ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 9 (1995), S. 105-116 
    ISSN: 1436-3259
    Keywords: Nonlocal ; transport ; dispersion ; heterogeneity ; integro-differential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract Analysis from a number of different perspectives has shown diffusion and dispersion in natural porous formations to generally be nonlocal in character, i.e., the mass balance involves integro-partial differential equations. Only in certain asymptotic limits do these laws localize to classical partial differential equations. Compiled within is a resume of nonlocal laws that our group has developed over the last few years for systems with physical, chemical and biological heterogeneity. Analytical tools used to obtain these laws are nonequilibrium and equilibrium statistical mechanics, and first-order spectral-perturbation methods. This paper is an expansion of the material presented at the Waterloo conference held in the memory of Dr. Unny.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 41 (1997), S. 15-28 
    ISSN: 1573-1626
    Keywords: lithospheric structure ; dispersion ; surface waves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Abstract Experimental dispersion curves of Rayleigh and Love waves along the Uppsala-Prague profile have been determined using records of several Italian earthquakes. To interpret the dispersion data, results of previous geophysical investigations in this region were first analyzed. Seven blocks of the crust and upper mantle were distinguished along the profile on the basis of deep seismic sounding and other seismic data. Layered models were proposed for these blocks. Computation of Rayleigh and Love waves shows a large differentiation of theoretical dispersion curves for the northern (Precambrian) and southern (Palaeozoic) part of the profile. A laterally inhomogeneous model for theUppsala - Prague profile, composed of the seven blocks, satisfies the surface wave data for the profile. Moreover, a mean layered model for the whole profile has also been proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 41 (1997), S. 345-381 
    ISSN: 1573-1626
    Keywords: Body waves ; evanescent waves ; diffraction ; anelasticity ; ray theory ; dispersion ; synthetic seismograms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Abstract Diffraction and anelasticity problems involving decaying, “evanescent” or “inhomogeneous” waves can be studied and modelled using the notion of “complex rays”. The wavefront or “eikonal” equation for such waves is in general complex and leads to rays in complex position-slowness space. Initial conditions must be specified in that domain: for example, even for a wave originating in a perfectly elastic region, the ray to a real receiver in a neighbouring anelastic region generally departs from a complex point on the initial-values surface. Complex ray theory is the formal extension of the usual Hamilton equations to complex domains. Liouville's phase-space-incompressibility theorem and Fermat's stationary-time principle are formally unchanged. However, an infinity of paths exists between two fixed points in complex space all of which give the same final slowness, travel time, amplitude, etc. This does not contradict the fact that for a given receiver position there is a unique point on the initial-values surface from which this infinite complex ray family emanates. In perfectly elastic media complex rays are associated with, for example, evanescent waves in the shadow of a caustic. More generally, caustics in anelastic media may lie just outside the real coordinate subspace and one must trace complex rays around the complex caustic in order to obtain accurate waveforms nearby or the turning waves at greater distances into the lit region. The complex extension of the Maslov method for computing such waveforms is described. It uses the complex extension of the Legendre transformation and the extra freedom of complex rays makes pseudocaustics avoidable. There is no need to introduce a Maslov/KMAH index to account for caustics in the geometrical ray approximation, the complex amplitude being generally continuous. Other singular ray problems, such as the strong coupling around acoustic axes in anisotropic media, may also be addressed using complex rays. Complex rays are insightful and practical for simple models (e.g. homogeneous layers). For more complicated numerical work, though, it would be desirable to confine attention to real position coordinates. Furthermore, anelasticity implies dispersion so that complex rays are generally frequency dependent. The concept of group velocity as the velocity of a spatial or temporal maximum of a narrow-band wave packet does lead to real ray/Hamilton equations. However, envelope-maximum tracking does not itself yield enough information to compute synthetic seismograms. For anelasticity which is weak in certain precise senses, one can set up a theory of real, dispersive wave-packet tracking suitable for synthetic seismogram calculations in linearly visco-elastic media. The seismologically-accepiable constant-Q rheology of Liu et al. (1976), for example, satisfies the requirements of this wave-packet theory, which is adapted from electromagnetics and presented as a reasonable physical and mathematical basis for ray modelling in inhomogeneous, anisotropic, anelastic media. Dispersion means that one may need to do more work than for elastic media. However, one can envisage perturbation analyses based on the ray theory presented here, as well as extensions like Maslov's which are based on the Hamiltonian properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 43 (1999), S. 78-86 
    ISSN: 1573-1626
    Keywords: surface waves ; dispersion ; Love waves ; wave number ; partial derivative
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Abstract The dispersion relation for Love waves in a layer on a half-space is modified by introducing the wave number and its square instead of the phase velocity. The implicit function theorem is then used to derive the analytical formulae for the group velocity and for the phase- and group-velocity partial derivatives with respect to the parameters of the medium. The formulae are compared with those obtained by Novotný (1971) where the traditional formulation of the dispersion relation was used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Water resources management 12 (1998), S. 409-432 
    ISSN: 1573-1650
    Keywords: diffusion ; dispersion ; fracture network ; percolation theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: Abstract Dispersion and transport of mass in a fracture network is a percolation process. Macro-scale dispersion is related to travel time, distance, mass distribution and fracture geometry. This article presents a stochastic, discrete fracture model in conjunction with percolation theory to investigate the dispersion phenomenon and the power law relationship between mean square travel paths displacement 〈 r2 〉 and particle travel time t. For imposed boundary conditions, particle dispersion is simulated to observe percolation thresholds and dispersion trends in different network structures. Simulation results demonstrate that the critical exponent values of t in the percolated networks are extremely close to the theoretical value of 1.27 and occur at certain percolation factors. Below these percolation factors, the exponents of t increase with decreasing percolation factors, above these percolation factors, exponents decrease with increasing percolation factors. In our simulated cases, the proportionality between 〈 r2 〉 and time t is given by t raised to a power between 1.27 and 1.66, depending on the fracture pattern. The coefficient of anisotropic dispersion tensor increases with increasing distance. The percolation process is related to travel time and distance, and cannot be interpreted as a Fickian diffusive process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 40 (1996), S. 167-177 
    ISSN: 1573-1626
    Keywords: surface waves ; dispersion ; Love waves ; Rayleigh waves ; slowness ; quadratic slowness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Summary Dispersion relations for Love and Rayleigh waves in a layer on a half-space are modified by introducing quadratic slownesses instead of velocities. The advantages of this approach are demonstrated on analytical formulae for computing the group velocity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 575-595 
    ISSN: 0363-9061
    Keywords: contaminant transport ; variable density flow ; fractures ; leakage ; dispersion ; diffusion ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A numerical model for simulating flow and transport of contaminants with variable density in fractured porous media is presented. The non-linearities arising from the density variation and the velocty-dependent dispersion terms have been handled by Picard method. It is shown that the contaminant transport in a fractured porous medium is initially dominated by fractures. However, with time increasing, the contaminant concentration in porous blocks increases, due to the leakage of contaminant from the fracture network to the porous blocks. It is also shown that the high density of contaminant has a greater effect on its transport in the fracture network than in the porous blocks. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 495-504 
    ISSN: 0363-9061
    Keywords: monoclinic ; shear waves ; reflection ; transmission ; dispersion ; amplitude ratio ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper deals with the propagation, reflection and transmission of shear waves in monoclinic media. The dispersion equation for a monoclinic layer overlying a monoclinic half-space has been obtained and curves are plotted. The amplitude ratios for both the reflected and transmitted waves due to reflection of shear waves at the interface of two monoclinic half-spaces have also been computed and the numerical results are presented graphically. The results are compared with the isotropic case. It has been observed that, in monoclinic media, the amplitude ratios for reflected and transmitted wave increases approximately by 25 and 50 per cent respectively, in comparison to the isotropic case. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...