ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Design, Testing and Performance
  • Aircraft Stability and Control
  • 1995-1999  (661)
  • 1950-1954  (103)
  • 1940-1944  (60)
Collection
Years
Year
  • 1
    Publication Date: 2009-11-17
    Description: Airplane design studies have developed configuration concepts that may produce lower sonic boom annoyance levels. Since lower noise designs differ significantly from other HSCT designs, it is necessary to accurately assess their potential before HSCT final configuration decisions are made. Flight tests to demonstrate lower noise design capability by modifying an existing airframe have been proposed for the Mach 3 SR-71 reconnaissance airplane. To support the modified SR-71 proposal, baseline in-flight measurements were made of the unmodified aircraft. These measurements of SR-71 near-field sonic boom signatures were obtained by an F-16XL probe airplane at flightpath separation distances ranging from approximately 740 to 40 ft. This paper discusses the methods used to gather and analyze the flight data, and makes comparisons of these flight data with CFD results from Douglas Aircraft Corporation and NASA Langley Research Center. The CFD solutions were obtained for the near-field flow about the SR-71, and then propagated to the flight test measurement location using the program MDBOOM.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 171-197; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-23
    Description: This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
    Keywords: Aircraft Stability and Control
    Type: System Identification for Integrated Aircraft Development and Flight Testing; 16-1 - 16-13; RTO-MP-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The next generation ASTOVL aircraft will have a complicated propulsion system. The configuration choices include Direct Lift, Lift-Fan and Lift + Lift/Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to de-couple longitudinal and vertical responses allowing the pilot to close the loop on flightpath and flightpath acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision, has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flightpath command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results are used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: Report to the Aerospace Profession: 39th SETP Symposium; 368-385
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Two wind tunnel tests during 1995 in the National Transonic Facility (NTF 070 and 073) served to define Reynolds number effects on longitudinal and lateral-directional stability and control. Testing was completed at both high lift and transonic conditions. The effect of Reynolds number on the total airplane configuration, horizontal and vertical tail effectiveness, forebody chine performance, rudder control and model aeroelastics was investigated. This paper will present pertinent stability and control results from these two test entries. Note that while model aeroelastic effects are examined in this presentation, no corrections for these effects have been made to the data.
    Keywords: Aircraft Stability and Control
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1253-1284; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1009-1040; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Although neither shimmy nor brake-induced vibrations are usually catastrophic, they can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. Recently, NASA has initiated an effort to increase the safety of air travel by reducing the number of accidents by a factor of five in ten years. This safety initiative has spurred an increased interest in improving landing gear design to minimize shimmy and brake-induced vibration that are still largely misunderstood phenomena. In order to increase the understanding of these problems, a literature survey was performed. The major focus of the paper is to summarize work documented from the last ten years to highlight the latest efforts in solving these vibration problems. Older publications are included to understand the longevity of the problem and the findings from earlier researchers. The literature survey revealed a variety of analyses, testing, modeling, and simulation of aircraft landing gear. Experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear are also reported. This paper presents an overview of the problem documented in the references together with a history of landing gear dynamic problems and solutions. Based on the assessment of this survey, recommendations of the most critically needed enhancements to the state of the art are given.
    Keywords: Aircraft Design, Testing and Performance
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 649-664; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.
    Keywords: Aircraft Stability and Control
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 615-626; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The objective was to experimentally evaluate the longitudinal and lateral-directional stability and control characteristics of the Reference H configuration at supersonic and transonic speeds. A series of conventional and alternate control devices were also evaluated at supersonic and transonic speeds. A database on the conventional and alternate control devices was to be created for use in the HSR program.
    Keywords: Aircraft Stability and Control
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1233-1251; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: This paper presents the work done to date by the authors on developing an efficient approach to multipoint design and applying it to the design of the HSR TCA (High Speed Research Technology Concept Aircraft) configuration. While the title indicates that this exploratory study has been performed using the TLNS3DMB flow solver and the CDISC (Constrained Direct Iterative Surface Curvature) design method, the CDISC method could have been used with any flow solver, and the multipoint design approach does not require the use of CDISC. The goal of the study was to develop a multipoint design method that could achieve a design in about the same time as 10 analysis runs.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 561-586; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 544-560; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: The stability and control issues in high speed aerodynamics of most significance for the development of a viable HSCT are identified, and the status of the Ref. H configuration with respect to these issues is discussed. The interdependence between aerodynamic requirements and assumptions about airplane system functions such as Envelope Protection and Integrated Flight/Propulsion Control is highlighted. The conclusions presented draw on results from the Ref. H Assessment and Alternate Control Concepts Assessment performed under Configuration Aerodynamics Subtask 5 during 1995.
    Keywords: Aircraft Stability and Control
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1215-1231; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1041-1071; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 845-967; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: This paper presents an overview of recent developments in an effort to predict transient aeroelastic rotor response during shipboard engage and disengage sequences. The blade is modeled as an elastic beam undergoing in flap, lag, extension and torsion. The blade equations of motion are formulated using Hamilton's principle and they are spatially discretized using the finite element method. The discretized blade equations of motion are integrated for a specified rotor speed run-up or run-down profile. Blade element theory is used to calculate quasi-steady or unsteady aerodynamic loads in linear and nonlinear regimes. The analysis is capable of simulating both articulated, hingeless, and gimballed rotor systems. Validation of the rotor code is discussed, including correlation with droop stop impact tests and wind tunnel experiments. Predictions of safe engagement and disengagement envelopes, limited by excessive blade tip deflections or hub moments, are presented. Future directions of study are also discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface; 1-1 - 1-18; RTO-MP-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: Several analytical and experimental studies clearly demonstrate that piezoelectric materials (piezoelectrics) can be used as actuators to actively control vibratory response, including aeroelastic response. However, two important issues in using piezoelectrics as actuators for active control are: 1) the potentially large amount of power required to operate the actuators, and 2) the complexities involved with active control (added hardware, control law design, and implementation). Active or passive damping augmentation using shunted piezoelectrics may provide a viable alternative. This approach requires only simple electrical circuitry and very little or no electrical power. The current study examines the feasibility of using shunted piezoelectrics to reduce aeroelastic response using a typical-section representation of a wing and piezoelectrics shunted with a parallel resistor and inductor. The aeroelastic analysis shows that shunted piezoelectrics can effectively reduce aeroelastic response below flutter and may provide a simple, low-power method of subcritical aeroelastic control.
    Keywords: Aircraft Stability and Control
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 553-572; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of overviews of each NASA Center's contribution to the program during the period 1 Apr. 1998 - 31 Mar. 1999.
    Keywords: Aircraft Design, Testing and Performance
    Type: X-33 Flight Operations Center
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: This paper provides an overview of the impact of environmental issues on the design and operation of the proposed High-Speed Civil Transport (HSCT). This proposal for a new generation commercial supersonic transport is being pursued by NASA and its US industry partners in the NASA High-Speed Research (HSR) Program. A second related paper describes the overall HSR Program, including a history of supersonic transport development that led to the present program, and a brief outline of the structure of the two-phase program and its management structure. The specific objectives are to address the four major barrier environmental issues and show their impact on the design of the airplane and potentially, its mode of operation. A brief historical perspective shows how HSR Phase I addressed these environmental topics and, with the successful completion of that program, led to the successful advocacy for the Phase II effort that followed. The Phase II program elements were discussed in the earlier paper and addressed technology programs to enhance the economic viability of the HSCT. Since many of the regulations that may effect the certification and operation of the HSCT are either not in place or well documented, a brief treatise is provided to address the status of the rules and the potential impact on the viability of the HSCT.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: A new unpiloted air vehicle (UAV) based water vapor DIAL system will be described. This system is expected to offer lower operating costs, longer test duration and severe weather capabilities. A new high-efficiency, compact, light weight, diode-pumped, tunable Cr:LiSAF laser will be developed to meet the UAV payload weight and size limitations and its constraints in cooling capacity, physical size and payload. Similarly, a new receiver system using a single mirror telescope and an avalanche photo diode (APD) will be developed. Projected UAV parameters are expected to allow operation at altitudes up to 20 km, endurance of 24 hrs and speed of 400 km/hr. At these conditions measurements of water vapor at an uncertainty of 2-10% with a vertical resolution of 200 m and horizontal resolution of 10 km will be possible.
    Keywords: Aircraft Design, Testing and Performance
    Type: Nineteenth International Laser Radar Conference; Part 2; 891-894; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: The aerodynamic optimization program used for wing and fuselage optimization of the High Speed Civil Transport was modified for utilization of multiple processors on parallel processor computers. The modified version uses multiple processors to simultaneously conduct three-dimensional flow solutions of different wing and fuselage geometries for calculations of the gradient functions and for directional searches to minimize an objective function. Demonstrations have shown the parallel program to be useful for coarse grid optimization, however memory problems for processors on the IBM SP2 were encountered when finer grid sizes were used.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Advanced helicopter rotor systems, such as those proposed for military rotorcraft in the near future, are mechanically less complex than traditional rotor systems. This simplification may lead to problems with both air and ground resonance. Damping can be a major stabilizing influence for these conditions, and a method of introducing damping in the flexbeam would allow for greater aeromechanical stability. Distributed and point damping strategies are currently being investigated to this end.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 203-205; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: The problem of efficient wind tunnel testing for multi-element airfoils was first addressed by the author during a previous ASEE fellowship. A modern three element model with internal actuators to position a flap in two degrees of freedom was designed and later built. Some preliminary testing proved that the approach was viable. The purpose of this summer's work was to fully develop experimental methods including efficient data acquisition. The final goal is to develop dense data sets for both lift and drag measurements as a function of flap position for both take-off and landing configurations. The model has a span of 36 in. and chord of 18 in. and is currently being fitted for a 3 ft. x 4 ft. low speed wind tunnel. The flap was reworked to allow all pressure taps to function after initial tests showed two blocked ports. The serial method of obtaining pressures from the surface taps was found to be exceedingly slow so a new method using 12 pressure transducers and a 12 port parallel scanning valve were developed. A new automated data acquisition and control algorithm was developed using LabView software and a PC platform. Flow two-dimensionality is currently under investigation with boundary layer control by blowing; this was previously omitted for initial testing. By the end of the summer a detailed data set (uncorrected) consisting of lift coefficient versus flap position for the landing configuration should be available.
    Keywords: Aircraft Design, Testing and Performance
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 88; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: This report presents the results of a study to extend existing high speed civil transport (HSCT) tail sizing criteria using linear matrix inequalities (LMI). In particular, the effects of feedback specifications, such as MIL STD 1797 Level 1 and 2 flying qualities requirements, and actuator amplitude and rate constraints on the maximum allowable cg travel for a given set of tail sizes are considered. Results comparing previously developed industry criteria and the LMI methodology on an HSCT concept airplane are presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 83; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: This presentation describes the general objectives of the project, followed by background information which led to the initiation of the study, and the approach taken to meet the objectives. Next, experimental studies in the LaRC Unitary Plan Wind Tunnel, the NMA Polysonic Wind Tunnel, and the National Transonic Facility will be discussed. Concluding remarks will close the presentation.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 477-508; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: This paper presents the work done to date by the authors on developing an efficient approach to multipoint design and applying it to the design of the HSR TCA configuration. While the title indicates that this exploratory study has been performed using the TLNS3DMB flow solver and the CDISC design method, the CDISC method could have been used with any flow solver, and the multipoint design approach does not require the use of CDISC. The goal of the study was to develop a multipoint design method that could achieve a design in about the same time as 10 analysis runs.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 561-587; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: The Natural Flow Wing design philosophy was developed for improving performance characteristics of highly-swept fighter aircraft at cruise and maneuvering conditions across the Mach number range (from Subsonic through Supersonic). The basic philosophy recognizes the flow characteristics that develop on highly swept wings and contours the surface to take advantage of those flow characteristics (e.g., forward facing surfaces in low pressure regions and aft facing surfaces in higher pressure regions for low drag). Because the wing leading edge and trailing edge have multiple sweep angles and because of shocks generated on nacelles and diverters, a viscous code was required to accurately define the surface pressure distributions on the wing. A method of generating the surface geometry to take advantage of those surface pressures (as well as not violating any structural constraints) was developed and the resulting geometries were analyzed and compared to a baseline configuration. This paper will include discussions of the basic Natural Flow Wing design philosophy, the application of the philosophy to an HSCT vehicle, and preliminary wind-tunnel assessment of the NFW HSCT vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 597-639; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: A flight program using the SR-71 airplane to validate sonic boom technologies for High-Speed Commercial Transport (HSCT) operation and potentially for low- or softened-boom design configurations is described. This program employs a shaped signature modification to the SR-71 airplane which is designed to demonstrate computational fluid dynamics (CFD) design technology at a full-scale HSCT operating condition of Mach 1.8 at 48,000 feet altitude. Test plans call for measurements in the near-field, at intermediate propagation altitudes, and through the more turbulent boundary layer near the Earth surface. The shaped signature modification to the airplane is comprised of added cross-section areas on the underside of the airplane forward of the wing and engine nacelles. Because the flight demonstration does not approach maximum SR-71 altitude or Mach number, the airplane provides more than adequate performance and maneuver margins for safe operation of the modified airplane. Probe airplane measurements in the near-field will use fast response pressure sensors. Far-field and ground-based boom measurements will use high response microphones or conventional sonic boom field recorders. Scope of the planned demonstration flights also includes ground level measurements during conditions which cause minimal signature distortion and conditions which cause high distortion of the signature.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 237-248; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: A performance assessment of eight low-boom high speed civil transport (HSCT) configurations and a reference HSCT configuration has been performed. Although each of the configurations was designed with different engine concepts, for consistency, a year 2005 technology, 0.4 bypass ratio mixed-flow turbofan (MFTF) engine was used for all of the performance assessments. Therefore, all original configuration nacelles were replaced by a year 2005 MFRF nacelle design which corresponds to the engine deck utilized. The engine thrust level was optimized to minimize vehicle takeoff gross weight. To preserve the configuration's sonic-boom shaping, wing area was not optimized or altered from its original design value. Performance sizings were completed when possible for takeoff balanced field lengths of 11,000 ft and 12,000 ft, not considering FAR Part 36 Stage III noise compliance. Additionally, an arbitrary sizing with thrust-to-weight ratio equal to 0.25 was performed, enabling performance levels to be compared independent of takeoff characteristics. The low-boom configurations analyzed included designs from the Boeing Commercial Airplane Group, Douglas Aircraft Company, Ames Research Center, and Langley Research Center. This paper discusses the technology level assumptions, mission profile, analysis methodologies, and the results of the assessment. The results include maximum lift-to-drag ratios, total fuel consumption, number of passengers, optimum engine sizing plots, takeoff performance, mission block time, and takeoff gross weight for all configurations. Results from the low-boom configurations are also compared with a non-low-boom reference configuration. Configuration dependent advantages or deficiencies are discussed as warranted.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 149-170; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: Two additional low-boom F-functions have been described for use in designing low-boom, shaped-pressure-signature, supersonic-cruise aircraft. Based on the minimization studies of Seebass and George, the drag-nose shock strength trade-off modification of Darden, and the practical modification of Haglund, their use can aid in the design of conceptual low-boom aircraft, provide additional flexibility in the shaping of the low-boom aircraft nose section, and extend the applicability of shaped-pressure-signature methodology.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 1-12; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-12-03
    Description: Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 665-678; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: The goal of flight flutter testing is to detect possibly destructive modes of aircraft vibration which may arise during flight from interaction of aerodynamic forces with structural dynamic properties of the airframe. This is typically accomplished by exciting the airframe with a time varying force and monitoring the response of the aircraft throughout its flight envelope. The data generated must be analyzed and presented so that the frequency and time of occurrence of excited modes are clearly and unambiguously displayed. Processing and display in near real time is also desirable. Display of data in the time-frequency plane is a natural choice because it is a familiar and intuitive framework. The Matching Pursuit algorithm provides a time-frequency analysis with good adaptability to signal structure and good signal representation in the time-frequency plane. Improvements in efficiency are needed before the algorithm can be used in real time, however.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: NASA has been funding a focused program to promote the development of optical signaling and electrical actuation for civil transports. This program is reviewed in the context of other government and private sector initiatives. It is concluded that significant resources have and continue to be expended to develop these technologies. A second goal of the program is to develop certification methods for aircraft that implement these new technologies. It is concluded that there is a significant need for this effort and that NASA in cooperation with the FAA are well suited to do satisfy the need. Electrical actuation is not new but has recently been made feasible for a broader array of high power applications than previously because of developments in power switching technologies, motors, and computers. This development has been well explored by the Air Force and the private sector and requires little more government attention. Light signal and sensor technology has been developing under public and private funding and has reached a level of maturity such that some companies are using optical signal carriers for flight control on private jets. Several issues remain unresolved but centrally focused government effort is not an effective way to pursue the variety of issues that persist. Certification of aircraft for flight is a government activity. The poor preparedness of the FAA to certify fault tolerant digital flight control systems against electromagnetic effects coupled with the increasing number of electromagnetic emitters constitutes an impediment for development of this technology. The complete lack of preparation to certify optical components is currently causing concern for a general aviation supplier who is having difficulty certify their system. NASA with the FAA should work to develop clear, reasonable, and cost effective ways of certifying the reliability of fault tolerant digital and optical flight control components and systems.
    Keywords: Aircraft Stability and Control
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 111; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-12-03
    Description: NASA is studying the feasibility of installing 'all-electric' controls in future commercial aircraft, replacing the current hydraulic and pneumatic systems. Planes utilizing such equipment should weigh less and be cheaper to maintain, but might also be susceptible to interference from undesired external electromagnetic fields. Possible sources of these extraneous signals include radio and television broadcasters, two-way communications stations, and radar installations of all kinds. One way to reduce the hazard would be to use fiber-optic cables to carry signals from the cockpit to the various points of use, a concept known as 'fly-by-light' or FBL. However, electrical circuits (PBW, or 'power-by-wire') would still be required at both ends of the cables to perform control functions, so the possibility of harmful interference would remain. Computer models for two different antennas were created in order to find the magnitude of the electric fields which would be generated in the airspace around them while in the transmit mode. The first antenna was a horizontal 'rhombic' used by the Voice of America (VOA) for long-distance short-wave broadcasting. The second antenna was a multi-element 'log-periodic dipole array' (LPDA) of a type often used for two-way radio communications. For each case, a specified amount of power was applied in the computer model, and the resulting electric field intensity was predicted at a variety of locations surrounding the antenna. This information will then be used to calculate the levels of interference which could occur inside an airplane flying in the vicinity of these radiation emitters.
    Keywords: Aircraft Stability and Control
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 68; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-12-03
    Description: The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 641-664; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-12-03
    Description: The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 544-560; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-12-03
    Description: A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.
    Keywords: Aircraft Design, Testing and Performance
    Type: System Identification for Integrated Aircraft Development and Flight Testing; 8-1 - 8-17; RTO-MP-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-12-03
    Description: This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained. Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending on control axis and load-sling combinations. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation.
    Keywords: Aircraft Design, Testing and Performance
    Type: System Identification for Integrated Aircraft Development and Flight Testing; 10-1 - 10-18; RTO-MP-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-12-03
    Description: The goal of this paper is to present the analysis of the multi-factor experiment (factorial design) conducted in EG490, Junior Design at Loyola College in Maryland. The discussion of this paper concludes the experimental analysis and ties the individual class papers together.
    Keywords: Aircraft Design, Testing and Performance
    Type: National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology; 131-148; NASA-CP-3330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-10-14
    Description: The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg. and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level l/Level 2 performance. Lateral gross-acquisition testing results in Level l/Level 2 ratings below 45 deg. angle of attack, degrading into Level 3 as angle of attack increases. The fine tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg. angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal Smith, bandwidth, Smith-Geddes, and military specifications.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-10-14
    Description: An overview of multidisciplinary optimization (MDO) methodology and two applications of this methodology to the preliminary design phase are presented. These applications are being undertaken to improve, develop, validate and demonstrate MDO methods. Each is presented to illustrate different aspects of this methodology. The first application is an MDO preliminary design problem for defining the geometry and structure of an aerospike nozzle of a linear aerospike rocket engine. The second application demonstrates the use of the Framework for Interdisciplinary Design Optimization (FIDO), which is a computational environment system, by solving a preliminary design problem for a High-Speed Civil Transport (HSCT). The two sample problems illustrate the advantages to performing preliminary design with an MDO process.
    Keywords: Aircraft Design, Testing and Performance
    Type: Future Aerospace Technology in the Service of the Alliance; Volume 3; AGARD-CP-600-Vol-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-10-14
    Description: This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: Future Aerospace Technology in the Service of the Alliance; Volume 3; AGARD-CP-600-Vol-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-10-14
    Description: Scramjet engine/airframe integration methodology currently in use at the NASA Langley Research Center for design/analysis of hypersonic airbreathing vehicles is presented with illustrative example applications. The matrix encompasses engineering and higher order numerical methods that cover the major disciplines as well as a multidiscipline design/optimization approach.
    Keywords: Aircraft Design, Testing and Performance
    Type: Future Aerospace Technology in the Service of the Alliance; Volume 3; AGARD-CP-600-Vol-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-10-14
    Description: A new family of NASA experimental aircraft (X-planes) is being developed to uniquely, yet synergistically tackle a wide class of technologies to advance low-cost, efficient access to space for a range of payload classes. This family includes two non-air-breathing rocket-powered concepts, the X-33 and the X-34 aircraft, and two air-breathing vehicle concepts, the scramjet-powered Hyper-X and the rocket-based combined cycle flight vehicle. This report describes the NASA vision for reliable, reusable, fly-to-orbit spacecraft in relation to the current space shuttle capability. These hypersonic X-plane programs, their objectives, and their status are discussed. The respective technology sets and flight program approaches are compared and contrasted. Additionally, the synergy between these programs to advance the entire technology front in a uniform way is discussed. NASA's view of the value of in-flight hypersonic experimentation and technology development to act as the ultimate crucible for proving and accelerating technology readiness is provided. Finally, an opinion on end technology products and space access capabilities for the 21st century is offered.
    Keywords: Aircraft Design, Testing and Performance
    Type: Future Aerospace Technology in the Service of the Alliance; Volume 3; AGARD-CP-600-Vol-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-10-14
    Description: In 1993, tail buffet tests were performed on a full-scale, production model F/A-18 in the 80-by-120 Foot Wind Tunnel at NASA Ames Research Center. Steady and unsteady pressures were recorded on both sides of the starboard vertical tail for an angle of attack range of 20 to 40 degrees and at a sideslip range of -16 to 16 degrees at freestream velocities up to 100 knots (Mach 0.15, Reynolds number 1.23 x 10(exp 7)). The aircraft was equipped with removable leading edge extension (LEX) fences that are used in flight to reduce tail buffet loads. In 1995, tail buffet tests were performed on a 1/6-scale F-18 A/B model in the Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center. Steady and unsteady pressures were recorded on both sides of both vertical tails for an angle-of-attack range of 7 to 37 degrees at freestream velocities up to 65 knots (Mach 0.10). Comparisons of steady and unsteady pressures and root bending moments are presented for these wind-tunnel models for selected test cases. Representative pressure and root bending moment power spectra are also discussed, as are selected pressure cross-spectral densities.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2011-10-14
    Description: Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process through composite mechanics, and structural component. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength. For example, results show that: in situ fiber tensile strength is 90 percent of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables; a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide spread scatter at 90 percent cyclic-stress to static-strength ratios.
    Keywords: Aircraft Design, Testing and Performance
    Type: Loads and Requirements for Military Aircraft; AGARD-R-815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-10-14
    Description: This paper presents a summary of a series of recent analytical studies conducted to investigate one-engine-inoperative (OEI) optimal control strategies and the associated optimal trajectories for a twin engine helicopter in Category-A terminal-area operations. These studies also examine the associated heliport size requirements and the maximum gross weight capability of the helicopter. Using an eight states, two controls, augmented point-mass model representative of the study helicopter, continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) are investigated for both vertical-takeoff-and-landing (VTOL) and short-takeoff-and-landing (STOL) terminal-area operations. The formulation of the non-linear optimal control problems with considerations for realistic constraints, solution methods for the two-point boundary-value problem, a new real-time generation method for the optimal OEI trajectories, and the main results of this series of trajector optimization studies are presented. In particular, a new balanced-weight concept for determining the takeoff decision point for VTOL Category-A operations is proposed, extending the balanced-field length concept used for STOL operations.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-10-14
    Description: The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60 Black Hawk helicopter that is being modified by NASA and the US Army for flight systems research. The principal systems that are being installed in the aircraft are a Helmet-Mounted Display (HMD) and associated imaging systems, and a programmable full-authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. This paper describes the design features of this modern rotorcraft in-flight simulation facility and their current state of development. A brief description of initial research applications is included.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-10-14
    Description: Hypersonic inlet research activity at NASA is reviewed. The basis for the paper is the experimental tests performed with three inlets: the NASA Lewis Research Center Mach 5, the McDonnell Douglas Mach 12, and the NASA Langley Mach 18. Both three-dimensional PNS and NS codes have been used to compute the flow within the three inlets. Modeling assumptions in the codes involve the turbulence model, the nature of the boundary layer, shock wave-boundary layer interaction, and the flow spilled to the outside of the inlet. Use of the codes and the experimental data are helping to develop a clearer understanding of the inlet flow physics and to focus on the modeling improvements required in order to arrive at validated codes.
    Keywords: Aircraft Design, Testing and Performance
    Type: Aerothermodynamics and Propulsion Integration for Hypersonic Vehicles; AGARD-R-813
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-10-14
    Description: Ground-based flight simulators are receiving increased use in the design of civil aircraft. In addition to traditional simulation roles in support of cockpit control and display design, simulators are now used to develop new flight procedures and to assist in airport design. This is particularly true for the concept of a civil tiltrotor transport. This presentation summarizes recent simulation activity at NASA's Ames Research Center focused on the design requirements for the introduction of tiltrotor aircraft as economic vertical flight transports.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-23
    Description: The F/A-18 Active Aeroelastic Wing research aircraft will demonstrate technologies related to aeroservoelastic effects such as wing twist and load minimization. This program presents several challenges for control design that are often not considered for traditional aircraft. This paper presents a control design based on H(sub infinity) synthesis that simultaneously considers the multiple objectives associated with handling qualities, actuator limitations, and loads. A point design is presented to demonstrate a controller and the resulting closed-loop properties.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-23
    Description: A methodology is developed to simulate computationally the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, natural frequencies, displacements, stress/strain, etc., which are the consequences of the random variation (scatter) of the primitive (independent random) variables in the constituent, plv. laminate and structural levels. This methodology is implemented in a computer code integrated probabilistic assessment of composite structures (IPACS). A fuselage-type composite structure is analyzed to demonstrate the code's capability . The probability distribution functions of the buckling loads, natural frequency, displacement, strain and stress are computed. The sensitivity of each primitive (independent random) variable to a given structural response is also identified from the analyses.
    Keywords: Aircraft Design, Testing and Performance
    Type: Probabilistic Engineering Mechanics (ISSN 0266-8920); Volume 14; 179-187
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-31
    Description: The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: This activity is part of the Wind Tunnel Database and Wind Tunnel Data Corrections Programs. The main purpose of this test was to evaluate the aerodynamic performance of the TCA Baseline configuration around the supersonic cruise point.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1461-1503; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-06-07
    Description: This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1569-1588; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-06-07
    Description: This paper discusses the development of a process to generate a CFD database for the non-linear loads process capability for critical loads evaluation at Boeing Long Beach. The CFD simulations were performed for wing/body configurations at high angles of attack and Reynolds numbers with transonic and elastic deflection effects. Convergence criteria had to be tailored for loads applications rather than the usual drag performance. The time-accurate approach was subsequently adopted in order to improve convergence and model possible unsteadiness in the flowfield. In addition, uncertainty issues relating to the turbulence model and grid resolution in areas of high vortical flows were addressed and investigated for one of the cases.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1817-1871; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-06-07
    Description: The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.
    Keywords: Aircraft Stability and Control
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 1; 121-138; NASA/CP-1999-209136/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-06-07
    Description: The F/A-18 Active Aeroelastic Wing research aircraft will demonstrate technologies related to aeroservoelastic effects such as wing twist and load minimization. This program presents several challenges for control design that are often not considered for traditional aircraft. This paper presents a control design based on H-infinity synthesis that simultaneously considers the multiple objectives associated with handling qualities, actuator limitations, and loads. A point design is presented to demonstrate a controller and the resulting closed-loop properties.
    Keywords: Aircraft Stability and Control
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 1; 23-32; NASA/CP-1999-209136/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-06-07
    Description: As the future of the general aviation industry seems to be improving, a cultural paradigm shift may be imminent with the implementation of an advanced, revolutionary transportation system within the United States. By observing the support of government and industry for this idea, near and long term effects must be addressed if this change is going to occur. The high certification costs associated with general aviation aircraft must be reduced without compromising safety if a new transportation system is to be developed in the future. With the advent of new, streamlined rules recently issued for the certification of small aircraft, it seems as though new opportunities are now available to the general aviation industry. Not only will immediate benefits be realized with increased sales of certified small aircraft, but there would now be a way of introducing the advanced concepts of future aircraft at varying degrees of technology and cost as options to the customer.
    Keywords: Aircraft Design, Testing and Performance
    Type: Langley Aerospace Research Summer Scholars; Part 2; 845-854; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-06-07
    Description: This paper discusses the results of research conducted at NASA Langley Research Center during two summer programs during 1994 and 1995. These programs were the NASA Advanced Design Program and the Langley Research Summer Scholars program. The work was incorporated in a three phase project at Embry-Riddle Aeronautical University which focused on development of the next generation Primary Flight Trainer, as well as in ERAU's participation in the AGATE General Aviation Design Competition. The project was conducted as part of the ERAU/NASA/USRA Advanced Design Program in Aeronautics as well as the AGATE competition. A design study was completed which encompassed the incorporation of existing conventional technologies and advanced technologies into PFT designs and advanced GA aircraft designs. Multiple aircraft configurations were also examined throughout the ADP/AGATE. Evaluations of the various technologies and configurations studied will be made and recommendations will be included.
    Keywords: Aircraft Design, Testing and Performance
    Type: Langley Aerospace Research Summer Scholars; Part 2; 431-441; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A low-speed wind tunnel investigation was conducted in the Langley 12-Foot Tunnel on a typical commercial transport configuration to determine the effect of adding nose strakes on the aerodynamic characteristics of the model. The fuselage and wings of the model were scaled versions of the McDonnell-Douglas DC-9 aircraft. A generic tail assembly was employed that was different from that of the DC-9. Three different strake configurations were tested at several inclination angles. One strake configuration was identical to that employed on the DC-9 aircraft. The model was tested through a range of angles of attack and sideslip angles. Tests were made both with and without strakes and also with the vertical tail removed.
    Keywords: Aircraft Design, Testing and Performance
    Type: Langley Aerospace Research Summer Scholars; Part 2; 421-424; NASA-CR-202464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-06-07
    Description: Forebody blowing is a concept developed to provide yaw control for aircraft flying at high angles of attack where a conventional rudder becomes ineffective. The basic concept is fairly simple. A small jet of air is forced out of the nose of the aircraft. This jet causes a repositioning of the forebody vortices in an asymmetrical fashion. The asymmetric forebody vortex flows develop a side force on the forebody which results in substantial yawing moments at high angles of attack. The purpose of this project was to demonstrate the use of forebody blowing as a control device through free-flight evaluation. This unique type of testing was performed at the NASA-Langley 30- by 60-foot tunnel. From these tests, it could then be shown that forebody blowing is an effective method of maintaining yaw control at high angles of attack.
    Keywords: Aircraft Stability and Control
    Type: Technical Reports: Langley Aerospace Research Summer Scholars; Part 1; 373-378; NASA-CR-202463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-06-07
    Description: The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.
    Keywords: Aircraft Design, Testing and Performance
    Type: Technical Reports: Langley Aerospace Research Summer Scholars; Part 1; 145-154; NASA-CR-202463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-29
    Description: The development and optimization of flight control systems for modem fixed- and rotary-. wing aircraft consume a significant portion of the overall time and cost of aircraft development. Substantial savings can be achieved if the time required to develop and flight test the control system, and the cost, is reduced. To bring about such reductions, software tools such as Matlab/Simulink are being used to readily implement block diagrams and rapidly evaluate the expected responses of the completed system. Moreover, tools such as CONDUIT (CONtrol Designer's Unified InTerface) have been developed that enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied, all within a fully interactive, user friendly, unified software environment.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-29
    Description: This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: The Blended-Wing-Body (BWB) airplane concept represents a potential revolution in subsonic transport efficiency for Very Large Airplanes (VLA's). NASA is sponsoring an advanced concept study to demonstrate feasibility and begin development of this new class of airplane. In this study, 800 passenger BWB and conventional configuration airplanes have been compared for a 7000 nautical mile design range, where both airplanes are based on technology keyed to 2015 entry into service. The BWB has been found to be superior to the conventional configuration in the following areas: Fuel Burn--31% lower, Takeoff Weight -- 1 3% lower, Operating Empty Weight -- 10% lower, Total Thrust -- 16% lower, and Lift/Drag --35% higher. The BWB advantage results from a double deck cabin that extends spanwise providing structural and aerodynamic overlap with the wing. This reduces the total wetted area of the airplane and allows a high aspect ratio to be achieved, since the deep and stiff centerbody provides efficient structural wingspan. Further synergy is realized through buried engines that ingest the wing's boundary layer, and thus reduce effective ram drag. Relaxed static stability allows optimal span loading, and an outboard leading-edge slat is the only high-lift system required.
    Keywords: Aircraft Design, Testing and Performance
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 431-459; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-31
    Description: The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be predicted performance of advanced transports resulting from these devices. Suggestions will be presented for additional innovative high-payoff research leading to further confirmation of these concepts and their application to advanced efficient commercial transport aircraft.
    Keywords: Aircraft Stability and Control
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 371-397; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!
    Keywords: Aircraft Design, Testing and Performance
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 183-209; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: The challenge for advanced composites in integrated airframe technology is that: airframes must provide ever increasing performance at an affordable cost; reduce costs as compared to current airframe technology; and integration of design and manufacturing. The trend in technology is that a gap exists between the potential of advanced composites and our ability to effectively utilize them (cost/weight).
    Keywords: Aircraft Design, Testing and Performance
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 511-534; NASA-CP-10184-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Hypersonic airbreathing horizontal takeoff and landing (HTOL) vehicles are highly integrated systems involving many advanced technologies. The design environment is variable rich, intricately networked, and sensitivity intensive; as such, it represents a tremendous challenge. Creating a viable design requires addressing three main elements: (1) an understanding of the 'figures of merit' and their relationship, (2) the development of sophisticated configuration discipline prediction methods and a synthesis procedure, and (3) the synergistic integration of advanced technologies across the discipline spectrum. This paper will focus on the vision for hypersonic airbreathing vehicles and the advanced technologies that forge the designs. Airbreathing hypersonics encompass endoatmospheric (airplanes...missiles are a part of the matrix but will not be included in this paper since they are an air force focus) and space access vehicles with speed from Mach 4 up to Mach 25 (orbital). These vehicles can be divided into two classes...cruisers and accelerators. The cruiser designs reflect high lift-to-drag whereas the accelerators reflect low drag per unit inlet capture; thus, the cross section of the accelerator attributes a much larger percentage to propulsion. One of the more design influencing items is fuel. The hydrogen fueled vehicles must be very volumetric efficient to contain the low density fuel and thus tend to be a bit bulgy (more conducive to lifting bodies or wing bodies) whereas with hydrocarbon fueled vehicles, the concern is loading because of the high density fuel; thus, they may tend to be more towards waveriders which are not usually very volumetric efficient. Hydrocarbon fuels (endothermic) are limited in their engine cooling capacity to below Mach 8.
    Keywords: Aircraft Design, Testing and Performance
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 563-608; NASA-CP-10184-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: Development work on an arrangement using ailerons and spoilers for lateral control was carried out by the Vought-Sikorsky Aircraft Division of the United Aircraft Corporation on a small commercial airplane in flight and on an airfoil in a wind tunnel. Spoiler hinge moments were reduced by aerodynamic balance. The arrangement was then built into an experimental airplane and further improvements were adopted as the result of flight and tunnel tests. The use of ailerons for lateral control with flaps up, spoilers with flaps full down, and gradual transition as the flaps are lowered was found to provide lateral control under the flight conditions for which they were best suited. The ailerons were of short span, permitting the use of long-span flaps, and were drooped to a relatively large angle when the flaps were deflected. A high maximum lift coefficient was thus attained. With large control deflections in the intermediate flap-angle range and spoiler effectiveness near neutral improved by "ventilating" the spoiler, the lateral control was satisfactory for the experimental airplane and was a definite improvement over that of a conventional control arrangement.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-23
    Description: Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.
    Keywords: Aircraft Design, Testing and Performance
    Type: Journal of Thermophysics and Heat Transfer; Volume 9; No. 1; 136-143
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: An inlet redesign of the T-38 was completed and flight tested by NASA Johnson Space Center (JSC), Houston Texas. The redesign will allow full gross weight takeoffs from high altitude airports such as El Paso, Texas (ELP) with runway temperatures up to 99 degrees F, an increase of 9 degrees F over the current performance. This project was completed in-house using innovative test techniques. The static thrust of the T-38 was increased 20% with this new inlet.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 Report to the Aerospace Profession: Forty First Symposium Proceedings; 21-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-07
    Description: Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.
    Keywords: Aircraft Stability and Control
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 1; 393-402; NASA/CP-1999-209136/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-07
    Description: The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
    Keywords: Aircraft Stability and Control
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 1; 381-392; NASA/CP-1999-209136/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-06-07
    Description: A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: The Second Joint NASA/FAA/DoD Conference on Aging Aircraft; Pt. 2; 821-830; NASA/CP-1999-208982/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Although several viable concepts have been investigated during recent years, time constraints do not allow for a detailed discussion of each. Therefore, only a small segment of these concepts will be discussed during this workshop. Emphasis will be placed on canards, forebody chimes and wing fins. The majority of the data presented were obtained using a 0.01542 scale representation of the HSR Reference-H model. This model was similar in planform, and incorporated fullspan leading-edge flaps and segmented trailing-edge flaps. The high-lift configuration of leading-edges at 30 degrees, and trailing-edges at 10 degrees are shown. The wing had no twist or camber. The forebody and fuselage were simple bodies of revolution. A detachable aft fuselage, complete with empennage, was incorporated during the chine study, and removed during the canard tests. The overall length (including aft fuselage) was approximately 58 inches; and the span was 24 inches.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 2; 2385-2407; NASA/CP-1999-209691/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: An Aftbody Closure Test Program is necessary in order to provide aftbody drag increments that can be added to the drag polars produced by testing the performance models (models 2a and 2b). These models had a truncated fuselage, thus, drag was measured for an incomplete configuration. In addition, trim characteristics cannot be determined with a model with a truncated fuselage. The stability and control tests were conducted with a model (model 20) having a flared aftbody. This type aftbody was needed in order to provide additional clearance between the base of the model and the sting. This was necessary because the high loads imposed on the model for stability and control tests result in large model deflections. For this case, the aftbody model will be used to validate stability and control performance.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1545-1568; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-06-07
    Description: The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1043-1069; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Toy designers at Hasbro, Inc. wanted to create a foam glider that a child could fly with little knowledge of aeronautics. But early in its development, the Areo Nerf gliders had one critical problem: they didn't fly so well. Through NASA's Northeast Regional Technology Transfer Center, Hasbro was linked with aeronautical experts at Langley Research Center. The engineers provided information about how wing design and shape are integral to a glider's performance. The Hasbro designers received from NASA not only technical guidance but a hands-on tutorial on the physics of designing and flying gliders. Several versions of the Nerf glider were realized from the collaboration. For instance, the Super Soaring Glider can make long-range, high performance flights while the Ultra-Stunt Glider is ideal for performing aerial acrobatics.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1997; 75; NASA/NP-1997-08-226-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Through Small Business Innovation Research (SBIR) contracts from Langley Research Center, Orbital Research Inc. developed the Orbital Research Intelligent Control Algorithm (ORICA), the first practical hardware-independent adaptive predictive control structure, specifically suited for optimal control of complex, time-varying systems. ORICA technology has been applied to the problem of controlling aircraft wing flutter. Coupled with NASA expertise, the technology has the possibility of making jet travel safer, more cost effective by extending distance range, and lowering overall aircraft operating costs. Future application areas for ORICA include control of robots, power trains, systems with arrays of sensors, or regulating chemical plants or electrical power plant control.
    Keywords: Aircraft Stability and Control
    Type: Spinoff 1997; 57; NASA/NP-1997-08-226-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.
    Keywords: Aircraft Stability and Control
    Type: Spinoff 1997; 62; NASA/NP-1997-08-226-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1997; 107; NASA/NP-1997-08-226-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The Boeing 777 carries with it basic and applied research, technology, and aerodynamic knowledge honed at several NASA field centers. Several Langley Research Center innovations instrumental to the development of the aircraft include knowledge of how to reduce engine and other noise for passengers and terminal residents, increased use of lightweight aerospace composite structures for increased fuel efficiency and range, and wind tunnel tests confirming the structural integrity of 777 wing-airframe integration. Test results from Marshall Space Flight Center aimed at improving the performance of the Space Shuttle engines led to improvements in the airplane's new, more efficient jet engines. Finally, fostered by Ames Research Center, the Boeing 777 blankets that protect areas of the plane from high temperatures and fire have a lineage to Advanced Flexible Reusable Surface Insulation used on certain areas of the Space Shuttle. According to Boeing Company estimates, the 777 has captured three-quarters of new orders for airplanes in its class since the program was launched.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1997; 54; NASA/NP-1997-08-226-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Templeman Industries developed the Ultra-Seal Ducting System, an environmental composite air duct with a 50 percent weight savings over current metallic ducting, but could not find a commercial facility with the ability to test it. Marshall Space Flight Center conducted a structural evaluation of the duct, equivalent to 86 years of take-offs and landings in an aircraft. Boeing Commercial Airplane Group and McDonnell Douglas Corporation are currently using the ducts.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1996; 62; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: A Small Business Innovation Research (SBIR) contract to ITHACO, Inc. satisfied a Goddard Space Flight Center demand for a low cost altitude control system for small spacecraft. The SBIR-sponsored work resulted in the T-Wheel, built specifically for altitude control of small and medium-sized spacecraft. Another product, the T-SCANWHEEL, reduces overall system cost, minimizes mass and power and enhances reliability with a mixture of altitude control and control capacity. Additionally, the Type E Wheel is built for use on medium to large spacecraft. Through July 1996, ITHACO had delivered or was under contract for 95 T-Wheel, T-SCANWHEEL, and Type E Wheel units.
    Keywords: Aircraft Stability and Control
    Type: Spinoff 1997; 55; NASA/NP-1997-08-226-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: NASA has licensed technology to a Washington state company for improving the performance, stability and control of helicopters. Under the agreement, Boundary Layer Research, Inc., Everett, Wash., will commercially market an aerodynamic device called "tailboom strakes." The license will allow the company to market the NASA-patented device to civil and military operators of single rotor helicopters. For the past year Boundary Layer Research has been working with NASA Langley Research Center, Hampton, Va., to explore the viability of helicopter strake technology developed by a NASA-Army team of researchers. The technology is applicable to all single rotor helicopters and is patented by NASA as a "Low Speed Anti-Torque System." The company has applied for Federal Aviation Administration certification to make the technology available to civil operators and owners.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1999; 51; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Cessna Aircraft Company was last featured in Spinoff 1991 for the Citation Jet, the industry's current best selling business jet. The newest addition to its fleet is the Citation X (ten), the largest, most complex aircraft ever produced by Cessna, which also has its basis in NASA technology. Aerodynamic design, wind tunneling testing, and airfoil performance, for example, have their foundation with NASA. The Citation X is the fastest, most efficient business jet ever built.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1998; 54-55; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: This report presents three methods of implementing the Dryden power spectral density model for atmospheric turbulence. Included are the equations which define the three methods and computer source code written in Advanced Continuous Simulation Language to implement the equations. Time-history plots and sample statistics of simulated turbulence results from executing the code in a test program are also presented. Power spectral densities were computed for sample sequences of turbulence and are plotted for comparison with the Dryden spectra. The three model implementations were installed in a nonlinear six-degree-of-freedom simulation of the High Alpha Research Vehicle airplane. Aircraft simulation responses to turbulence generated with the three implementations are presented as plots.
    Keywords: Aircraft Stability and Control
    Type: NASA/CR-1998-206937 , NAS 1.26:206937
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-1998-112223 , NAS 1.15:112223 , A-98-09997
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-4808 , NAS 1.15:4808 , H-2168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
    Keywords: Aircraft Stability and Control
    Type: NASA-CR-201735 , NAS 1.26:201735
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-198058 , NAS 1.26:198058 , H-2204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: Static force and moment tests of a 0.062-scale model of a hypersonic vehicle study concept known as the LOFLYTE(TM) configuration were conducted in the Langley 12-Foot Low-Speed Tunnel. These tests looked primarily at the low-speed static stability and control characteristics of this configuration. Data were obtained over an angle-of-attack range of -5 deg. to 22 deg. at sideslip angles that ranged between -10 deg. and 10 deg. The tiperons were sized to provide enough pitch control to trim the vehicle up to alpha = 16 deg. with no more than 10 deg. of surface deflection and data obtained in this test showed that 10 deg. of tiperon deflection was nearly sufficient to trim the configuration up to the desired angle of attack. Because of the pitching-moment characteristics of the LOFLYTE(TM) configuration, there is a reasonably high level of unpowered trimmed lift at nominal takeoff and approach to landing that should allow for acceptable takeoff and landing speeds for this vehicle. Initial evaluation of the directional stability characteristics of this configuration showed a significant instability between alpha = 10 deg. and about alpha = 18 deg. This test determined that the cause of this instability was the interaction of the wing leading-edge vortex with the vertical tails. Moving the vertical tails either inboard or outboard from the baseline location eliminated this unfavorable interaction.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-4756 , L-17581 , NAS 1.15:4756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: A water tunnel facility specifically designed to investigate internal fluid duct flows has been built at the NASA Research Center. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints for future test hardware. The inlet chamber flow conditioning approach is also detailed. Instrumentation and data acquisition capabilities are discussed. The incoming flow quality has been documented for about one quarter of the current facility operating range. At that range, there is some scatter in the data in the turbulent boundary layer which approaches 10 percent of the duct radius leading to a uniform core.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-4777 , NAS 1.26:4777 , E-10756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.
    Keywords: Aircraft Stability and Control
    Type: NASA-CR-203258 , NAS 1.26:203258 , AIAA Paper 96-2517
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-110336 , NAS 1.15:110336
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: Rotating blade frequencies for a model generic helicopter rotor blade mounted on an articulated hub were experimentally determined. Testing was conducted using the Aeroelastic Rotor Experimental System (ARES) testbed in the Helicopter Hover Facility (HBF) at Langley Research Center. The measured data were compared to pretest analytical predictions of the rotating blade frequencies made using the MSC/NASTRAN finite-element computer code. The MSC/NASTRAN solution sequences used to analyze the model were modified to account for differential stiffening effects caused by the centrifugal force acting on the blade and rotating system dynamic effects. The correlation of the MSC/NASTRAN-derived frequencies with the experimental data is, in general, very good although discrepancies in the blade torsional frequency trends and magnitudes were observed. The procedures necessary to perform a rotating system modal analysis of a helicopter rotor blade with MSC/NASTRAN are outlined, and complete sample data deck listings are provided.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-4760 , NAS 1.15:4760 , L-17352 , ARL-TR-1389
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-204631 , NAS 1.26:204631
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112852 , NAS 1.15:112852
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TP-3626 , NAS 1.60:3626 , L-17550
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-204315 , NAS 1.26:204315
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...