; high temperature ; light scattering ; photosynthesis ; Photosystems II and I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In illuminated intact spinach chloroplasts, warming to and beyond 40 °C increased the proton permeability of thylakoids before linear electron transport through Photosystem II was inhibited. Simultaneously, antimycin A-sensitive cyclic electron transport around Photosystem II was activated with oxygen or CO2, but not with nitrite as electron acceptors. Between 40 to 42 °C, activation of cyclic electron transport balanced the loss of protons so that a sizeable transthylakoid proton gradient was maintained. When the temperature of darkened spinach leaves was slowly increased to 40°C, reduction of the quinone acceptor of Photosystem II, QA, increased particularly when respiratory CO2 production and autoxidation of plastoquinones was inhibited by decreasing the oxygen content of the atmosphere from 21 to 1%. Simultaneously, Photosystem II activity was partially lost. The enhanced dark QA reduction disappeared after the leaf temperature was decreased to 20 °C. No membrane energization was detected by light-scattering measurements during heating the leaf in the dark. In illuminated spinach leaves, light scattering and nonphotochemical quenching of chlorophyll fluorescence increased during warming to about 40 °C while Photosystem II activity was lost, suggesting extra energization of thylakoid membranes that is unrelated to Photosystem II functioning. After P700 was oxidized by far-red light, its reduction in the dark was biphasic. It was accelerated by factors of up to 10 (fast component) or even 25 (slow component) after short heat exposure of the leaves. Similar acceleration was observed at 20 °C when anaerobiosis or KCN were used to inhibit respiratory oxidation of reductants. Methyl viologen, which accepts electrons from reducing side of Photosystem II, completely abolished heat-induced acceleration of P700+ reduction after far-red light. The data show that increasing the temperature of isolated chloroplasts or intact spinach leaves to about 40 °C not only inhibits linear electron flow through Photosystem II but also activates Photosystem I-driven cyclic electron transport pathways capable of contributing to the transthylakoid proton gradient. Heterogeneity of the kinetics of P700+ reduction after far-red oxidation is discussed in terms of Photosystem I-dependent cyclic electron transport in stroma lamellae and grana margins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    ISSN: 1573-5079
    Keywords: bacteriochlorophyll a ; electron transfer ; light harvesting ; photosynthesis ; Rhodobacter sphaeroides ; reaction center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 59 (1999), S. 187-200 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; CO2 ; oxygen ; photosynthesis ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The kinetic properties of photosynthesis (both transient and steady-state) were monitored using three non-invasive techniques to evaluate limitations on triose-phosphate (triose-P) conversion to carbohydrate in rice. These included analyzing the O2 sensitivity of CO2 fixation and the assimilatory charge (AC) using gas exchange (estimate of the ribulose 1,5- bisphosphate pool) and measuring Photosystem II activity by chlorophyll fluorescence analysis under varying light, temperature and CO2 partial pressures. Photosynthesis was inhibited transiently upon switching from 20 to 2 kPa O2 (reversed O2 sensitivity), the degree of which was correlated with a terminal, steady-state suppression of low O2 enhancement of photosynthesis. Under current ambient levels of CO2 and moderate to high light, the transient pattern was more obvious at 18 °C than at 26 °C while at 34 °C no tra nsient response was observed. The transient inhibition at 18 °C ranged from 15% to 31% depending on the pre-measurement temperature. This pattern, symptomatic of feedback, was observed with increasing light and CO2 partial pressures with the degree of feedback decreasing from moderate (18 °C) up to high temperature (34 °C). Under feedback conditions, the rate of assimilation is shifted from being photorespiration limited to being triose-P utilization limited. Transitory changes in CO2 assimilation rates (A) under low O2 indicative of feedback coincided with a transitory drop in assimilatory charge (AC) and inhibition of electron transport. In contrast to previous studies with many C3 species, our studies indicate that rice shows susceptibility to feedback inhibition under moderate temperatures and current atmospheric levels of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    ISSN: 1573-5079
    Keywords: Arnold ; chemical modification ; electron transfers ; oxygen evolution ; o-phthalaldehyde ; photosynthesis ; photosystems ; thermoluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Glow curves from spinach leaf discs infiltrated with o-phthalaldehyde (OPA) show significant similarity to those obtained by DCMU treatment which is known to block the electron flow from QA, the stable acceptor of Photosystem II (PS II). In both the cases, the thermoluminescence (TL) peak II (Q band) was intensified significantly, whereas peaks III and IV (B band) were suppressed. Total TL yield of the glow curve remained constant even when the leaf discs were infiltrated with high concentrations of OPA (4 mM) or with DCMU (100 μM), indicating that even at these high concentrations no significant change in the number of species undergoing charge recombination in PS II occurred. However, studies with thylakoids revealed significant differences in the action of OPA and DCMU on PS II. Although OPA, at a certain concentration and time of incubation, reduced the B band intensity by about 50–70%, and completely abolished the detectable oxygen evolution, it still retained the TL flash yield pattern, and, thus, S state turnover. OPA is known to inhibit the oxidoreductase activity of in vitro Cyt b6/f (Bhagwat et al. (1993) Arch Biochem Biophys 304: 38–44). However, in the OPA treated thylakoids the extent of inhibition of O2 evolution was not reduced even in the presence of oxidized tetramethyl-p-phenylenediamine which accepts electrons from plastoquinol and feeds then directly to Photosystem I. This suggests that OPA inhibition is at a site prior to plastoquinone pool in the electron transport chain, in agreement with it being between QA and QB. However, an unusual feature of OPA inhibition is that even though all oxygen evolution was completely suppressed, a significant fraction of PS II centers were functional and turned over with the same periodicity of four in the absence of any added electron donor, an observation which appears to be similar to that reported by Wydrzynski (Wydrzynski et al. (1985) Biochim Biophys Acta 809: 125–136) with lauroylcholine chloride, a lipid analogue compound. The detailed chemistry of OPA inhibition remains to be studied. Since we dedicate this paper to William A. Arnold, discoverer of delayed light and TL in photosynthesis, we have also included in the Introduction, a brief history of how TL work was initiated at BARC (Bombay, India).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    ISSN: 1573-5079
    Keywords: chlorophyll a/b-binding (CAB) protein ; cyclic electron flow ; gene-expression ; light-harvesing complex (LHC) ; photosynthesis ; Pyrobotrys (Chlamydobotrys) stellata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two genes (lhca5 and lhcb1) from the unicellular, green alga Pyrobotrys (formerly Chlamydobotrys) stellata were isolated, coding for Chlorophyll a/b-binding proteins that putatively represent constituents of the light-harvesting complexes connected with Photosystem I and Photosystem II, respectively. Expression of both genes on the mRNA-level is markedly inhibited by CO2-depletion. The lhca5 transcript-level was reduced to about 25%, and the lhcb1-expression was completely blocked 9 h after removal of CO2 from the growth medium. Simultaneous addition of acetate, which can substitute for CO2 as a carbon source during photoheterotrophic growth of P. stellata, did not compensate for the diminishing effect of CO2-depletion on lhcb1. However, the amount of lhca5 transcript was comparable to that during photoautotrophic growth. These results are interpreted in terms of the specific metabolic demands of photoheterotrophic growth in P. stellata. Cyclic electron-transfer along Photosystem I must be sustained for ATP-production. Linear electron transport fed by Photosystem II and concomitant production of NADPH for CO2-reduction is no longer required. The sequences reported in this article have been deposited at the EMBL data library under the accession numbers X69434 (CSCAB1) and X71965 (CSCAB2MR).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    ISSN: 1573-5079
    Keywords: green sulfur bacterium ; Chlorobium tepidum ; chlorosomes ; DNA sequence ; protein overproduction ; primer extension mapping ; light-harvesting antenna ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The csmD and csmE genes, encoding two proteins of the chlorosome envelope, have been cloned and sequenced from the green sulfur bacterium Chlorobium tepidum. The csmD gene predicts a hydrophobic protein of 113 amino acids with a molecular mass of 11.1 kDa. The csmE gene was identified immediately upstream from csmD; the csmE gene predicts a protein of 82 amino acids (9.0 kDa) which is 49% identical to CsmA (Chung et al. (1994) Photosynthesis Res 41: 261–275). The CsmE protein is post-translationally processed, most likely in a manner similar to CsmA. The csmE and csmD genes are cotranscribed as a dicistronic mRNA but can also be cotranscribed with an open reading frame upstream from csmE that predicts a protein with sequence similarity to the CheY and SpoOF subclass of regulatory proteins. The CsmA, CsmC, CsmD, and CsmE proteins were overproduced in Escherichia coli, purified, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments using these antibodies indicate that all four proteins are exposed at the surface of isolated chlorosomes and hence are probably components of the chlorosome envelope. Additionally, antigalactose antibodies were used to confirm that the galactosyl moiety of monogalactosyl diglycerol is exposed at the chlorosome surface; this is consistent with the notion that these lipids are components of the chlorosome envelope.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    ISSN: 1573-5079
    Keywords: glucose ; hexose phosphates ; ozone ; photosynthesis ; respiratory substrates ; starch ; sucrose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 52 (1997), S. 75-82 
    ISSN: 1573-5079
    Keywords: lemma ; light-enhanced dark CO2 fixation ; palea ; panicle ; photosynthesis ; pyruvate ; Pi dikinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In lemmas and paleae of rice, the amount of pyruvate, Pi dikinase (PPDK) protein increased dramatically 6 d after anthesis and this change was consistent with that in the activity of PPDK. Since lemmas and paleae at this stage also showed high activities of the other marker enzymes of C4 pathway including phosphot enolpyruvate carboxylase (Imaizumi et al. (1990) Plant Cell Physiol 31: 835–843), photosynthetic carbon metabolism with lemmas at this stage were characterized. In a 14C pulse-12C chase study by photosynthetic CO2 fixation, about 35% and 25% of 14C fixed in lemmas were incorporated initially into 3-phosphoglycerate (3-PGA) and C4 acids, respectively. This suggests that lemmas participate mainly in C3-type photosynthetic metabolism, but that lemmas may also participate in the metabolism of C4 acids to some extent. To clarify this possibility, large amounts of 14C-labeled C4 acids were synthesized in vivo by a light-enhanced dark CO2 fixation (LED) method and the fate of 14C in C4 acids in the light was investigated. The percentage distribution of 14C in C-4 position of malate was about 90% and 83% after 10 s of photosynthetic 14CO2 fixation and 110 s of LED, respectively. Some of the 14C incorporated into C4 acids was transferred into 3-PGA and sugar phosphates. The possibility of direct fixation of CO2 by phosphot enolpyruvate carboxylase and metabolic pathway of CO2 released by decarboxylation of malate produced were discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    ISSN: 1573-5117
    Keywords: light climate manipulation ; Potamogeton pectinatus ; photosynthesis ; turbidity ; weed management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Argentine Potamogeton pectinatus L. was grown in The Netherlands under laboratory conditions at four light intensities (50, 100, 150 and 200 µE m−2 s−1), and photosynthetic performance was evaluated after about 1, 2 and 3 months of growth. At these moments, chlorophyll-a and -b and tissue N and P content were also determined. During the growing period, plant lengths and number of secondary shoots were measured. In the field in Argentina, photosynthetic performance of P. pectinatus was also measured at different light intensities created by artificial shading at various times during the growing season. Field and laboratory photosynthetic results were in good agreement. P. pectinatus showed a significant plasticityin its photosynthesis, rather than in morphology. A fairly constant maximum photosynthetic rate with reduced light enabled the plants to maintain netproduction rates rather unaffected at low light intensities. Still, it can be predicted that increasing turbidity from 1–2 m−1 at present to 3 m−1 could lead to a strongly light-limited growth which should reduce the present weed problem considerably. Such a turbidity increase might be achieved by the introduction of a fairly dense bottom-feeding fish population like Common carp (Cyprinus carpio L.).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    ISSN: 1573-5044
    Keywords: bryophytes ; cell culture ; chlorophyll content ; LHC II ; photosynthesis ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoautotrophic suspension cells of Marchantia polymorpha were grown at gas phase CO2 concentrations of 0.4% and 2.0%. At the higher CO2 concentration the chloroplast shape appeared to be modified and the cells had about 70% more chloroplasts per cell. Differences in chlorophyll content per cell were much less pronounced, indicating a reduction in chlorophyll content per chloroplast. Also the cell size was affected by the CO2 concentration, and our data suggest that it was about 37% lower in high CO2 grown cells than in low CO2 grown cells. The capacity and the efficiency of photosynthetic oxygen evolution on a chlorophyll basis and the photosystem II chlorophyll fluorescence parameters were almost identical in both cell types. Immunodection showed that also the ratio of light harvesting complex II antenna proteins and ribulose 1,5 bisphosphate carboxylase/oxygenase were unaltered. These data indicate that the chloroplast density within photoautotrophic culture cells may be regulated independently of their photosynthetic efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    ISSN: 1440-1703
    Keywords: chlorophyll fluorescence ; Macaranga gigantea ; Neobalanocarpus heimii ; photosynthesis ; Shorea leprosula ; tropical rainforest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (δ; F/Fm′), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 μmol m−2 s−1) than in the gap site (5 μmol m−2 s−1), whereas that in N. heimii was lower in the open site (2 μmol m−2 s−1) than in the gap site (4 μmol m−2 s−1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plant’s regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 11 (1995), S. 649-653 
    ISSN: 1573-0972
    Keywords: Anacystis nidulans ; gibberellic acid ; glycollate dehydrogenase ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Gibberellic acid at 10-4 Mxxx was optimal for enhancement of growth, O2 evolution, photosystem II and I and the activity of glycollate dehydrogenase of Anacystis nidulans. A stimulatory effect was observed on photosystem II. Other concentrations of gibberellic acid were inhibitory to O2 evolution and photosystem I. Syntheses of phycocyanin, phycoerythrin and β-carotene were significantly enhanced after 48 h incubation with gibberellic acid at 10-3 Mxxx but the chlorophyll content began to increase 3 h after adding 10-4 Mxxx gibberellic acid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 20 (1996), S. 179-183 
    ISSN: 1573-5087
    Keywords: cotton ; growth ; mepiquat chloride ; photosynthesis ; PIX ; RuBP carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Mepiquat chloride (N, N-dimethylpiperidinium chloride), well known as PIX, is a potential systemic plant growth regulator. The effects of PIX on plant height, stem elongation, leaf area, net photosynthetic rates, chlorophyll content, sucrose and starch levels, and RuBP carboxylase activity in cotton (Gossypium hirsutum L. cv. DES 119) plants were measured. PIX was sprayed (0, 7.65, 15.3, 30.6 or 61.2 g active ingredient ha−1) on the plants at first square (25 days after emergence) and measurements were made at frequent intervals. Plant height was clearly reduced by PIX. The total length of vegetative branches and fruiting branches was 40% and 50% less than the control. Total leaf area in PIX treated plants was 16% less than the control. Net photosynthetic rates were 25% less in PIX-treated leaves. PIX treated leaves had more chlorophyll content. The activity of RuBP carboxylase was decreased in PIX treated plants. Starch accumulation was noticed in PIX treated leaves while sucrose content was not changed. The data reported here suggest that reduced growth responses induced by PIX results in partial loss of photosynthetic capacity in cotton at least up to 20 days after application of the growth regulator.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    ISSN: 1573-5044
    Keywords: carbon metabolism ; CO2 fixation ; embryo culture ; PEPC ; photosynthesis ; RubisCO
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphoenolpyruvate Carboxylase (PEPC; EC: 4.1.1.31) and Ribulose 1,5-bisphosphate Carboxylase/Oxygenase (RubisCO; EC: 4.1.1.39) enzyme specific activities were measured during the in vitro development of coconut (Cocos nucifera L.) zygotic mature embryos into plantlets and compared with those of palms produced by conventional seed germination. At the time of initiation of germination, high PEPC and low RubisCO activities were measured in both cultured and conventionally germinated embryos, thus indicating an anaplerotic CO2 fixation. During both in vitro and in planta development, RubisCO progressively took over and became the main route for inorganic carbon fixation. The in vitro-grown coconut plantlets showed a faster decrease in their PEPC:RubisCO ratio than the seedlings, suggesting that an earlier transition from a heterotrophic to an autotrophic mode of carbon fixation takes place in the in vitro-derived material. Just before acclimatization, the RubisCO activity in in vitro-derived plantlets (2.83 µmol CO2h−1mg−1 TSP) was lower than that in seedlings (6.98 µmol CO2h−1mg−1 TSP) of the same age. Nevertheless, after acclimatization, RubisCO activities were comparable in both in vitro and in planta germinated material
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    ISSN: 1573-5044
    Keywords: chlorophyll fluorescence ; leaf anatomy ; photosynthesis ; root induction ; shoot multiplication ; stable carbon isotope composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper reports on the fast fluorescence responses of Gardenia jasminoides Ellis plantlets, at two successive stages (shoot multiplication and root induction) of culture in vitro. We test whether plantlets in vitro suffer photoinhibition during culture and whether the degree of photoautotrophy of these mixotrophic plantlets has any effect on the extent of photoinhibitory impairment. In this regard the effects of different sucrose levels in the medium and PPFD during growth on the development of photoautotrophy and the extent of photoinhibition were evaluated. Plantlets were grown under low, intermediate, and high (50, 100, and 300 μmol m-2 s-1) PPFD, and at 3 different sucrose concentrations (0.5, 1.5, and 3.0%, w/v) in the medium, during shoot multiplication. During root induction the same growth conditions were assayed except for the high PPFD. The development of photoautotrophy was assessed via the difference between the stable carbon isotope composition of sucrose used as heterotrophic carbon source and that of leaflets grown in vitro. Plantlets from root induction showed more developed photoautotrophy than those from shoot multiplication. For both stages the low-sucrose medium stimulated the photoautotrophy of plantlets in vitro. In addition, intermediate PPFD induced photoautotrophy during shoot multiplication. For plantlets of both culture stages at the lowest PPFD no photoinhibition occurred irrespective of the sucrose concentration in media. However, during the shoot multiplication stage chlorophyll fluorescence measurements showed a decrease in F v /F m and in t 1/2 as growing PPFD increased, indicating photoinhibitory damage. The decline of F v /F m was caused mostly by an increase in F o , indicating the inactivation of PSII reaction centers. However plantlets growing under low sucrose showed reduced susceptibility to photoinhibition. During root induction, only plantlets cultured with high sucrose showed a decrease in F v /F m as PPFD increased, although t 1/2 remained unchanged. In this case, the decline of F v /F m was mostly due to a decrease in F m , which indicates increased photoprotection rather than occurrence of photodamage. Therefore, growth in low-sucrose media had a protective effect on the resistance of PSII to light stress. In addition, plantlets were more resistant to photoinhibition during root induction than during shoot multiplication. Results suggest that increased photoautotrophy of plantlets reduces susceptibility to photoinhibition during gardenia culture in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 58 (1999), S. 31-37 
    ISSN: 1573-5044
    Keywords: carbohydrates ; chlorophylls ; photosynthesis ; tissue culture ; Vitis vinifera L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Grapevine plantlets multiplied in vitro were acclimatized at 40 or 90 μmol m−2 s−1 photon flux density for 12 or 16 h per day, respectively. In the high-light regime a decrease in total chlorophyll and an increase in chlorophyll a/chlorophyll b ratio occurred. However, at high-light intensity lower photosynthetic capacities and higher apparent photosynthesis were measured than at the low-light regime. In leaves expanded during acclimatization, the light compensation point was higher in plantlets under high-light while quantum yield was higher in low-light conditions. High-light also gave rise to an increase in carbohydrate concentration. As a whole, the results suggest that high-light increases carbon assimilation and growth although with a low investment in the photosynthetic apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    ISSN: 1573-5060
    Keywords: Above-ground biomass ; discriminant analysis ; environmental stress ; oat ; photosynthesis ; principal component analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seventeen morphological and physiological characteristics of three Avena barbata L. populations from Israel were measured in order to define possible combinations explaining adaptation of these populations to different precipitation, temperature and altitude regimes. Five genotypes from each A. barbata populations were collected from Ashqelon (31°63′N, low annual precipitation), En Hamifraz (32°46′N, high temperature), and Mount Carmel (32°73′N, high altitude), Israel. The behavior of the populations was followed by measuring the morpho-physiological characteristics under well-watered and moderately drought stressed conditions. The experiment was conducted at the Department of Plant Production, University of Helsinki, Finland (60°13′N). The measured traits characterized macro-morphology, transpiration rate, photosynthesis and chloroplast features. The data were subjected to principal component and discriminant analyses and the characteristic combinations that most adequately accounted for the differences among A.barbata populations were established. Differences among the populations were related to adaptation to low water availability and high altitude characterized by special light conditions. The Mount Carmel population (high water availability, high light intensities and increased proportion of UV-light) was characterized by higher tillering, hairy leaf sheaths, high transpiration, high stomatal conductance, slow fluorescence quenching capacity, and less starch granules per chloroplast when compared with populations adapted to lower altitudes. The En Hamifraz population (high mean temperature) was characterized by a high CO2 exchange rate and both En Hamifraz and Ashqelon populations (both adapted to arid conditions) used water sparingly when moderately drought stressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 44 (1995), S. 253-260 
    ISSN: 1573-5079
    Keywords: CO2 conductance ; CO2 recycling ; membrane ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 μL L−1 near the leaf base to below atmospheric (〈350 μL L−1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 μmol m−2 s−1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 μL L−1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L−1 O2 compared to 20 mL L−1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    ISSN: 1573-5079
    Keywords: absorption cross-section ; cyanobacterium ; 77 K fluorescence ; fluorescence decay ; iron-stress ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Under conditions of iron-stress, the Photosystem II associated chlorophyll a protein complex designated CP 43′, which is encoded by the isiA gene, becomes the major pigment-protein complex in Synechococcus sp. PCC 7942. The isiB gene, which is located immediately downstream of isiA, encodes the protein flavodoxin, which can functionally replace ferredoxin under conditions of iron stress. We have constructed two cyanobacterial insertion mutants which are lacking (i) the CP 43′ apoprotein (designated isiA −) and (ii) flavodoxin (designated isiB −). The function of CP 43′ was studied by comparing the cell characteristics, PS II functional absorption cross-sections and Chl a fluorescence parameters from the wild-type, isiA − and isiB − strains grown under iron-stressed conditions. In all strains grown under iron deprivation, the cell number doubling time was maintained despite marked changes in pigment composition and other cell characteristics. This indicates that iron-starved cells remained viable and that their altered phenotype suggests an adequate acclimation to low iron even in absence of CP 43′ and/or flavodoxin. Under both iron conditions, no differences were detected between the three strains in the functional absorption crossection of PS II determined from single turnover flash saturation curves of Chl a fluorescence. This demonstrates that CP 43′ is not part of the functional light-harvesting antenna for PS II. In the wild-type and the isiB − strain grown under iron-deficient conditions, CP 43′ was present in the thylakoid membrane as an uncoupled Chl-protein complex. This was indicated by (1) an increase of the yield of prompt Chl a fluorescence (Fo) and (2) the persistence after PS II trap closure of a fast fluorescence decay component showing a maximum at 685 nm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    ISSN: 1573-5079
    Keywords: cytochrome b 559 ; electron transport ; pH ; pheophytin ; photosynthesis ; Photosystem II ; reaction center ; redox potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of β-carotene decreases, a result expected if the HP form protects against donor side photoinhibition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    ISSN: 1573-5036
    Keywords: leaf expansion rate ; modelling ; phosphorus ; photosynthesis ; sunflower
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Reductions in leaf area and plant growth as a consequence of phosphorus (P) limitations have been attributed both to direct effects of P shortage on leaf expansion rate and to a reduced production of assimilates required for growth. Canopy assimilation and leaf area expansion are closely interrelated processes. In this work we used experimental and simulation techniques to identify and study their importance in determining leaf area on sunflower (Helianthus annuus L.) growing under P-deficient conditions. Experiment 1 was done outdoors, in Buenos Aires, Argentina, and Experiment 2 in a glasshouse in Wageningen, The Netherlands. In both experiments we studied the effects of soil P addition on leaf appearance, leaf expansion, dry matter accumulation, and leaf photosynthesis of non-water stressed plants grown in pots containing a P-deficient soil. Before sowing the equivalent amounts of 0–600 kg of super phosphate ha-1 were added to the pots. Phosphorus deficiency delayed leaf appearance increasing the value of the phyllochron (PHY) up to 76%, the rate of leaf area expansion during the quasi-linear phase of leaf expansion (LER) was reduced by up to 74%, with respect to high P plants. Phosphorus deficiency reduced by up to 50% the rate of light saturated photosynthesis per unit of leaf area (AMAX) in recently expanded leaves, while at low levels of leaf insertion in the canopy, AMAX was reduced by up to 85%, when compared to that in high P plants. Phosphorus deficiency also reduced the duration of the quasi-linear phase of leaf expansion by up to eight days. The values of LER were related (r = 0.56, P 〈 0.05) to the mean concentration of P in all the leaves (Leaves P%) and not to the concentration of P in the individual leaf where LER was determined (r = 0.22, P 〈 0.4) suggesting that under P deficiency individual leaf expansion was not likely to be regulated by the total P concentration at leaf level. The values of AMAX of individual leaves were related (r = 0.79, P 〈 0.01) to the concentration of total P in the corresponding leaf (Leaf P%). LER showed a hyperbolic relationship with Leaves P% (R2 = 0.94, P 〈 0.01, n = 13) that saturate at 0.14%. AMAX showed a hyperbolic relationship with Leaf P% (R2 = 0.73, P 〈 0.01, n = 53) that saturated with values of Leaf P% higher than 0.22. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the effects of model parameters on the growth of sunflower plants under P-deficient conditions. With this model we identified the existence of direct effects of P deficiency on individual leaf area expansion. However, we calculated that under mild P stress conditions up to 83% of the reduction in the observed leaf area was explained by the particular effects of P% on the rate of leaf appearance, on the duration of the linear period of leaf expansion, and on the value of AMAX. We also calculated that the effects of P deficiency on the value of AMAX alone, explained up to 41% of the observed reductions in total leaf area between the highest and the intermediate P level in Experiment 2. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this paper.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    ISSN: 1573-5036
    Keywords: Brassica napus ; canola ; oilseed rape ; nitrogen nutrition ; irrigation ; photosynthesis ; photosynthetic nitrogen use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    ISSN: 1573-5036
    Keywords: acclimation ; ecosystem carbon balance ; elevated CO2 ; global change ; photosynthesis ; respiration ; soil carbon ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette. Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (−19 to −40%) and in seasonally integrated ecosystem respiration (R e ; −36 to −57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP−R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    ISSN: 1573-5036
    Keywords: leaf expansion rate ; modelling ; phosphorus ; photosynthesis ; phyllochron ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Under phosphorus deficiency reductions in plant leaf area have been attributed to both direct effects of P on the individual leaf expansion rate and to a reduced availability of assimilates for leaf growth. In this work we use experimental and simulation techniques to identify and quantify these processes in wheat plants growing under P-deficient conditions. In a glasshouse experiment we studied the effects of soil P addition (0–138 kg P2O5 ha-1) on tillering, leaf emergence, leaf expansion, plant growth, and leaf photosynthesis of wheat plants (cv. INTA Oasis) that were not water stressed. Plants were grown in pots containing a P-deficient (3 mg P g-1 soil) sandy soil. Sowing and pots were arranged to simulate a crop stand of 173 plants m-2. Experimental results were integrated in a simulation model to study the relative importance of each process in determining the plant leaf area during vegetative stages of wheat. Phosphorus deficiency significantly reduced plant leaf area and dry weight production. Under P-deficient conditions the phyllochron (PHY) was increased up to a 32%, compared to that of high-P plants. In low-P plants the rate of individual leaf area expansion during the quasi-linear phase of leaf expansion (LER) was significantly reduced. The effect of P deficiency on LER was the main determinant of the final size of the individual leaves. In recently expanded leaves phosphorus deficiency reduced the photosynthesis rate per unit leaf area at high radiation (AMAX), up to 57%. Relative values of AMAX showed an hyperbolic relationship with leaf P% saturating at 0.27%. Relative values of the tillering rate showed an hyperbolic relationship with the shoot P% saturating at values above 0.38%. The value of LER was not related to the concentration of P in leaves or shoots. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the sensitivity of different model variables to changes in model parameters. Simulation results indicated that under mild P stress conditions up to 80% of the observed reduction in plant leaf area was due to the effects of P deficiency on leaf emergence and tillering. Under extreme P-deficient conditions the simulation model failed to explain the experimental results indicating that other factors not taken into account by the model, i.e. direct effects of P on leaf expansion, must have been active. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this work.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    ISSN: 1573-5044
    Keywords: photoautotrophy ; photosynthesis ; shoot multiplication ; root induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The growth ofGardenia jasminoides Ellis plantlets and the development of photoautotrophy during two successive culture stages (shoot multiplication and root induction)in vitro was analyzed. We examined the effects of changes in growth conditions (type of tube closure, light, and sugar levels) on the development of photoautotrophy and growth during micropropagation and sought to establish whether they affected later acclimation to conditionsex vitro. During the two stagesin vitro, plantlets were grown in tubes under two different PPFD (50 and 110 µmol m−2 s−1), in media with three different sucrose concentrations (0, 1.5, and 3.0%, w/v) and with two different CO2 levels inside the tubes (controlled by either tightly closed caps or loosely sealed caps, and with an external CO2 concentration of 750 µmol mol−1). The development of photoautotrophy was assessed by determining the difference between the stable carbon isotope composition (δ13C) of sugar cane sucrose used as a heterotrophic carbon source and that of leaflets grownin vitro. Plantlets from the root-induction stage showed a more highly developed photoautotrophy than those from the shoot- multiplication stage. At both stages, utilization of closed caps was the treatment which most stimulated development of photoautotrophy in plantlets. Also, lowering PPFD or sucrose concentration induced a greater degree of photoautotrophic development, the strongest effect being observed in plantlets cultured inside loosely sealed tubes. During acclimationex vitro, plantlets taken from loosely sealed tubesin vitro performed better than those cultured inside tightly sealed tubes. The former, as well as recording a larger increase in fresh weight during this stage, also showed more negative δ13C in the newly developed leaves, which would seem to indicate a better water status during acclimation. Present results validate the usefulness of δ13C analysis of leaflets as a simple technique in assessing the development of photoautotrophy during culturein vitro. In addition, δ13C analysis can be extended to evaluate growth conditions during acclimation toex vitro conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    ISSN: 1573-5060
    Keywords: Carbon isotope discrimination ; indica rice ; photosynthesis ; transpiration efficiency ; tropical japonica rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract There is limited information on the transpiration efficiency defined as the ratio of photosynthesis (A) to transpiration (T) of tropical japonica rice (Oryza sativa L.). In this study, transpiration efficiency (A/T) of seven tropical japonica lines developed by the International Rice Research Institute (IRRI) were compared with seven indica cultivars one week after flowering in 1993. The gas exchange rate and A/T of one genotype from each type were compared throughout the growing season in 1994. Both A and T were measured on topmost fully expanded leaves under saturating light with a portable photosynthesis system (LI-6200). Indica cultivars had higher T than the tropical japonica lines. The differences in A between the two types were relatively small and inconsistent across growth stages and years compared with the differences in T. The A/T was 25% and 30% higher for the tropical japonica than the indica type in 1993 and 1994, respectively. The differences in T and A/T between the two types were not related to the differences in leaf N content or leaf water content. A lower carbon isotope (13C) discrimination in a tropical japonica line than an indica cultivar confirmed that the improved tropical japonica lines had higher A/T than the indica cultivars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 103 (1998), S. 83-88 
    ISSN: 1573-5060
    Keywords: chlorophyll ; lethal ; marker gene ; photosynthesis ; Solanum tuberosum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A light green mutant was found in a population of adapted cultivated diploid potatoes. Genetic analysis indicates that this trait is controlled by a single nuclear gene. The gene symbol lg is proposed. The segregation ratios fit a pattern which strongly suggest that there is a close linkage between the Lg allele and a locus which confers lethality in its homozygous recessive state. Some crossing over between the lg locus and the lethal was found to occur but LgLg genotypes were not observed in progenies from sib-matings. The lg locus mapped to the potato linkage group VI between the restriction fragment length polymorphism (RFLP) loci CP18 and GP24.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 46 (1995), S. 45-46 
    ISSN: 1573-5079
    Keywords: phosphoenolpyruvate carboxylase ; photophosphorylation ; photosynthesis ; respiration ; sugar biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 46 (1995), S. 141-149 
    ISSN: 1573-5079
    Keywords: photosynthesis ; chloroplast thylakoid ; Photosystem I ; Photosystem II ; linear and cyclic electron transport ; plastocyanin ; plastoquinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recent work on the domain organization of the thylakoid is reviewed and a model for the thylakoid of higher plants is presented. According to this model the thylakoid membrane is divided into three main domains: the stroma lamellae, the grana margins and the grana core (partitions). These have different biochemical compositions and have specialized functions. Linear electron transport occurs in the grana while cyclic electron transport is restricted to the stroma lamellae. This model is based on the following results and considerations. (1) There is no good candidate for a long-range mobile redox carrier between PS II in the grana and PS I in the stroma lamellae. The lateral diffusion of plastoquinone and plastocyanin is severely restricted by macromolecular crowding in the membrane and the lumen respectively. (2) There is an excess of 14±18% chlorophyll associated with PS I over that of PS II. This excess is assumed to be localized in the stroma lamellae where PS I drives cyclic electron transport. (3) For several plant species, the stroma lamellae account for 20±3% of the thylakoid membrane and the grana (including the appressed regions, margins and end membranes) for the remaining 80%. The amount of stroma lamellae (20%) corresponds to the excess (14–18%) of chlorophyll associated with PS I. (4) The model predicts a quantum requirement of about 10 quanta per oxygen molecule evolved, which is in good agreement with experimentally observed values. (5) There are at least two pools of each of the following components: PS I, PS II, cytochrome bf complex, plastocyanin, ATP synthase and plastoquinone. One pool is in the grana and the other in the stroma compartments. So far, it has been demonstrated that the PS I, PS II and cytochrome bf complexes each differ in their respective pools.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    ISSN: 1573-5079
    Keywords: iron-sulfur cluster FA ; iron-sulfur cluster FB ; midpoint potential ; photosynthesis ; Photosystem I ; PsaC ; Synechococcus sp. PCC 6301
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The FB iron-sulfur cluster is destroyed preferentially by treating Photosystem I complexes with HgCl2(Kojima Y, Niinomi Y, Tsuboi S, Hiyama T and Sakurai H (1987) Bot Mag 100: 243–53). When FB is 95% depleted but FAis quantitatively retained in cyanobacterial PS I complexes, the reduction potential of FA remains highly electronegative (Em=−530 mV, n=1), the EPR spectral and spin relaxation properties of FA and FXremain unchanged, but NADP+ photoreduction rates decline from 552 to 72 μmol mg Chl−1 h−1.When FB is reconstituted with FeCl3, Na2S and β-mercaptoethanol, NADP+photoreduction rates recover to 528 μmol mg Chl−1 h−1. The correlation between the presence of FBand NADP+ photoreduction provides direct experimental evidence that this iron-sulfur cluster is required for electron throughput from cytochromec 6 to flavodoxin or ferredoxin in Photosystem I.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    ISSN: 1573-5079
    Keywords: photosynthesis ; photosystem I ; psaD ; reaction center ; subunit ; sequence ; thermophilic cyanobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nucleotide sequence was determined for the psaD gene of a thermophilic cyanobacterium, Synechococcus vulcanus, which encoded the PsaD subunit (Subunit II) of the Photosystem I reaction center complex. Except for some differences in the peripherals, the nucleotide sequence of the gene encoding PsaD was identical to that of another thermophilic cyanobacterium Synechococcus elongatus reported previously. Relationship between these primary structures and thermostability was also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 47 (1996), S. 175-185 
    ISSN: 1573-5079
    Keywords: connectivity ; lake model ; photosynthesis ; Rs. rubrum ; Rps. viridis ; Rb. capsulatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fluorescence induction curves of purple bacteria (Rs. rubrum, Rps. viridis and Rb. capsulatus) were measured in the sub-millisecond time range employing a xenon flash technique. The induction curves of all three species displayed a sigmoidal shape. Analysis of the curves showed that none of the species examined had an antenna organization of a lake (i.e. unrestricted energy transfer between photosynthetic units). The apparent time constants of inter-unit exciton transfer were estimated to be approximately 24 ps in the case of LHC 1-containing species (Rs. rubrum and Rps. viridis) and 40 ps in the case of the LHC 2-containing species Rb. capsulatus. This result demonstrates that LHC 2 (B800–850) acts as a sort of insulator between photosynthetic units. Assuming a coordination number of 6 in the LHC 1-containing species the mean single step energy transfer time between adjacent LHC 1 can be estimated to be 4–5 ps. This is not perfectly compatible with the much faster Förster transfer rate of 〈1ps that follows from the minimal chromophore-chromophore distances estimated from digital image processing of micrographs from stained membranes. It thus may be concluded that the photosynthetic units (reaction center plus LHC 1) are loosely arranged in the photosynthetic membrane, like in the fluid-mosaic-membrane model, rather than in a hexagonally crystalline configuration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 99-106 
    ISSN: 1573-5079
    Keywords: electron transfer ; energy transfer ; low temperature ; photosynthesis ; spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Around 1960 experiments of Arnold and Clayton, Chance and Nishimura and Calvin and coworkers demonstrated that the primary photosynthetic electron transfer processes are not abolished by cooling to cryogenic temperatures. After a brief historical introduction, this review discusses some aspects of electron transfer in bacterial reaction centers and of optical spectroscopy of photosynthetic systems with emphasis on low-temperature experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    ISSN: 1573-5079
    Keywords: photochemical yield ; photosynthesis ; Photosystem I ; Photosystem II ; Rps. viridis ; Rs. rubrum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Excitation of photosynthetic systems with short intense flashes is known to lead to exciton-exciton annihilation processes. Here we quantify the effect of competition between annihilation and trapping for Photosystem II, Photosystem I (thylakoids from peas and membranes from the cyanobacterium Synechocystis sp.), as well as for the purple bacterium Rhodospirillum rubrum. In none of the cases it was possible to reach complete product saturation (i.e. closure of reaction centers) even with an excitation energy exceeding 10 hits per photosynthetic unit. The parameter α introduced by Deprez et al. ((1990) Biochim. Biophys. Acta 1015: 295–303) describing the competition between exciton-exciton annihilation and trapping was calculated to range between ≈4.5 (PS II) and ≈6 (Rs. rubrum). The rate constants for bimolecular exciton-exciton annihilation ranged between (42 ps)-1 and (2.5 ps)-1 for PS II and PS I-membranes of Synechocystis, respectively. The data are interpreted in terms of hopping times (i.e. mean residence time of the excited state on a chromophore) according to random walk in isoenergetic antenna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    ISSN: 1573-5079
    Keywords: activation ; deactivation ; induction ; irradiance ; kinetics ; photosynthesis ; phytoplankton ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was examined in three marine microalgae: the chlorophyte t Dunaliella tertiolecta and the chromophytes t Pavlova lutheri and t Thalassiosira pseudonana. The three species differed in the sensitivity of Rubisco activity in crude extracts to magnesium ion concentration, the presence of protease inhibitors, the duration of the incubation on activity, and the potential for full activation of Rubisco with 20 mM magnesium chloride and 20 mM bicarbonate t in vitro. t D. tertiolecta had responses that were similar to those described in vascular plants: regulation of initial activity on a gradient of irradiances; maximum initial activities that were 80– 90% of light-saturated photosynthesis; total activities that exceeded light-saturated photosynthesis by 30–100%; and deactivation of Rubisco in darkness. Both initial and total activity declined in darkness and increased on a return to growth irradiance. First-order time constants were about 9 min for deactivation and 3 min for reactivation of initial activity. The decline in total activity after a transition into darkness could not be reversed t in vitro but could be reversed by exposing t D. tertiolecta to light, a characteristic of regulation by CA1P. The responses of t T. pseudonana were qualitatively similar, except that recovery of initial activity was low and could only account for 30–40% of light-saturated photosynthesis. Rubisco from t T. pseudonana exposed to low irradiance could be activated t in vitro but at growth irradiance and higher, total activity was lower than initial activity. The time constants for deactivation and reactivation of initial activity after reciprocal switches between growth irradiance and darkness were 12–18 min and 3 min in t T. pseudonana. t P. lutheri showed no regulation of Rubisco activity in response to changes in irradiance or light-dark transitions. This may have been an artifact of the conditions chosen to measure activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 51 (1997), S. 179-184 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; FACE ; global change ; photosynthesis ; Photosystem II ; quantum yield ; quenching analysis ; rising CO2 concentration ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rapid and irregular variations of atmospheric CO2 concentrations (ca) occur in nature but are often very much more pronounced and frequent when artificially enriching CO2 concentrations in simulating the future atmosphere. Therefore, there is the danger that plant responses at elevated CO2 in fumigation experiments might reflect the increased frequency and amplitude of fluctuation in concentration as well as the increase in average concentration. Tests were conducted to determine whether the photosynthetic process could sense such fluctuations in ca. Instantaneous chlorophyll fluorescence (Ft) was monitored for wheat leaves (Triticum aestivum cv. Hereward) exposed to ca oscillating symmetrically by 225 μmol mol-1 about a ca set point concentration of 575 or 650 μmol mol-1. No Ft response was detected to half-cycle step changes in ca lasting less than two seconds, but at half-cycles of two seconds or longer, the response of Ft was pronounced. In order to determine the in vivo linear electron transport rate (J) the O2 concentration was maintained at 21 mmol mol-1 to eliminate photorespiration. J which is directly proportional to the rate of CO2 uptake under these conditions, was not significantly changed at half-cycles of 30 s or less but was decreased by half-cycles of 60 s or longer. It was inferred that if duration of an oscillation is less than 1 minute and is symmetrical with respect to mean CO2 concentration, then there is no effect on current carbon uptake, but oscillations of 1 minute or more decrease photosynthetic CO2 uptake in wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    ISSN: 1573-5079
    Keywords: Fm ; high-temperature stress ; pheophytin a ; photosynthesis ; Qa ; spinach
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Effects of high temperatures on the fluorescence Fm (maximum fluorescence) and Fo (dark level fluorescence) levels were studied and compared with those of the photochemical reactions of PS II. These comparisons were performed during and after the high temperature treatments. The following results were obtained; (1) increases in the Fo level at high temperatures were partly reversible, (2) the Fm level in the presence of dithionite in spinach chloroplasts decreased at high temperatures and also showed a partial reversibility, (3) photoreductions of pheophytin a and Qa were reversibly inhibited at high temperatures parallel to the decrease in the difference between the Fm and Fo levels, and (4) the decrease in the fluorescence Fm level seemed to be related to denaturation of chlorophyll-proteins. All the data suggested that, as well as the separation of light-harvesting chlorophyll a/t b protein complexes of PS II from the PS II core complexes, partly reversible inactivation of the PS II reaction center at high temperatures is the cause of the increase in the Fo level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 52 (1997), S. 263-269 
    ISSN: 1573-5079
    Keywords: Arabidopsis ; chlorophyll fluorescence ; gas exchange ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 53 (1997), S. 149-159 
    ISSN: 1573-5079
    Keywords: Chlorodesmis fastigiata ; D1 protein ; fluorescence ; macroalgae ; photoinhibition ; photosynthesis ; Photosystem II heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Acclimation to high light conditions on the top of coral reefs was examined in the coenocytic, filamentous green macroalga Chlorodesmis fastigiata (C. Ag.) Ducker. Despite having a pool of violaxanthin, high light does not induce formation of zeaxanthin in this macroalga. Exposure to 11 and 33% of surface irradiance resulted in parallel, reversible declines in Fv/Fmand in the number of functional PSII centers. The quantum requirement for PSII inactivation was calculated to be approx. 2×107photons. Recovery of PSII activity after low photon exposures did not depend on protein synthesis, unlike at higher photon exposures, where recovery was inhibited by 50% in the presence of lincomycin. Accumulation of inactive, quenching PSII centers is proposed as a mechanism of energy dissipation; only some of these centers require protein synthesis for reactivation. In natural-sized populations, midday photoinhibition was greater in filament tips than in bases, but the number of inactive PSII centers within entire filaments did not significantly change over the course of the day. It is proposed that the higher chlorophyll concentration in the tips provides protective shading to chloroplasts in lower regions, and that cytoplasmic streaming of chloroplasts within this siphonous alga limits the cumulative exposure to high light, thereby providing another level of protection from high light stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    ISSN: 1573-5079
    Keywords: cyanobacteria ; evolution ; glucose-sensitivity ; photoacclimation ; photosynthesis ; polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the glucose-tolerant strain of Synechocystis sp. PCC 6803, we found two types of cells with distinct growth properties. Under photoautotrophic conditions at any light intensity, one type gave larger colonies (designated WL) than the other (designated WS). Notably, the WL cells produced much larger colonies than the WS cells at higher light intensity. In contrast, growth of the WL cells was severely suppressed under mixotrophic conditions with glucose and light, while the WS cells grew normally. A gene which could complement the WL phenotype was obtained from a wild-type genomic library. The gene, designated pmgA, coded for a 23 kDa polypeptide of 204 amino acid residues with no apparent homology to known genes. In the WL genome, the base substitution of T for C at position 193 of pmgA caused replacement of Leu with Phe at position 65 of the product. The phenotype of pmgA disruption mutants was similar to that of the WL cells, indicating that the WS cells expressed a functional pmgA product. By direct sequencing of polymerase chain reaction-amplified pmgA from genomic DNA, it was revealed as an example of microevolution that WL had expelled WS from the photoautotrophic culture of wild-type in our laboratory for a year or so. Mixed culture in liquid also demonstrated that the WL cells increased gradually under photoautotrophic conditions, while they decreased rapidly under photomixotrophic conditions. These results suggest that pmgA product is essential for photomixotrophic growth, whereas it represses photoautotrophic growth. To our knowledge, the WL cells and pmgA-disrupted mutants are the first in cyanobacteria, which shows much improved photosynthetic growth than wild-type especially at high light intensity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    ISSN: 1573-5079
    Keywords: ferredoxin, NADP photoreduction ; nitrogen limitation ; non cyclic electron transport ; photosynthesis ; Photosystem 1 and 2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (≈500 µmol m-2s-1) and saturating light intensity (≈1200 µmol m-2s-1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H2O → ferredoxin → NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O2photo-evolution in thylakoid isolates were carried out in saturating light (≈1500 µmol m-2s-1) and with $$NH_4^ + $$ (an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    ISSN: 1573-5079
    Keywords: chloroplast development ; chlorophyll fluorescence ; LHC ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The origin of the long-wavelength chlorophyll (Chl) absorption (λpeak 〉 680 nm) and fluorescence emission (λpeak 〉 685 nm) has been investigated on Scenedesmus mutants (C-2A′-series, lacking the ability to synthesize chlorophyll in the dark) grown at 0.3 (LL), 10 (ML) and 240 µE s−1 m−2(HL). LL cells are arrested in an early greening state; consequently, ‘Chl availability’ determines the phenotype. LL thylakoids are totally lacking long-wavelength Chl; nonetheless, PS I and PS II are fully functional. Gel electrophoresis and Western blots indicate that four out of seven resolved LHC polypeptides seem to require a high Chl availability for assembly of functional chlorophyll-protein complexes. The PS I core-complex of ML and HL thylakoids contains long-wavelength chlorophylls, but in the PS I core-complex of LL thylakoids these pigments are lacking. We conclude that long-wavelength pigments are only present in the PS I core in the case of high Chl availability. The following hypothesis is discussed: Chl availability determines not only the LHC polypeptide pattern, but also the number of bound Chl molecules per individual pigment-protein complex. Chl-binding at non-obligatory, peripheral sites of the pigment-protein complex results in long-wavelength Chl. In the case of low Chl availability, these sites are not occupied and, therefore, the long-wavelength Chl is absent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    ISSN: 1573-5079
    Keywords: chromatophores ; electron transfer ; kinetics ; photosynthesis ; structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It is generally considered that metabolic reactions are well described by homogeneous kinetic models in which the reaction phase is statistically uniform. In membranes, especially in photosynthetic systems where the protein complement is high, it has recently been recognized that effects of local heterogeneity might contribute additional factors that perturb the kinetic behavior, and require more extensive treatment. We show in this paper that statistical heterogeneity in vesicular systems can also contribute to quite marked discrepancies from the behavior expected from standard kinetic and thermodynamic models, for reactions involving free diffusion in the aqueous phase. We explain the kinetic and thermodynamic effects observed in studies of photosynthetic electron transfer in cells and chromatophores from Rhodobacter sphaeroides previously attributed to supercomplexes, in terms of a model based on heterogeneity in distribution of electron transfer components among the chromatophore population. We discuss examples of data inconsistent with the supercomplex model, but well explained by the heterogeneity model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 11-18 
    ISSN: 1573-5079
    Keywords: aging ; delayed light production ; firefly ATP assay ; plant luminescence ; loss of rDNA ; luminous bacteria ; neuronal memory storage and pulse pattern coding ; organic mass spectroscopy ; plant luminescence ; photosynthetic ATP production ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The circumstances that led to the discovery that plants luminesce after they are illuminated are described, as are other discoveries that would not have been possible were it not for the fortuitous association I had with my dear and most admirable friend, W.A. Arnold, to whom this special issue is dedicated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 353-365 
    ISSN: 1573-5079
    Keywords: catabolite repression ; glucose sensing ; high CO2 acclimation ; Lycopersicon esculentum ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although down-regulation of photosynthesis in higher C3 plants exposed to long-term elevated CO2 has been recognized in plants with low sink activity or poor nutrient status, the underlying molecular mechanisms remain unclear. This review covers aspects of rising CO2 on plant productivity in general, and then focuses on photosynthesis, biochemistry (stroma and thylakoid proteins, Rubisco activities and metabolites), and gene expression in tomato plants grown under ambient or elevated CO2. Taking into account these data and the recent discovery that glucose triggers repression of photosynthetic gene transcription, a molecular mechanism is proposed for feedback regulation of photosynthesis under high CO2. Different living organisms such as bacteria, yeast, and mammals have been investigated for the sensing mechanisms of the carbohydrate status of their cells, and this information is used together with some recent data obtained for plants to propose how hexose levels might be sensed in higher plant cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    ISSN: 1573-5079
    Keywords: algae ; chlororespiration ; NAD(P)H: plastoquinone oxidoreductase ; photosynthesis ; chloroplasts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using isolated chloroplasts or purified thylakoids from photoautotrophically grown cells of the chromophytic alga Pleurochloris meiringensis (Xanthophyceae) we were able to demonstrate a membrane bound NAD(P)H dehydrogenase activity. NAD(P)H oxidation was detectable with menadione, coenzyme Q0, decylplastoquinone and decylubiquinone as acceptors in an in vitro assay. K m-values for both pyridine nucleotides were in the μmolar range (K m[NADH]=9.8 μM, K m[NADPH]=3.2 μM calculated according to Lineweaver-Burk). NADH oxidation was optimal at pH 9 while pH dependence of NADPH oxidation showed a main peak at 9.8 and a smaller optimum at pH 7.5–8. NADH oxidation could be completely inhibited with rotenone, an inhibitor of mitochondrial complex I dehydrogenase, while NADPH oxidation revealed the typical inhibition pattern upon addition of oxidized pyridine nucleotides reported for ferredoxin: NADP+ reductase. Partly-denaturing gel electrophoresis followed by NAD(P)H dehydrogenase activity staining showed that NADPH and NADH oxidizing proteins had different electrophoretic mobilities. As revealed by denaturing electrophoresis, the NADH oxidizing enzyme had one main subunit of 22 kDa and two further polypeptides of 29 and 44 kDa, whereas separation of the NADPH depending protein yielded five bands of different molecular weight. Measurement of oxygen consumption due to PS I mediated methylviologen reduction upon complete inhibition of PS II showed that the NAD(P)H dehydrogenase is able to catalyze an input of electrons from NADH to the photosynthetic electron transport chain in case of an oxidized plastoquinone-pool. We suggest ferredoxin: NADP+ reductase to be the main NADPH oxidizing activity while a thylakoidal NAD(P)H: plastoquinone oxidoreductase involved in the chlororespiratory pathway in the dark acts mainly as an NADH oxidizing enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    ISSN: 1573-5079
    Keywords: photosynthesis ; antenna complex ; LH2 ; bacteriochlorophyll
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The publication of a structure for the peripheral light-harvesting complex of a purple photosynthetic bacterium (McDermott et al. (1995), Nature 374: 517–521) provides a framework within which we can begin to understand various functional aspects of these complexes, in particular the relationship between the structure and the red-shift of the bacteriochlorophyll Qy transition. In this article we describe calculations of some of the spectral properties expected for an array of chromophores with the observed geometry. We report the stability of the calculated absorption spectrum to minor structural alterations, and deduce that the observed red shift of the 850 nm Qy transition in the B800–850 antenna complexes is about equally attributable to chromophore-chromophore and chromophore-protein interactions, while chromophore-chromophore interactions predominate in generating the red-shift of the 820 nm Qy transition in B800–820 type peripheral liggt-harvesting complexes. Finally we suggest that the red shift in the absorbance of the monomeric Bchl a found in antenna complexes to 800 nm, from 770 nm as observed in most solvents, is largely attributable to a hydrogen bond with the 2-acetyl group of this chromophore.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    ISSN: 1573-5079
    Keywords: blue copper protein ; gated electron transfer ; photosynthesis ; site-directed mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two mutants of plastocyanin have been constructed by site-directed mutagenesis in spinach and pea to elucidate the binding and electron transfer properties between plastocyanin and spinach Photosystem 1. The conserved, surface-exposed Tyr-83 has been replaced by phenylalanine and leucine in plastocyanin from both species and the proteins have been expressed in Escherichia coli. The reaction mechanism of electron transfer from plastocyanins to photooxidized P700 in Photosystem 1 has been studied by laser-flash absorption spectroscopy. The experimental data were interpreted with a model involving a rate-limiting conformational change, preceding the intracomplex electron transfer. The pea proteins show an overall facilitated reaction with spinach Photosystem 1, compared to spinach plastocyanins. The changes are small but significant, indicating a more efficient electron transfer within the transient complex. In addition, for the spinach leucine mutant, the equilibrium within the plastocyanin-Photosystem 1 complex is more displaced towards the active conformation than for the corresponding wild-type. Absorption spectra, EPR and reduction potentials for the mutants are similar to those of the corresponding wild-type, although small shifts are observed in the spectra of the Tyr83Leu proteins. Based on these results, it is suggested that Photosystem 1 from spinach is capable of using both pea and spinach plastocyanin as an efficient electron donor and that the former even can stimulate the Photosystem 1 reduction. The origin of the stimulation is discussed in terms of differences in surface-exposed residues. Since the effects of the mutations are small, it can be concluded that electron transfer to Photosystem 1 does not occur via Tyr-83.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    ISSN: 1573-5079
    Keywords: compartment theory ; electronic excitation transport ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In studies on photosynthetic systems it is common practice to interpret the results of time-resolved fluorescence experiments on the basis of compartmental, or target, models. Each compartment represents a group of molecules with similar fluorescence characteristics. In cases of practical interest, the members of each compartment are spatially contiguous and make up part of an overall energy-transferring system. Since a rate constant describing the overall transfer between compartments is not that of any pair of molecules in the system, this question naturally rises: what do we learn about the microscopic structure from these data? In this note we introduce ‘compartment melting’, a smooth mathematical connection between the compartmental and microscopic levels. We then show, on the basis of model calculations on finite lattices in one, two, and three dimensions, that average microscopic rates at the interfaces between compartments may be estimated from observed intercompartmental rates. The estimate involves a modest number of structural assumptions about the system. As examples of the method, which is applicable mainly to systems containing homogeneous pigment pools, some recent chlorophyll-protein antenna studies are analyzed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 50 (1996), S. 133-148 
    ISSN: 1573-5079
    Keywords: anaplerotic carbon metabolites ; dark respiration ; hexose phosphates ; nitrogen-limitation ; orthophosphate ; photosynthesis ; starch ; sucrose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Prolonged inorganic nitrogen (NO3 −+NH4 +) limitation of non-N2-fixing soybean plants affected leaflet photosynthesis rates, photosynthate accumulation rates and levels, and anaplerotic carbon metabolite levels. Leaflets of nitrogen-limited (N-Lim), 27–31-day-old plants displayed ≈ 15 to 23% lower photosynthesis rates than leaflets of nitrogen-sufficient (N-Suff) plants. In contrast, N-Lim plant leaflets displayed higher sucrose and starch levels and rates of accumulation, as well as higher levels of carbon metabolites associated with sucrose and starch synthesis, e. g., glycerate-3-phosphate and glucose phosphates, than N-Suff plant leaflets. Concurrently, levels of soluble protein, chlorophyll, and anaplerotic metabolites, e.g., malate and phosphoenolpyruvate, were lower in leaflets of N-Lim plants than N-Suff plants, suggesting that the enzymes of the anaplerotic carbon metabolite pathway were lower in activity in N-Lim plant leaflets. Malate net accumulation rates in the earliest part of the illumination period were lower in N-Lim than in N-Suff plant leaflets; however, by the midday period, malate accumulation rate in N-Lim plant leaflets exceeded that in leaflets of N-Suff plants. Further, soluble protein accumulation rates in leaflets of N-Suff and N-Lim plants were similar, and the rate of dark respiration, measured in the early part of the dark period, was higher in N-Lim plant leaflets than in N-Suff plant leaflets. It was concluded that during prolonged N-limitation, foliar metabolite conditions favored the channelling of a large proportion of the carbon assimilate into sucrose and starch, while assimilate flow through the anaplerotic pathway was diminished. However, in some daytime periods, there was a normal level of carbon assimilate channelled through the anaplerotic pathway for ultimate use in amino acid and protein synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    ISSN: 1573-5079
    Keywords: electron transfer ; phenotypic revertants ; photosynthesis ; proton transfer ; site-specific mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To probe the structural elements that contribute to the functional asymmetries of the two ubiquinone10 binding pockets in the reaction center of Rhodobacter capsulatus, we targeted the L212Glu–L213Asp (near QB) and the M246Ala-M247Ala (near QA) pairs of symmetry-related residues for site-specific mutagenesis. We have constructed site-specific mutants that eliminate the sequence differences at these positions (L212Glu–L213Asp→Ala-Ala or M246Ala–M247Ala→Glu-Asp), and have reversed that asymmetry by constructing a quadruple-mutant strain, ‘RQ’ (L212Glu–L213Asp-M246Ala–M247Ala→Ala-Ala-Gl u-Asp). The mutations were designed to change the charge distribution in the quinone-binding region of the reaction center; none of the strains is capable of photosynthetic growth. In photocompetent phenotypic revertants of the RQ strain, second-site mutations which affect QB function are coupled to mutations in the QA site which restore an Ala or substitute a Tyr at the M247 site; one strain carries an additional Met→Leu substitution at M260 near QA. All of the RQ revertants retain the engineered M246Ala→Glu mutation in the QA site as well as the L212Ala–L213Ala mutations in the QB site. Kinetic characterization of the RQ revertants will give us an idea of what structural and functional elements are important for restoring efficiency to electron and proton transfer pathways in the RQ RC, which is far from native. To date, these preliminary results underscore the importance of an asymmetric distribution of polar amino acids in the quinone binding pockets and its influence on the functional properties of the reaction center.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    ISSN: 1573-5079
    Keywords: chlorophyll antenna size ; damage and repair cycle ; Dunaliella salina ; photoinhibition ; photosynthesis ; Photosystem-II ; photosystem stoichiometry ; productivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract High-light (HL) grown Dunaliella salina cells exhibit lower pigment content, a highly truncated chlorophyll (Chl) antenna size, and accumulation of photodamaged PS II centers in the chloroplast thylakoids (chronic photoinhibition). In HL-grown cells, the rate of photosynthesis saturated at higher irradiances and the quantum yield was lower compared to that of normally-pigmented low-light (LL) grown cells. In spite of these deficiencies, the light-saturated rate of photosynthesis for the HL-cells, when measured on a per chlorophyll basis, was ∼3 times greater than that of the LL-grown cells. To delineate the effect of photoinhibition from the Chl antenna size on quantum yield and rate of photosynthesis, HL-acclimated cells were switched to LL-conditions. Repair of photodamaged PS II, estimated from the recovery of functional PS II centers and from the increase in the quantum yield of photosynthesis, occurred with a half-time of ∼1 h. Chlorophyll accumulation in the cells occurred with a half-time of ∼4 h. The differential kinetics in repair versus Chl accumulation provided a ‘window of opportunity’, within about 2–3 h after the HL→LL shift, when cells exhibited a high quantum yield of photosynthesis, a small Chl antenna size and a light-saturated rate that was ∼6–9 times greater than that of the normally pigmented LL-grown cells. The work provides insight on the temporal sequence of events at the chloroplast and thylakoid membrane levels, leading from a chronic photoinhibition of PS II to repair and recovery. It is suggested that it is possible to maximize photosynthetic productivity and light utilization in mass microalgal cultures by minimizing the light-harvesting Chl antenna size of the photosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 46 (1995), S. 393-397 
    ISSN: 1573-5079
    Keywords: photosynthesis ; down-regulation ; variable fluorescence ; dark recovery ; Artabotrys hexapetatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using variable to maximum fluorescence (Fv/Fm) as the criterion, the down regulation of photosynthesis by high light stress was characterized in the detached leaves of Artabotrys hexapetatus. The decrease in Fv/Fm was corelated with the decrease in oxygen evolution by thylakoids isolated from high light exposed leaves. The decrease in Fv/Fm was linear with increasing time of exposure to high light. A comparison of recovery measured as Fv/Fm, in low light versus dark, revealed that the recovery in darkness was as significant as in low light. Since the relaxation of fluorescence was a rapid response after exposure to high light and the fact that the recovery occurs in total darkness, it is concluded that photoinhibition and down regulation of photosynthesis by high light are independent events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 47 (1996), S. 1-11 
    ISSN: 1573-5079
    Keywords: chaperone chloroplast ; enzyme regulation ; photosynthesis ; protein-protein interaction ; ribulose-1,5-bisphosphate carboxylase/oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rubisco, the primary carboxylating enzyme in photosynthesis, must be activated to catalyze CO2 fixation. The concept of an ‘activase’, a specific protein for activating Rubisco, was first introduced in 1985 based largely on biochemical and genetic studies of a high CO2-requiring mutant of Arabidopsis (Salvucci et al. (1985) Photosynth Res 7: 193–201). Over the past ten years, details about the occurrence, structure, and properties of Rubisco activase have been elucidated. However, the mechanism of action of Rubisco activase remains elusive. This review discusses the need for and function of Rubisco activase and summarizes information about the properties and structure of Rubisco activase. The information is evaluated in the context of the mechanism of Rubisco activase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; quenching analysis ; photosynthesis ; quantum yield ; photoinhibition ; fiber-optic microsensor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By using a fiber-optic microprobe in combination with a modified PAM Fluorometer, chlorophyll fluorescence yield was measured within leaves with spatial resolution of approximately 20 μm. The new system employs a miniature photomultiplier for detection of the pulse-modulated fluorescence signal received by the 20 μm fiber tip. The obtained signal/noise ratio qualifies for recordings of fluorescence induction kinetics (Kautsky effect), fluorescence quenching by the saturation pulse method and determination of quantum yield of energy conversion at Photosystem II at different sites within a leaf. Examples of the system performance and of practical applications are given. It is demonstrated that the fluorescence rise kinetics are distinctly faster when chloroplasts within the spongy mesophyll are illuminated as compared to palisade chloroplasts. Photoinhibition is shown to affect primarily the quantum yield of the palisade chloroplasts when excessive illumination is applied from the adaxial leaf side. The new system is envisaged to be used in combination with light measurements within leaves for an assessment of the specific contributions of different leaf regions to overall photosynthetic activity and for an integrative modelling of leaf photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    ISSN: 1573-5079
    Keywords: cyt b-559 ; photosynthesis ; heat stress ; light stress ; hydrogen peroxide ; ascorbate peroxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cytochrome (cyt) b-559 absorbance changes in intact chloroplasts were deconvoluted using a previously described LED-Array-Spectrophotometer (Klughammer et al. (1990), Photosynth Res 25: 317–327). When intact chloroplasts were isolated in the presence of ascorbate, approx. 15% of the total cyt b-559 could be transiently oxidised by 200 μM H2O2 in the dark. This fraction displays low-potential properties, as it can be also oxidised by menadione in the presence of 5 mM ascorbate. Heat pretreatment increased the size of this fraction by a factor of 3–4. Low concentrations of cyanide (in the μM range) prolonged the oxidation time while high concentrations suppressed the oxidation (I50=1.5 mM KCN). The former KCN-effect relates to inhibition of ascorbate dependent H2O2-reduction which is catalysed by ascorbate peroxidase, whereas the latter effect reflects competition between H2O2 and CN− for the same binding site at the cytochrome heme. In the light, much lower concentrations of H2O2 were required to obtain oxidation, the amplitude depending on light intensity and on the concentration of the added H2O2, but never exceeding approx. 15% of the total cyt b-559. In the light, but not in the dark, H2O2 also induced the transient oxidation of a cyt f fraction similar in size to the H2O2-oxidisable cyt b-559 fraction. In this case, H2O2 serves as an acceptor of Photosystem I in conjunction with the ascorbate peroxidase detoxification system. Light can also induce oxidation of a 15% cyt b-559 fraction without H2O2-addition, if nitrite is present as electron acceptor and the chloroplasts are depleted of ascorbate. It is concluded that light-induced cyt b-559 oxidation in vivo is likely to be restricted to the H2O2-oxidisable cyt b-559 LP fraction and is normally counteracted by ascorbate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 29-42 
    ISSN: 1573-5079
    Keywords: enzyme catalysis ; evolution ; genetic engineering ; photosynthesis ; protein assembly ; protein degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) has played a central role in our understanding of chloroplast biogenesis and photosynthesis. In particular, its catalysis of the rate-limiting step of CO2 fixation, and the mutual competition of CO2 and O2 at the active site, makes Rubisco a prime focus for genetically engineering an increase in photosynthetic productivity. Although it remains difficult to manipulate the chloroplast-encoded large subunit and nuclear-encoded small subunit of crop plants, much has been learned about the structure/function relationships of Rubisco by expressing prokaryotic genes in Escherichia coli or by exploiting classical genetics and chloroplast transformation of the green alga Chlamydomonas reinhardtii. However, the complexity of chloroplast Rubisco in land plants cannot be completely addressed with the existing model organisms. Two subunits encoded in different genetic compartments have coevolved in the formation of the Rubisco holoenzyme, but the function of the small subunit remains largely unknown. The subunits are posttranslationally modified, assembled via a complex process, and degraded in regulated ways. There is also a second chloroplast protein, Rubisco activase, that is responsible for removing inhibitory molecules from the large-subunit active site. Many of these complex interactions and processes display species specificity. This means that attempts to engineer or discover a better Rubisco may be futile if one cannot transfer the better enzyme to a compatible host. We must frame the questions that address this problem of chloroplast-Rubisco complexity. We must work harder to find the answers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    ISSN: 1573-5079
    Keywords: absorption ; Kennard–Stepanov theory ; photosynthesis ; spectral equilibration ; thermal equilibration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Absorption and fluorescence spectra of chlorophyll a have been analyzed on the basis of an extended version of Kennard–Stepanov (KS) theory. It is proposed that at least one new electronic state lies just below the normal S1 − S0 transition (Qy), borrowing approximately 2–4% of its strength and contributing to the fluorescence in the tail. The KS anomalies leading to this hypothesis occur in a wide variety of cases, including chlorophyll a in solution and protein-bound chlorophyll a, suggesting that the phenomenon is an intrinsic property of the molecule. Natural candidates for the new state(s) are the second and third triplet states. The relationship of the fluorescence excitation spectrum to KS theory is investigated and applied to explain a red drop in yield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    ISSN: 1573-5079
    Keywords: ESR ; electron transport ; FTIR ; lipid ; membrane structure ; protein ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The specific effects exerted by different heavy metals on both the function and the structure of the photosynthetic apparatus were addressed. The functional analysis performed via the fluorescence induction kinetics revealed that the applied toxic heavy metals can be classified into two groups: Cd and Ni had no significant effect on the photosynthetic electron transport, while Cu, Pb and Zn strongly inhibited the Photosystem II (PS II) activity, as evidenced by the dramatic decreases in both the variable (Fv) and the maximal (Fm) fluorescence. The structural effects of the heavy metal ions on the thylakoid membranes were considered in three relations: (1) lipids, (2) proteins — studied by Fourier transform infrared (FTIR) spectroscopy, and (3) lipid—protein interactions — investigated by electron spin resonance (ESR) spectroscopy using spin-labeled probe molecules. The studied heavy metal ions had only a non-specific rigidifying effect on the thylakoid lipids. As regards proteins, Cd and Ni had no effect on the course of their heat denaturation. The heat denaturation of the proteins was accompanied by a decrease in the α-helix content (1656 cm-1), a parallel increase in the disordered segments (1651 cm-1), a decrease in the intramolecular β-sheet (1636 cm-1) content and the concomitant appearance of an intermolecular β-structure (1621 cm-1). In contrast with Cd and Ni, Cu and Zn blocked the appearance of the intermolecular β-structure. Pb represented an intermediate case. It seems that these heavy metals alter the native membrane structure in such a way that heat-induced aggregation becomes more limited. The ESR data revealed that certain heavy metals also affect the lipid—protein interactions. While Cd and Ni had hardly any effect on the solvation fraction of thylakoid lipids, Cu, Pb and Zn increased the fraction of lipids solvating the proteins. On the basis of the FTIR and ESR data, it seems that Cu, Pb, and Zn increase the surfaces available for lipid—protein interactions by dissociating membrane protein complexes, and that these ‘lipidated’ proteins have a smaller chance to aggregate upon heat denaturation. The data presented here indicate that the damaging effects of poisonous heavy metals are element-specific, Cu, Pb and Zn interact directly with the thylakoid membranes of the photosynthetic apparatus, while Cd and Ni interfere rather with other metabolic processes of plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    ISSN: 1573-5079
    Keywords: CO2 assimilation ; metabolic control analysis ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to explain the mechanisms of Calvin-cycle regulation, the general properties of metabolic systems under homeostatic flux control are analyzed. It is shown that the main characteristic point for an enzyme in such a system can be the value of a sharp transition from some constant homeostatic flux to a limitation by this enzyme. A special method for the quantitative treatment of the experimental dependence of a metabolic flux such as photosynthesis on enzyme content is developed. It is pointed out that reactions close to a thermodynamic equilibrium under normal conditions can considerably limit the homeostatic fluxes with a decrease of the enzyme content. Calvin-cycle enzymes are classified as non-limiting, near-limiting and limiting. The deduced rules for the regulation of a homeostatic metabolic pathway are used to explain the data obtained for transgenic plants with reduced activities of Calvin-cycle enzymes. The role of compensating mechanisms that maintain the photosynthesis rate constant upon the changes of enzyme contents is analyzed for the Calvin cycle. The developed analysis explains the sharp transitions between limiting and non-limiting conditions that can be seen in transgenic plants with reduced content of some Calvin-cycle enzymes, and the limiting role of such reversible enzymes as aldolase, transketolase and others. The attempt is made to predict the properties of plants with increased enzyme contents in the Calvin cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    ISSN: 1573-5079
    Keywords: Chlamydomonas ; photosynthesis ; singlet oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The oxygen evolved by Chlamydomonas reinhardtii in the light is measured simultaneously with a Clark electrode and with the nitrosodimethylaniline-imidazole colorimetric method which is specific for singlet oxygen. Experiments with wild-type and FuD7 mutant cells (unable to synthesize the D1 protein of Photosystem II), with dichlorophenyldimethylurea (which blocks electron transfer from Photosystem II to Photosystem I) and with dibromothymoquinone (which diverts electrons from their normal path between the two photosystems), as well as with hydroxylamine (an inactivator of the water-splitting part of Photosystem II and a competitor of water for electron donation to it), all point to the dependence of detected singlet oxygen on photolysis of water by Photosystem II.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; electron transport ; light-acclimation ; light-harvesting ; photosynthesis ; quenching analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    ISSN: 1573-5079
    Keywords: aggregate ; antenna ; atomic force microscopy ; bacteriochlorophyllc ; chlorosome ; concentration quenching ; energy transfer ; green bacteria ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The optical properties of a methyl ester homolog of bacteriochlorophylld (BChld M ) and bacteriochlorophyllc (BChlc) in H2O, hexanol-saturated H2O and methanol were studied by absorption, fluorescence emission, and circular dichroism (CD). In H2O, BChld M spontaneously forms an aggregate similar to that formed in hexane, with absorption maximum at 730 nm and fluorescence emission at 748 nm. For the pigment sample in hexanol-saturated H2O, while the absorption peaks at 661 nm, only slightly red-shifted compared to the monomer, the fluorescence emission is highly quenched. When diluted 2–3 fold with H2O, the absorption returns to around 720 nm, characteristic of an aggregate. The CD spectrum of the H2O aggregate exhibits a derivative-shaped feature with positive and negative peaks, while the amplitude is lower than that of chlorosomes. The Fourier transform infrared spectra of BChld M aggregates in H2O and hexane were measured. A 1644 cm−1 band, indicative of a bonded 131-keto group, is detected for both samples. A marker band for 5-coordinated Mg was observed at 1611 cm−1 for the two samples as well. To study the kinetic behavior of the samples, both single-photon counting (SPC) fluorescence and transient absorption difference spectroscopic measurements were performed. For BChld M in hexanol-saturated H2O, a fast decay component with a lifetime of 10 to 14 ps was detected using the two different techniques. The fast decay could be explained by the concentration quenching phenomenon due to a high local pigment concentration. For the pigment sample in H2O, SPC gave a 16 ps component, whereas global analysis of transient absorption data generated two fast components: 3.5 and 26 ps. The difference may arise from the different excitation intensities. With a much higher excitation in the latter measurements, other quenching processes, e.g. annihilation, might be introduced, giving the 3.5 ps component. Finally, atomic force microscopy was used to examine the ultrastructure of BChld M in H2O and hexanol-saturated H2O. Pigment clusters with diameters ranging from 15 to 45 nm were observed in both samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    ISSN: 1573-5079
    Keywords: Chlamydomonas reinhardtii ; chromatic acclimation ; photosynthesis ; photosystem stoichiometry ; quantum yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The work addressed the adjustment of the photosystem ratio in the green algaChlamydomonas reinhardtii. It is shown that green algae, much like cyanophytes and higher plants, adjust and optimize the ratio of the two photosystems in chloroplasts in response to the quality of irradiance during growth. Such adjustments are compensation reactions and helpC. reinhardtii to retain a quantum efficiency of oxygen evolution near the theoretical maximum. Results show variable amounts of PS I and a fairly constant amount of PS II in chloroplasts and suggest that photosystem stoichiometry adjustments, occurring in response to the quality of irradiance during plant growth, are mainly an adjustment in the concentration of PS I. The work delineates chromatic effects on chlorophyll accumulation in the chloroplast ofC. reinhardtii from those pertaining to the regulation of the PS I/PS II ratio. The detection of the operation of a molecular feedback mechanism for the PS I/PS II ratio adjustment in green algae strengthens the notion of the highly conserved nature of this mechanism among probably all oxygen evolving photosynthetic organisms. Findings in this work are expected to serve as the basis of future biochemical and mutagenesis experiments for the elucidation of the photosystem ratio adjustment in oxygenic photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 139-145 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; energy transfer ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Stepanov (1957a, Soviet Physics-Doklady 2: 81–84) obtained an equation which relates the absorption spectrum and the fluorescence emission spectrum of a single dye molecule. Here, a similar equation is derived for a cluster of interacting pigments, e.g. the antenna pigments of a photosystem. This relation can be used to assess the possibility of occurrence of rapid exciton equilibration (Dau and Sauer, 1996, Biochim. Biophys. Acta, 1273: 175–190). The excited state potential of a pigment cluster is discussed and compared to the excited state potential of a single pigment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    ISSN: 1573-5079
    Keywords: gene replacement ; Photosystem II ; photosynthesis ; thylakoid membranes ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chimaeric mutants of the cyanobacterium Synechocystis sp. PCC 6803 have been generated carrying part or all of the spinach psbB gene, encoding CP47 (one of the chlorophyll-binding core antenna proteins in Photosystem II). The mutant in which the entire psbB gene had been replaced by the homologous gene from spinach was an obligate photoheterotroph and lacked Photosystem II complexes in its thylakoid membranes. However, this strain could be transformed with plasmids carrying selected regions of Synechocystis psbB to give rise to photoautotrophs with a chimaeric spinach/cyanobacterial CP47 protein. This process involved heterologous recombination in the cyanobacterium between psbB sequences from spinach and Synechocystis 6803; which was found to be reasonably effective in Synechocystis. Also other approaches were used that can produce a broad spectrum of chimaeric mutants in a single experiment. Functional characterization of the chimaeric photoautotrophic mutants indicated that if a decrease in the photoautotrophic growth rates was observed, this was correlated with a decrease in the number of Photosystem II reaction centers (on a chlorophyll basis) in the thylakoid membrane and with a decrease in oxygen evolution rates. Remaining Photosystem II reaction centers in these chimaeric mutants appeared to function rather normally, but thermoluminescence and chlorophyll a fluorescence measurements provided evidence for a destabilization of QB −. This illustrates the sensitivity of the functional properties of the PS II reaction center to mild perturbations in a neighboring protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    ISSN: 1573-5079
    Keywords: Chloroflexus aurantiacus ; chlorophyll ; chlorosome ; energy transfer ; green bacteria ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    ISSN: 1573-5079
    Keywords: b 6 f complex ; chloroplast ATP synthase ; light-harvesting complexes ; photosynthesis ; photosystems ; ribulose-bisphosphate carboxylase/oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Blue-native polyacrylamide gel electrophoresis (BN-PAGE) is a powerful procedure for the separation and characterization of the protein complexes from mitochondria. Membrane proteins are solubilized in the presence of aminocaproic acid and n-dodecylmaltoside and Coomassie-dyes are utilized before electrophoresis to introduce a charge shift on proteins. Here, we report a modification of the procedure for the analysis of chloroplast protein complexes. The two photosystems, the light-harvesting complexes, the ATP synthase, the cytochrome b 6 f complex and the ribulose-bisphosphate carboxylase/oxygenase are well resolved. Analysis of the protein complexes on a second gel dimension under denaturing conditions allows separation of more than 50 different proteins which are part of chloroplast multi-subunit enzymes. The resolution capacity of the blue-native gels is very high if compared to 'native green gel systems' published previously. N-terminal amino acid sequences of single subunits can be directly determined by cyclic Edman degradation as demonstrated for eight proteins. Analysis of chloroplast protein complexes by blue-native gel electrophoresis will allow the generation of 'protein maps' from different species, tissues and developmental stages or from mutant organelles. Further applications of blue-native gel electrophoresis are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    ISSN: 1573-5079
    Keywords: fluorescence induction ; fluorescence yield ; photosynthesis ; P700 ; internal conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    ISSN: 1573-5079
    Keywords: epimerization ; isomerization ; inhibitor binding ; photosynthesis ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (‘fallover’). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    ISSN: 1573-5079
    Keywords: electron transfer ; hydrogen bond ; photosynthesis ; purple bacteria ; recombination rates ; site-directed mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The direct charge recombination rates from the primary quinone, k AD (D+Q A − → DQA) and the secondary quinone, k BD (D+Q B − → DQB), in reaction centers from Rhodobacter sphaeroides were measured as a function of the free energy differences for the processes, ΔG AD 0 and ΔG BD 0 , respectively. Measurements were performed at 21 °C on a series of mutant reaction centers that have a wide range of dimer midpoint potentials and consequently a large variation in ΔG AD 0 and ΔG BD 0 . As –ΔG AD 0 varied from 0.43 to 0.78 eV, k AD varied from 4.6 to 28.6 s−1. The corresponding values for the wild type are 0.52 eV and 8.9 s−1. Observation of the direct charge recombination rate k BD was achieved by substitution of the primary quinone with naphthoquinones in samples in which ubiquinone was present at the secondary quinone site, resulting specifically in an increase in the free energy of the D+Q A − state relative to the D+QAQ B − state. As –ΔG BD 0 varied from 0.37 to 0.67 eV, k BD varied from 0.03 to 1.4 s−1. The corresponding values for the wild type are 0.46 eV and 0.2 s−1. A fit of the two sets of data to the Marcus theory for electron transfer yielded significantly different reorganization energies of 0.82 and 1.3 eV for k AD and k BD, respectively. In contrast, the fitted values for the coupling matrix element, or equivalently the maximum possible rate, were comparable (∼25 s−1) for the two charge recombination processes. These results are in accord with QB having more interactions with dipoles, from both the surrounding protein and bound water molecules, than QA and with the primary determinant of the maximal rate being the quinone-donor distance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    ISSN: 1573-5079
    Keywords: electrometry ; electron transfer ; membrane ; menaquinone ; photosynthesis ; potential ; proton transfer ; Rhodobacter sphaeroides ; Rhodopseudomonas viridis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The thermophilic phototroph Chloroflexus aurantiacus possesses a photosynthetic reaction center (RC) containing a pair of menaquinones acting as primary (MQa) and secondary (MQB) electron acceptors and a tetraheme cytochrome c554 as an electron donor. We used native, chlorosome-containing photosynthetic membranes of this bacterium to study the MQB turnover. The binary oscillations of the semiquinone form MQB − in response to a train of short light flashes were monitored at 416 nm, in the isosbestic point of the light-induced difference spectrum of cytochrome c554. After the first flash MQB − was formed, after the second one it disappeared due to the MQa −MQB − → MQaMQBH2 transition. The latter reaction was kinetically resolved by means of electrometry. For this purpose chromatophores of Chl. aurantiacus were adsorbed onto a phospholipid and menaquinone-impregnated collodion film. We found that after the second excitation flash, but not after the first one, the photoelectric response included, in addition to the fast kinetic components reflecting the charge separation between the tetraheme cytochrome c and MQa, a slower kinetic component with a rise time of 3 µs (pH = 8.3) and a relative amplitude of about 10% of the charge separation phase in the RC. We attributed this reaction to the electrogenic proton transfer which accompanied the transfer of the second electron during the MQa −MQB − → MQaMQBH2 transition. The rise time of the same reaction was reported to be almost three orders of magnitude slower in the isolated, proteoliposome-incorporated RC from this bacterium. The possible reasons of the faster turnover rates observed in the chlorosome-carrying native membrane preparations from Chl. aurantiacus are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 56 (1998), S. 143-155 
    ISSN: 1573-5079
    Keywords: carbon dioxide ; Glycine max ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Elevated carbon dioxide (CO2) concentration increases plant photosynthesis, biomass and carbohydrate accumulation. Since plants have grown in low CO2 (200 to 300 µmol mol−1) for the last several million years, how will they use extra photoassimilate as the atmospheric CO2 continues to rise? The objectives were to determine the effects of past, present and projected future levels of CO2 on diurnal and seasonal patterns of total nonstructural carbohydrate (TNC) concentration of soybean [Glycine max (L.) Merr.] tissues. Plants were grown at 160, 220, 280, 330, 660 and 990 µmol mol−1 CO2 in outdoor, sunlit chambers wherein CO2 uptake rates were measured continuously. Early morning and late afternoon plant samples were taken at eight dates. The TNC concentration of leaves, petioles and stems increased as CO2 increased. Canopy photosynthetic rates also increased with increasing CO2, apparently without any negative impact of increased leaf TNC. Concentrations of TNC in all vegetative tissues were lower in the morning than the afternoon, which indicates overnight mobilization and utilization of carbohydrates for growth processes. The concentration of TNC was lowest in all plant components during rapid vegetative growth at V8 to R2 developmental stages. Leaves of all plants, especially those grown in superambient CO2, contained large pools of TNC at plant maturity, which indicated that not all of the reserves were utilized for seed yield. Soybean cultivars for the future should be designed to utilize carbohydrates more readily for seed production so that greater benefit can be realized from rising atmospheric CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    ISSN: 1573-5079
    Keywords: electron transport ; nitrite ; oxaloacetate ; photosynthesis ; proton transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosystem I-dependent cyclic electron transport is shown to operate in intact spinach chloroplasts with oxaloacetate, but not with nitrite or methylviologen as electron acceptors. It is regulated by the redox state of the chloroplast NADP system. Inhibition of cyclic electron transport by antimycin A occurs immediately on addition of this antibiotic in the light. It is unrelated to a different function of antimycin A, inhibition of nonphotochemical quenching of chlorophyll fluorescence, which requires prior dissipation of the transthylakoid proton gradient before antimycin A can become effective.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; high-temperature stress ; O2 evolution ; photosynthesis ; Photosystem II ; spinach
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Activities of oxygen evolution, fluorescence Fv (a variable part of chlorophyll fluorescence) values, and amounts of the 33 kDa protein remaining bound to the thylakoids in intact spinach chloroplasts were measured during and after high-temperature treatment. The following results were obtained. (1) Both the Fv value and the flash-induced oxygen evolution measured by an oxygen electrode were decreased at high temperatures, but they showed partial recovery when the samples were cooled down and incubated at 25°C for 5 min after high-temperature treatment. (2) Oxygen evolution was more sensitive to high temperatures than the Fv value, and the decrease in the Fv/Fm ratio at high temperatures rather corresponded to that in the oxygen evolution measured at 25°C after high-temperature treatment. (3) Photoinactivation of PS II was very rapid at high temperatures, and this seems to be a cause of the difference between the Fv values and the oxygen-evolving activities at high temperatures. (4) At around 40°C, the manganese-stabilizing 33 kDa protein of PS II was supposed to be released from the PS II core complexes during heat treatment and to rebind to the complexes when the samples were cooled down to 25°C. (5) At higher temperatures, the charge separation reaction of PS II was inactivated, and the PS II complexes became less fluorescent, which was recovered partially at 25°C. (6) Increases in the Fv value due to a large decrease in the electron flow from QA to QB became prominent after high-temperature treatment at around 50°C. This was the main cause of the discrepancy between the Fv values and the oxygen-evolving activities measured at 25°C. Relationship between the process of heat inactivation of PS II reaction center complexes and the fluorescence levels is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    ISSN: 1573-5079
    Keywords: copper ; electron transport ; photosynthesis ; TyrosineZ
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The thermoluminescence characteristics of functionally intact thylakoids and TRIS-washed BBY particles were studied under Cu(II) poisoned conditions. In thylakoids, both the A and B thermoluminescence bands corresponding to S3QA - and S2S3QB - charge recombinations, respectively showed specific responses to Cu(II) treatment. The amplitude of the B band was gradually decreased, which corresponds to the Cu(II) induced inactivation of TyrZ. The simultaneous stepwise shift in the peak position of the B band indicated, however, that S3QB - charge recombination is more resistant to Cu(II) poisoned conditions. The shifted peak position of the A band toward the higher temperature in Cu(II) treated thylakoids also showed a change in the redox span between the recombination partners generating the A band of the glow curve. The AT band due to the His+QA - recombination in TRIS-washed BBY particles was insensitive to Cu(II) addition indicating that Cu(II) did not affect either His+ or QA -. The unaffected intensity of the A and AT bands when Cu(II) inhibits TyrZ function favours the assumption of an alternative pathway in which functional TyrZ is not required. In addition, Cu-induced changes of the TL bands were compared to those produced by the Tyr and His modifiers NBD and DEPC, respectively. We obtained very similar results regarding TL bands by either adding NBD or Cu-poisoning in functional thylakoids. Regarding DEPC, the A and AT bands were abolished by increasing concentrations of the His modifier. This effect was associated with the decrease of the B band and its replacement by the Q band at around 0 °C. Comparing our data obtained by Cu, NBD and DEPC treatments, we have found a strong interrelation between His+ and S3 state. We assume that in some inhibitory conditions in the S3 state His is oxidized in place of Mn and this alternative pathway does not require functional TyrZ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    ISSN: 1573-5079
    Keywords: cyanobacteria ; photosynthesis ; Photosystem I ; prochlorophyte ; psaI ; psaL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A 25 kDa protein associated with Photosystem I (PS I) of the divinyl-chlorophyll a/b-containing oxychlorobacterium Prochlorococcus marinus SS120 (CCMP 1375) was isolated, and the amino acid sequences of the N-terminus and one internal peptide were determined. Polymerase chain reaction (PCR) with degenerate primers yielded a 92 bp fragment, which was used to isolate the complete gene from a genomic library. The corresponding gene was isolated from a library of Prochlorococcus sp. MED4 (CCMP 1378). In both Prochlorococcus strains, the gene encodes a protein of 199 amino acids. The gene products show a strong sequence similarity to the PS I subunit PsaL. The N-terminus contains a hydrophilic domain that has not been found in PsaL proteins from other organisms. In both strains, sequences encoding a protein similar to PsaI were found upstream of the psaL gene. Both genes are transcribed in the same direction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    ISSN: 1573-5079
    Keywords: herbicides ; photoinhibition ; photosynthesis ; protein degradation and synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the Photosystem II (PSII) inhibitors dichlorophenyldimethylurea (DCMU) and bromonitrothymol (BNT) on the rate of the high-light induced D1 protein turnover was studied in whole cells of two cyanobacterial strains Synechocystis PCC 6803 and Synechococcus PCC 7942. In Synechocystis the D1 degradation was slowed down to a similar extent in the presence of either inhibitor compared with control cells. This slower degradation corresponded with the retardation of Photosystem II photoinactivation (PSIIPI) measured as a decline of PS II activity in the illuminated cells treated with chloramphenicol (CAP). The ongoing D1 synthesis in the presence of both PS II inhibitors was confirmed by unchanging PS II activity and the steady-state level of D1 during illumination in the absence of CAP. In Synechococcus cells both DCMU and BNT blocked the turnover of the 'low-light' D1 form (D1:1) but did not prevent the exchange of the 'high-light' form D1:2 for the D1:1 form. The similar effect of both herbicides on the D1 exchange was in contrast with their influence on the rate of PSIIPI. While DCMU had a pronounced protective effect, BNT significantly increased the rate of PS II photodamage. The fast BNT-induced decline of PS II activity was also observed in Synechocystis cells treated with azide, an inhibitor of reactive oxygen species scavenging enzymes. Therefore, we assume that the distinct sensitivity of the two cyanobacterial strains to BNT can be caused by different content and/or activity of these enzymes in each strain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    ISSN: 1573-5087
    Keywords: chlormequat chloride ; flag leaf ; grain filling ; imazaquin ; photosynthesis ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In West-Europe, intensive cereal management uses plant growth regulators (PGRs) especially for wheat. A green-house experiment compared the effects of two PGRs on flag leaf characteristics and yield of winter wheat. Chlormequat chloride + choline chloride (CCC) and chlormequat chloride + choline chloride + imazaquin (CCC+I) were applied to winter wheat at growth stage 5 (Feekes Large scale). CCC and CCC+I significantly increased flag leaf surface area at anthesis. Both treatments also enhanced chlorophyll content of the main stem flag leaf. The grain filling period was extended with PGR application by 2 days. CCC and CCC+I significantly increased net CO2 assimilation rates during the flag leaf life. No effects of PGR spraying were observed on the pattern of 14C labelled assimilate distribution. Increased grain yield was due to the increase in average grain weight. The results indicate that PGR treatments increased flag leaf contribution to grain filling. The addition of imazaquin (I) to chlormequat (CCC) improved the effects of CCC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 1-28 
    ISSN: 1573-5079
    Keywords: biodiversity ; carboxylase ; genetic selection ; photosynthesis ; regulation ; specificity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Marine and terrestrial photosynthetic and chemoautotrophic microorganisms assimilate considerable amounts of carbon dioxide. Like green plastids, the predominant means by which this process occurs is via the Calvin-Benson-Bassham reductive pentose phosphate pathway, where ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a paramount role. Recent findings indicate that this enzyme is subject to diverse means of control, including specific and elaborate means to guarantee its high rate and extent of synthesis. In addition, powerful and specific means to regulate Rubisco activity is a characteristic feature of many microbial systems. In many respects, the diverse properties of microbial Rubisco enzymes suggest interesting strategies to elucidate the molecular basis of CO2/O2 specificity, the ‘holy grail’ of Rubisco biochemistry. These systems thus provide, as the title suggests, ‘different perspectives’ to this fundamental problem. These include vast possibilities for imaginative biological selection using metabolically versatile organisms with well-defined genetic transfer capabilities to solve important issues of Rubisco specificity and molecular control. This review considers the major issues of Rubisco biochemistry and regulation in photosynthetic microoganisms including proteobacteria, cyanobacteria, marine nongreen algae, as well as other interesting prokaryotic and eukaryotic microbial systems recently shown to possess this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 247-256 
    ISSN: 1573-5079
    Keywords: irradiance ; kinetics ; method ; photosynthesis ; regulation ; rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An in vivo method for the estimation of kinetic parameters of partial reactions of carboxylation of ribulose 1,5-bisphosphate (RuBP) catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is described. Rubisco in barley, wheat and bean is different in the ability of its active centers to bind RuBP. The rate constant of the formation of the Rubisco-RuBP complex in these plants at 25 °C is 0.414, 0.245 and 0.660 mM-1 s-1, respectively. The rate constant of the reaction of the Rubisco-bound enediol with CO2 does not differ significantly in barley and wheat, and averages 66 mM-1 s-1. Decreased irradiance inhibits Rubisco in two ways: by reducing the concentration of operating catalytic sites and by decreasing the rate constant of binding of RuBP to Rubisco. High concentrations of CO2 inhibit Rubisco by decreasing the concentration of competent carboxylation centers, without any s ignificant influence upon the rate constants of partial reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    ISSN: 1573-5079
    Keywords: EPR ; iron-sulphur ; photosynthesis ; P700 ; reaction center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A site directed mutant of the Photosystem I reaction center of Chlamydomonas reinhardtii has been described previously. [Hallahan et al. (1995) Photosynth Res 46: 257–264]. The mutation, PsaA: D576L, changes the conserved aspartate residue adjacent to one of the cysteine ligands binding the Fe-SX center to PsaA. The mutation, which prevents photosynthetic growth, was observed to change the EPR spectrum of the Fe-SA/B centers bound to the PsaC subunit. We suggested that changes in binding of PsaC to the PsaA/PsaB reaction center prevented efficient electron transfer. Second site suppressors of the mutation have now been isolated which have recovered the ability to grow photosynthetically. DNA analysis of four suppressor strains showed the original D576L mutation is intact, and that no mutations are present elsewhere within the Fe-SX binding region of either PsaA or PsaB, nor within PsaC or PsaJ. Subsequent genetic analysis has indicated that the suppressor mutation(s) is nuclear encoded. The suppressors retain the altered binding of PsaC, indicating that this change is not the cause of failure to grow photosynthetically. Further analysis showed that the rate of electron transfer from the quinone electron carrier A1 to Fe-SX is slowed in the mutant (by a factor of approximately two) and restored to wild type rates in the suppressors. ENDOR spectra of A1 ·– in wild-type and mutant preparations are identical, indicating that the electronic structure of the phyllosemiquinone is not changed. The results suggest that the quinone to Fe-SX center electron transfer is sensitive to the structure of the iron-sulfur center, and may be a critical step in the energy conversion process. They also indicate that the structure of the reaction center may be modified as a result of changes in proteins outside the core of the reaction center.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    ISSN: 1573-5079
    Keywords: photosynthesis ; photosynthetic induction ; sunflecks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of CO2 concentration and the effects of growth-light conditions on Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) deactivation were examined for Spinacea oleracea (spinach). Rubisco deactivation kinetics and the degree that Rubisco activation limited the rise in photosynthesis following an increase in photon flux density (PFD) were determined from gas-exchange time courses. There were no significant differences in the apparent relaxation time for Rubisco deactivation among leaves exposed to high or low CO2 (50 or 1000 μmol mol-1) and low PFD (170 μmol m-2 s-1) or darkness. However, when PFD was increased to 1700 μmol m-2 s-1 following a period of low PFD or darkness, leaves exposed to low CO2 × low PFD showed a lower contribution to the photosynthetic induction process by the activation of Rubisco than leaves exposed to the other treatments. For the growth-light experiments, spinach was grown under high PFD × high red:far-red ratio (R:FR), low PFD × high R:FR, or low PFD × low R:FR light environments. Leaves that matured under the low PFD × low R:FR treatment showed a lower percent change in photosynthesis due to Rubisco activation than leaves exposed to the other growth-light treatments. However, there were no significant differences among the growth-light treatments in the maximum contribution of Rubisco activation to the induction response or in the apparent relaxation time for Rubisco deactivation during shade events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 52 (1997), S. 117-125 
    ISSN: 1573-5079
    Keywords: gas exchange ; light acclimation ; photosynthesis ; sunflecks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Basil (Ocimum basilicum) and impatiens (Impatiens wallerana) were grown in sun, shade, or fluctuating light (15 min sun, 15 min shade) to examine the effects of growth-light conditions on the rates of light-induced Rubisco activation and deactivation. Rubisco activation and deactivation rates were determined from gas-exchange measurements of photosynthesis following a step increase in PFD. Rubisco deactivation rates were also determined from biochemical analyses of leaf extracts. There were no significant differences in Rubisco activation rate among the growth conditions or between the two species. However, there were significant differences in Rubisco deactivation rate among the growth conditions in basil and between the two species. In basil, Rubisco deactivated more slowly following a decrease in PFD in sun- and fluctuating-light grown plants than in shade grown plants. Slower rates of Rubisco deactivation during periods at low PFD resulted in higher activation states at the onset of increased PFD. Thus, the contribution of Rubisco activation to the induction process was less for basil plants grown under sun and fluctuating light than for those grown under shade. Impatiens deactivated Rubisco more rapidly than in basil, but there was no substantial effect of the three growth-light conditions on Rubisco deactivation rates in impatiens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 389 (1998), S. 7-19 
    ISSN: 1573-5117
    Keywords: photosynthesis ; respiration ; photorespiration ; diel oxygen curve ; macrophytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We conducted two-station diel surveys of dissolved oxygen content to estimate whole-stream productivity in the experimental streams of the Monticello Ecological Research Station for two years following channel reconstruction. Community productivity measurements compare well to previous measurements in these streams, but apparent hysteresis in the P/I relation was measured in over two-thirds of the diel surveys. Apparent hysteresis in photosynthesis with solar irradiance is a characteristic of photorespiration, and modeling the effect of light on whole-stream respiratory rates reduced the magnitude of P/I curve hysteresis and improved the predictions of dissolved oxygen content (DO) in the stream. Stream productivity models normally assume respiratory rates measured at night are constant throughout the day, but when this assumption yields apparent hysteresis in the P/I curve, the inclusion of a photorespiration model in the analyses of whole-stream productivity facilitates the comparison of photosynthesis and respiratory rates between different streams. The computed total daily consumption of oxygen by photorespiratory processes is proportional to the total daily photosynthetic production of oxygen in the streams. We also found that the diel DO curves occurring in the experimental streams are best described by a photorespiration model that utilizes a four hour moving average of irradiance. Accounting for photorespiration in the streams increases the apparent efficiency of photosynthesis, improves the accuracy of DO predictions, and reduces uncertainty in photosynthesis and respiratory rate estimates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 398-399 (1999), S. 355-359 
    ISSN: 1573-5117
    Keywords: CO2 ; emersion ; macroalgae ; photosynthesis ; seaweeds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to assess the ecological impacts of the atmospheric CO2 increase on the intertidal macroalgae during emersion, the photosynthesis of Enteromorpha linza (a green alga), Ishige okamurae (a brown alga) and Gloiopeltis furcata (a red alga) was investigated in air as a function of CO2 concentrations and water loss. Their photosynthesis was not saturated at the present atmospheric CO2 level (350 μl l −1 or 15.6 μM), the CO2 compensation point and $$K_{[{\text{mCO}}_{\text{2}} ]} $$ increased with increasing desiccation, showing that desiccation lowers the CO2 affinity of the intertidal macroalgae. It was concluded that E. linza, I. okamurae and G. furcata, while exposed to air, can benefit from atmospheric CO2 rise, especially when the algae have lost some water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    ISSN: 1573-5117
    Keywords: photosynthesis ; respiration ; Gelidiella acerosa ; culture ; tidal habitat ; salinity ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several samples of the red seaweed, Gelidiella acerosa (Forssk.) Feldmann & Hamel occurring in tidepools, high intertidal rocks, and shallow subtidal areas on a reef flat in Ilocos Norte, northern Philippines were studied in terms of their photosynthetic and respiratory responses (μl O2 gDW−1 h−1) to four salinity (22, 28, 34, 40‰) and three temperature (22, 28, 34 °C) combinations. The upper intertidal plants tolerated low salinities (22–28‰) better than high salinities (34–40‰), while tidepool and subtidal plants were not affected. Temperatures of 22 through 34 °C resulted in a one-fold increase in their photosynthetic rates and insignificant differences in their respiratory rates while tidepool and subtidal plants almost doubled their photosynthetic rates and their respiration rates increased by about 5–50 times. There were no interaction effects. Therefore, intertidal plants appe ared to be more tolerant to wide temperature fluctuations and low salinity levels; while tidepool and subtidal plants were least affected by salinity variations but were quite sensitive to temperature fluctuations. Vegetative and tetrasporic plants had similar photosynthetic and respiratory responses to salinity and temperature variations, although vegetative plants had significantly higher net photosynthesis under the minimum and maximum temperatures tested (22 and 34 °C). Reproductive G. acerosa showed greater tolerance to temperature fluctuations. These responses indicated that physiological changes may have occurred when the species became reproductive. Tolerance of G. acerosa to low salinities suggests that lowering the salinities in culture tanks could be used to eradicate contaminants, i.e., dinoflagellates and filamentous green algae. Temperature of 28 °C appeared to be optimum for all plant types as reflected by their high photosynthetic and low respiratory rates .
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    ISSN: 1573-2932
    Keywords: Age classes ; branch cuvette ; chamber design ; CO2 ; gas exchange ; ozone ; Picea abies ; photosynthesis ; transpiration ; twigs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The gas exchange system is computer controlled and is designed to measure and control 14 temperature regulated chambers enclosing spruce twigs for several months with minimum ozone absorption. The system is mounted on sun exposed single year classes of a Norway spruce stand in western Jutland, Denmark. Since July 1994 the temperature control system has been in function. Results show that 95% of the temperature measurements inside the cuvettes are within the range −2 to +3 °C of the ambient temperature. Gas exchange measurements show that the current year shoots have a higher net photosynthesis than the older shoots. The net photosynthesis in current year needles on sunny days is significantly reduced by the 6 h daily 30–40 ppb ozone addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    ISSN: 1572-9834
    Keywords: baldcypress ; green ash ; flooding ; photosynthesis ; salinity ; Chinese tallow ; water relations ; water tupelo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of flooding and salinity on photosynthesis and water relations was examined for four common coastal tree species [green ash (Fraxinus pennsylvanica Marshall), water tupelo (Nyssa aquatica L.). Chinese tallow (Sapium sebiferum (L.) Roxb.), and baldcypress (Taxodium distichum (L.) Richard)]. Both chronic (as might be associated with sea level rise) and acute (similar to hurricane storm surges) exposures to these stresses were examined. Chronic freshwater flooding of green ash, water tupelo, and Chinese tallow seedlings reduced photosynthesis (A) relative to that of watered seedlings, while baldcypress was unaffected. Chinese tallow A declined with increasing length of flooding. A salinity increase of the floodwater to 2 ppt decreased A of baldcypress and water tupelo, but not A of green ash and Chinese tallow, which was already severely reduced by freshwater flooding. All seedlings of the four species died within 2 to 6 weeks when flooded with 10 ppt saltwater. Photosynthesis of all four species did not differ between 0 and 2 ppt watering. Watering with 10 ppt salinity initially reduced A of all four species, but the seedlings recovered over time. Photosynthesis was severely decreased for all species when flooded with 21 ppt salinity for 48 hours. Reduced A continued following the treatment. Photosynthesis of only green ash and water tupelo was reduced by watering with 21 ppt salinity for 48 hours. Flooding of low-lying areas with increased salinity would lead to shifts in species composition of coastal forests due to these differential tolerances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...