ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics
  • 2000-2004  (1,184)
  • 1995-1999  (413)
  • 1
    Publication Date: 2019-08-31
    Description: This volume and its accompanying CD-ROM contain materials presented at the Minnowbrook III-2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows held at the Syracuse University Minnowbrook Conference Center, Blue Mountain Lake, New York, August 20-23, 2000. Workshop organizers were John E. LaGraff (Syracuse University), Terry V Jones (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of two earlier workshops: Minnowbrook I (1993) and Minnowbrook II (1997). The workshop was focused on physical understanding the late stage (final breakdown) boundary layer transition, separation, and effects of unsteady wakes with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the USA and abroad, and representatives from the gas-turbine industry and government laboratories. The physical mechanisms discussed included turbulence disturbance environment in turbomachinery, flow instabilities, bypass and natural transition, turbulent spots and calmed regions, wake interactions with attached and separated boundary layers, turbulence and transition modeling and CFD, and DNS. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The viewgraphs are included on the CD-ROM only. The workshop summary and the plenary-discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of transition, separated and unsteady flows in turbomachines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CP-2001-210888 , E-12764 , NAS 1.55:210888 , NONP-NASA-CD-2002101352 , Minnowbrook III; Aug 20, 2000 - Aug 23, 2000; Blue Mountain Lake, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: A heat source such as a magnetic induction/eddy current generator remotely heats a region of a surface of a test structure to a desired depth. For example, the frequency of the heating source can be varied to heat to the desired depth. A thermal sensor senses temperature changes in the heated region as a function of time. A computer compares these sensed temperature changes with calibration standards of a similar sample having known disbond and/or inclusion geography(ies) to analyze the test structure. A plurality of sensors can be arranged linearly to sense vector heat flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: A device for mixing liquid nitrogen and liquid oxygen to form liquid air. The mixing device consists of a tube for transferring liquid oxygen positioned within a tube for transferring liquid nitrogen. Supply vessels for liquid oxygen and liquid nitrogen are equally pressurized and connected to the appropriate tubes. Liquid oxygen and nitrogen flow from the supply vessels through the respective tubes and are mixed to form liquid air upon exiting the outlets of the tube. The resulting liquid air is transferred to a holding vessel.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: A series of aerodynamic heating tests was conducted on a 70-deg sphere-cone planetary entry vehicle model in a Mach 10 perfect-gas wind tunnel at freestream Reynolds numbers based on diameter of 8.23x104 to 3.15x105. Surface heating distributions were determined from temperature time-histories measured on the model and on its support sting using thin-film resistance gages. The experimental heating data were compared to computations made using an axisymmetric/2D, laminar, perfect-gas Navier-Stokes solver. Agreement between computational and experimental heating distributions to within, or slightly greater than, the experimental uncertainty was obtained on the forebody and afterbody of the entry vehicle as well as on the sting upstream of the free-shear-layer reattachment point. However, the distributions began to diverge near the reattachment point, with the experimental heating becoming increasingly greater than the computed heating with distance downstream from the reattachment point. It was concluded that this divergence was due to transition of the wake free shear layer just upstream of the reattachment point on the sting.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 97-2569 , 32nd AIAA Thermophysics Conference; Jun 23, 1997 - Jun 25, 1997; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-27
    Description: This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 1-11; NASA/CP-2002-211212/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 12-23; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: This overview presents in viewgraph form, the NASA Program organization regarding fluid physics, physical sciences research in space and the connection to biology, the dual thrust of the fluid physics program, and the immediate and future plans of the physical science research division.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 4-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-17
    Description: The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technolgy 1996; NASA-TM-107350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-17
    Description: The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, the damping of the capillary oscillation can be either increased or decreased. This effect has been demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid surfaces in space could be beneficial for containerless processing and other novel technologies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 503-508; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-17
    Description: I will discuss recent experiments from my lab, which use surface templates to induce ordered colloidal structures. Particle assembly driven by entropic depletion, fluid convection, and sedimentation will be described. Confocal microscopy was used to visualize most of these samples.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 194-210; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-17
    Description: The widespread use of electro-hydrodynamic devices and processes emphasizes a critical need for developing a comprehensive predictive theory capable of improving our fundamental understanding of the behavior of a suspension subject to an AC electric field and shear, and of facilitating the design and optimization of such devices. The currently favored approach to the qualitative interpretation of the AC field driven manipulation of suspensions is based on a model which considers only the force exerted on a single particle by an external field and neglects the field-induced and hydrodynamic interparticle interactions both being inversely proportional to the interparticle distance raised to the power three. On the other hand, the purpose of the field-induced separation is to concentrate particles in certain regions of a device. This clearly raises the fundamental question regarding the extent to which we can neglect these slow decaying electrical and hydrodynamic collective interactions and rely on the predictions of a single-particle model. Another important issue that still remains open is how to characterize the polarization of a particle exposed to a strong electric field. The presentation will address both these questions. Experiments were conducted in a parallel-plate channel in which a 10(exp -3) (v/v) suspension of heavy, positively polarized Al2O3 spheres was exposed to an AC field under conditions such that the field lines were arranged in the channel cross-section perpendicular to the streamlines of the main flow. To reduce the effects of the gravitational settling of the particles, the channel was slowly rotated (4 rpm) around a horizontal axis. Following the application of a high-gradient strong AC field (approx. kV/mm), the particles were found to move towards both the high-voltage (HV) and grounded (GR) electrodes and to form 'bristles' along their edges.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 346-369; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-17
    Description: Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AD-A380196 , MIT/WHOI-99-03
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-17
    Description: Numerical solutions for hypersonic flows of carbon-dioxide and air around a 70-deg sphere-cone have been computed using an axisymmetric non-equilibrium Navier-Stokes solver. Freestream flow conditions for these computations were equivalent to those obtained in an experimental blunt-body heat-transfer study conducted in a high-enthalpy, hypervelocity expansion tube. Comparisons have been made between the computed and measured surface heat-transfer rates on the forebody and afterbody of the sphere-cone and on the sting which supported the test model. Computed forebody heating rates were within the estimated experimental uncertainties of 10% on the forebody and 15% in the wake except for within the recirculating flow region of the wake.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 96-1867 , 31st AIAA Thermophysics Conference; Jun 18, 1996 - Jun 20, 1996; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-17
    Description: The paper presents an order-of-magnitude analysis of the physical processes occurring during the pulsations of a vapor bubble subject to a sound field and shows several numerical examples relating to vapor bubbles in water with and without a translational velocity relative to the liquid. Finally, the growth and collapse of a bubble in a small tube under the action of a heat pulse is considered and it is pointed out that, in suitable conditions, a potentially useful pumping effect without mechanical moving parts can be achieved.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: IUTAM Symposium on Free Surface Flows; Unknown|IUTAM Symposium on Free Surface Flows; 249-256
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-17
    Description: On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1148-1158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-16
    Description: New exact solutions of the Navier-Stokes equations are obtained for the unbounded and bounded oscillatory and impulsive tangential edgewise motion of touching half-infinite plates in their own plane. In contrast to Stokes classical solutions for the harmonic and impulsive motion of an infinite plane wall, where the solutions are separable or have a simple similarity form, the present solutions have a two-dimensional structure in the near region of the contact between the half-infinite plates. Nevertheless, it is possible to obtain relatively simple closed-form solutions for the flow field in each case by defining new variables which greatly simplify the r- and theta- dependence of the solutions in the vicinity of the contact region. These solutions for flow in a half-infinite space are then extended to bounded flows in a channel using an image superposition technique. The impulsive motion has application to the motion near geophysical faults, whereas the oscillatory motion has arisen in the design of a novel oscillating half-plate flow chamber for examining the effect of fluid shear stress on cultured cell monolayers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of fluid mechanics (ISSN 0022-1120); 287; 59-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-16
    Description: The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, the damping of the capillary oscillation can be either increased or decreased. This effect has been demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid surfaces in space could be beneficial for containerless processing and other novel technologies. [work supported by NASA]
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 185; NASA/TM-2004-213114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-16
    Description: Spray cooling has high potential in thermal management and life support systems by overcoming the deleterious effect of microgravity upon two-phase heat transfer. In particular spray cooling offers several advantages in heat flux removal that include the following: 1. By maintaining a wetted surface, spray droplets impinge upon a thin fluid film rather than a dry solid surface 2. Most heat transfer surfaces will not be smooth but rough. Roughness can enhance conductive cooling, aid liquid removal by flow channeling. 3. Spray momentum can be used to a) substitute for gravity delivering fluid to the surface, b) prevent local dryout and potential thermal runaway and c) facilitate liquid and vapor removal. Yet high momentum results in high We and Re numbers characterizing the individual spray droplets. Beyond an impingement threshold, droplets splash rather than spread. Heat flux declines and spray cooling efficiency can markedly decrease. Accordingly we are investigating droplet impingement upon a) dry solid surfaces, b) fluid films, c) rough surfaces and determining splashing thresholds and relationships for both dry surfaces and those covered by fluid films. We are presently developing engineering correlations delineating the boundary between splashing and non-splashing regions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 179-180; NASA/TM-2004-213114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-16
    Description: The present work analyses the dynamics of a suspension of heavy particles in shear flow. The magnitude of the particle inertia is given by the Stokes number St = m(gamma/6(pi)a, which is the ratio of the viscous relaxation time of a particle tau(sub p) = m=6pi(eta)a to the flow time gamma(sup -1). Here, m is the mass of the particle, a is its size, eta is the viscosity of the suspending fluid and gamma is the shear rate. The ratio of the Stokes number to the Reynolds number, Re = (rho)f(gamma)a(exp 2)/eta, is the density ratio rho(sub p)/rho(sub f). Of interest is to understand the separate roles of particle (St) and fluid (Re) inertia in the dynamics of suspensions. In this study we focus on heavy particles, rho(sub p)/rho(sub f) much greater than 1, for which the Stokes number is finite, but the Reynolds number is sufficiently small for inertial forces in the fluid to be neglected; thus, the fluid motion is governed by the Stokes equations. On the other hand, the probability density governing the statistics of the suspended particles satisfies a Fokker-Planck equation that accounts for both configuration and momentum coordinates, the latter being essential for finite St. The solution of the Fokker-Planck equation is obtained to O(St) via a Chapman-Enskog type-procedure, and the conditional velocity distribution so obtained is used to derive a configuration-space Smoluchowski equation with inertial corrections. The inertial effects are responsible for asymmetry in the relative trajectories of two spheres in shear flow, in contrast to the well known symmetric structure in the absence of inertia. Finite St open trajectories in the plane of shear suffer a downward lateral displacement resulting from the inability of a particle of finite mass to follow the curvature of the zero-Stokes-number pathlines. In addition to the induced asymmetry, the O(St) inertial perturbation dramatically alters the nature of the near-field trajectories. The stable closed orbits (for St = 0) in the plane of shear now spiral in, approaching particle-particle contact in the limit. All trajectories starting from an initial offset of O(St(sup 1/2) or less (which remain open for St = 0) also spiral in. The asymmetry of the trajectories leads to a non-Newtonian rheology and diffusive behavior. The latter because a given particle (moving along a finite St open trajectory) suffers a net displacement in the transverse direction after a single interaction. A sequence of such uncorrelated displacements leads to the particle executing a random walk. The inertial diffusivity tensor is anisotropic on account of differing strengths of interaction in the gradient and vorticity directions. Since the entire region (constituting an in finite area) of closed orbits in the plane of shear spirals onto contact for #finite St, the latter represents a singular surface for the pair-distribution function. The exact form of the pair-distribution function at contact is still, however, indeterminate in the absence of non-hydrodynamic effects. It should also be noted that finite St non-rectilinear flows do not support a spatially uniform number density owing to the cross-streamline inertial migration of particles.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1705-1717
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-16
    Description: Turbulence attenuation by greater than a factor of two has been observed in many practical gas flows carrying volume fractions as small as 0.01% of dispersed particles. Particles which cause such attenuation usually are smaller than the smallest scales of the turbulence and have time constants 5 to 10 times greater than the time scale of a typical turbulent eddy. That is, strongly attenuating particles usually have Stokes numbers in the range of 5 to 10, indicating that they do not respond to the turbulent fluctuations, but instead just fall through the flow responding only to the mean flow. There are two mechanisms by which free falling particles may attenuate turbulence. First, the unresponsive particles act as a drag on the turbulent eddies, passing energy from the turbulent eddies to the small scale wakes of the particles where it is quickly dissipated by viscosity. The second mechanism is more complicated. Particles falling under gravity convert gravitational potential energy to turbulent velocity fluctuations. If the particles are large, this mechanism increases the overall turbulence level. However, with moderate size particles, the small scale turbulence generated apparently distorts the turbulent eddies leading to more rapid dissipation. Unfortunately, this conclusion is supported only by circumstantial evidence to date. The objectives of the experiment are to use microgravity to separate the two mechanisms. A region of nearly-isotropic decaying turbulence with zero mean flow will be formed in a box in the microgravity environment. Different sets of particles with Stokes numbers in the range of 2 to 20 will be dispersed in the flow. With zero gravity and no mean fluid velocity the particles will have zero mean velocity. With the large Stokes numbers, the fluctuating velocities will also be small. Therefore, the only attenuation mechanism will be the direct action of the particles on the turbulence. Control experiments will also be done in which the particles fall through the measurement volume. Measurements will be acquired using a high resolution image velocimetry (PIV) system being developed specifically for work in particle-laden flows. The measurements will include the decay of the turbulence kinetic energy under various particle loadings. The spatial spectra of the turbulence will also be measured. In a second set of experiments, the interaction of a single eddy with a collection of nearly stationary particles will be examined. The eddy will be a vortex ring emitted by a jet pulse through an orifice. The distortion of the vortex under the influence of the particles will be examined to gain a better understanding of how fine particles can cause such large reductions in turbulence levels. This experiment could not be conducted in terrestrial gravity because the high particle velocities would overwhelm the relatively low speed motion of the vortex ring. This experimental program is just getting underway. The initial challenge is to build a closed facility containing reasonably homogeneous and isotropic turbulence with zero mean velocity. Our approach is to use a set of synthetic jets mounted on the periphery of a transparent plexiglass box to create the turbulence. A synthetic jet is a plenum chamber with an orifice open to the volume of interest. The volume of the chamber fluctuates periodically so alternately a jet is ejected from the volume or flow is drawn back in as a sink. The asymmetry of this situation results in a net transport of momentum and kinetic energy into the volume of interest. The present apparatus includes eight synthetic jets each powered independently by a six inch loudspeaker. The synthetic jets discharge through ejector tubes to increase the scale of the turbulence. Construction of the apparatus is now complete and preliminary flow visualization studies have been conducted. The PIV system is also under development. A compact dual-pulse YAG laser has been acquired as the light source and special software is under development to allow simultaneous measurements of both the particle phase and the fluid phase (marked by fine tracers).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 326-332; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-16
    Description: The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NWRA-CoRA-03-P258 , NASA-9026-Final
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-16
    Description: In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SE-2003-09-00083-SSC , 2004 American Control Conference; Jun 30, 2004 - Jul 02, 2004; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-16
    Description: Gas bubbles driven in radial oscillations are subject to an instability of the spherical shape that is opposed by surface tension and viscosity. An exact linear formulation for the study of the phenomenon has been available for many years, but its complexity has discouraged a detailed investigation. With the recent theory of sonoluminescence of Lohse and co-workers, there has been a renewed interest in the problem and new data have become available. This paper presents a numerical method for the solution of the pertinent equations and compares the theory with these new data. The coupling of the strong nonlinearity of the bubble radial oscillations with the parametric mechanism of the surface instability results in a very complex structure for the stability boundary. Nevertheless, a good agreement between theory and data is found. A comparison with earlier approximate models is also made.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Physics of Fluids (ISSN 1070-6631); 11; 6; 1309-1317
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Spinoff 1996; 103; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-16
    Description: A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 228-233; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-16
    Description: Experiments as well as accompanying simulations are described that serve in preparation of a space flight experiment to study the dynamics of miscible interfaces. The investigation specifically addresses the importance of both nonsolenoidal effects as well as nonconventional Korteweg stresses in flows that give rise to steep but finite concentration gradients. The investigation focuses on the flow in which a less viscous fluid displaces one of higher viscosity and different density within a narrow capillary tube. The fluids are miscible in all proportions. An intruding finger forms that occupies a fraction of the total tube diameter. Depending on the flow conditions, as expressed by the Peclet number, a dimensionless viscosity ratio, and a gravity parameter, this fraction can vary between approximately 0.9 and 0.2. For large Pe values, a quasi-steady finger forms, which persists for a time of O(Pe) before it starts to decay, and Poiseuille flow and Taylor dispersion are approached asymptotically. Depending on the specific flow conditions, we observe a variety of topologically different streamline patterns, among them some that leak fluid from the finger tip. For small Pe values, the flow decays from the start and asymptotically reaches Taylor dispersion after a time of O(Pe). Comparisons between experiments and numerical simulations based on the 'conventional' assumption of solenoidal velocity fields and without Korteweg stresses yield poor agreement as far as the Pe value is concerned that distinguishes these two regimes. As one possibility, we attribute this lack of agreement to the disregard of these terms. An attempt is made to use scaling arguments in order to evaluate the importance of the Korteweg stresses and of the assumption of solenoidality. While these effects should be strongest in absolute terms when steep concentration fronts exist, i.e., at large Pe, they may be relatively most important at lower values of Pe. We subsequently compare these conventional simulations to more complete simulations that account for nonvanishing divergence as well as Korteweg stresses. While the exact value of the relevant stress coefficients are not known, ballpark numbers do exist, and their use in the simulations indicates that these stresses may indeed be important. We plan to evaluate these issues in detail by means of comparing a space experiment with corresponding simulations, in order to extract more accurate Korteweg stress coefficients, and to confirm or deny the importance of such stresses.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1102-1123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-16
    Description: The vibratory conveyor, routinely employed for normal-gravity transport of granular materials, usually consists of a continuous open trough vibrated sinusoidally to induce axial movement of a granular material. Motivated in part by a hypothetical application in zero gravity, we propose a novel modification of the vibratory conveyor based on a closed 2d trough operating in a "slide-conveying" mode, with the granular mass remaining permanently in contact with the trough walls. We present a detailed analysis of the mechanics of transport, based on a rigid-slab model for the granular mass with frictional (Coulomb) slip at the upper and lower walls. The form of the vibration cycle plays a crucial role, and the optimal conveying cycle is not the commonly assumed rectilinear sinusoidal motion. The conveying efficiency for the novel slide conveyor will be presented for several simple vibration cycles, including one believed to represent the theoretical optimum.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 567-577
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-16
    Description: Foams are extremely important in a variety of industrial applications. Foams are widely used in fire-fighting applications, and are especially effective in fighting flammable liquid fires. In fact the Fire Suppression System aboard the Space Shuttle utilizes cylinders of Halon foam, which, when fired, force a rapidly expanding foam into the convoluted spaces behind instrument panels. Foams are critical in the process of enhanced oil recovery, due to their surface-active and highly viscous nature. They are also used as drilling fluids in underpressurized geologic formations. They are used as transport agents, and as trapping agents. They are also used as separation agents, where ore refinement is accomplished by froth flotation of the typically lighter and hydrophobic contaminants. The goal of the proposed investigation is the determination of the mechanical and rheological properties of foams, utilizing the microgravity environment to explore foam rheology for foams which cannot exist, or only exist for a short time, in 1g.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 353-358; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-16
    Description: The gravity-driven flow of non-neutrally buoyant suspensions is shown to be unstable to spanwise perturbations when the shearing motion generates a density profile that increases with height. The instability is simply due to having heavier material over light. The wavelength of the perturbation is found to be on the order of the thickness of the suspension layer. The parameters important to the problem are the angle of inclination of the layer relative to gravity, the relative density difference between the particles and fluid, the ratio of the particle size to the suspension layer, and the bulk volume fraction of particles. An example showing the growth rate as a function of wave number is shown.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 386-394; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-16
    Description: Results of an ongoing effort to quantify the role turbulence in scattering sound in jets are reported. Using a direct numerical simulation database to provide the flow data, ray paths traced through the mean flow are compared with those traced through the actual time evolving turbulent flow. Significant scattering by the turbulence is observed. The most notable effect is that upstream traveling waves that are trapped in the potential core by the mean flow, which acts as a wave guide, easily escape in the turbulent flow. A crude statistical estimate based on ray number density suggests that directivity is modified by the turbulence, but no rigorous treatment of non-uniformities in the high-frequency approximation is attempted.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-16
    Description: The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 540-545; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-16
    Description: When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: URC97064 , NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment; 1; 373-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-16
    Description: A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOO act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOO are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AD-A408850 , MIT/WHOI-2002-09
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-16
    Description: The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6; 2; 597-608; NASA/CP-2002-211212/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: A pulse thermal loop heat transfer system includes a means to use pressure rises in a pair of evaporators to circulate a heat transfer fluid. The system includes one or more valves that iteratively, alternately couple the outlets the evaporators to the condenser. While flow proceeds from one of the evaporators to the condenser, heating creates a pressure rise in the other evaporator, which has its outlet blocked to prevent fluid from exiting the other evaporator. When the flow path is reconfigured to allow flow from the other evaporator to the condenser, the pressure in the other evaporator is used to circulate a pulse of fluid through the system. The reconfiguring of the flow path, by actuating or otherwise changing the configuration of the one or more valves, may be triggered when a predetermined pressure difference between the evaporators is reached.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-15
    Description: A flying wire system was utilized in conjunction with a rake of nine cross-wire probes to obtain simultaneous velocity measurements in an axisymmetric sudden expansion at a Reynolds number of 41,000. From these measurements, the correlation tensor could be calculated. Knowledge of the two-point correlation tensor reveals more in-depth information of the physical attributes of this flow. The two point correlation tensor allowed for calculation of the integrated length scales in both the radial and axial directions. This gives insight into the growth of structures with increasing downstream distance and at different radial locations through out the sudden expansion. The length scales were calculated by integrating the two-point correlation tensor in the radial direction from the centerline to the outer pipe wall and by integrating between several step heights for the axial direction. Calculated correlations at z/h = 8 and 9 at r/R = 0.46 showed a correlation length of 1/3 step height for the radial direction. It was found that length scales in the radial direction became larger with increasing radius with peaks at 0.70 e r/R c 0.81 but then decreased slightly towards the wall. Length scales in the axial direction yielded a recirculating bubble on the order of 3 step heights in the recirculating region. After the recirculating region, the length scales decreased to 1/4 of a step height.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education; s 2 and 3; 954-957; NONP-NASA-CD-1999011585
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-15
    Description: A jet in cross-flow (JIFC) consists of a jet exhausting at a large angle into a freestream flow. It is a flow field which is relevant to a wide variety of technologies and applications. Despite the nearly 65 years of JIFC research there are few results available for laminar hypersonic flows, a combination which will be encountered by re-entry and high altitude vehicles over some portion of their flight path. This research consists of developing a numerical model to investigate the interaction of a normal sonic jet exhausting into a hypersonic cross-flow. The model was validated by comparing experimental measurements with corresponding numerical results generated by the model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education; 2 and 3; 177-181; NONP-NASA-CD-1999011585
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-15
    Description: Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 167-179; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-15
    Description: A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2002-211997 , E-13669 , NAS 1.15:211997 , Space Technology and Applications International Forum; Feb 02, 2003 - Feb 06, 2003; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-15
    Description: A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a desiccator. This is done using an approximate line source of the vapor in the form of a string soaked in the alkylchlorosilane. Ordinarily, many fluids, including water, wet the surface of silicon quite well. This means that the contact angle is small. But the silanized surface resists wetting, with contact angles that are as large as 100 degs. Therefore, a gradient of wettability is formed on the silicon surface. The region near the string is highly hydrophobic, and the contact angle decreases gradually toward a small value at the hydrophilic end away from this region. The change in wettability occurs over a distance of several mm. The strip is placed on a platform within a Plexiglas cell. Drops of a suitable liquid are introduced on top of the strip near the hydrophobic end. An optical system attached to a video camera is trained on the drop so that images of the moving drop can be captured on videotape for subsequent analysis. We have performed preliminary experiments with water as well as ethylene glycol drops. Results from these experiments will be presented in the poster. Future plans include the refinement of the experimental system so as to permit images to be recorded from the side as well as the top, and the conduct of a systematic study in which the drop size is varied over a good range. Experiments will be conducted with different fluids so as to obtain the largest possible range of suitably defined Reynolds and Capillary numbers. Also, an effort will be initiated on theoretical modeling of this motion. The challenges in the development of the theoretical description lie in the proper analysis of the region in the vicinity of the contact line, as well as in the free boundary nature of the problem. It is known that continuum models assuming the no slip condition all the way to the contact line fail by predicting that the stress on the solid surface becomes singular as the contact line is approached. One approach for dealing with this issue has been to relax the no-slip boundary condition using the Navier model. Molecular dynamics simulations of the contact line region show that for a non-polar liquid on a solid surface, the no-slip boundary condition is in fact incorrect near the contact line. Furthermore, the same simulations also show that the usual relationship between stress and the rate of deformation breaks down in the vicinity of the contact line. In developing continuum theoretical models of the system, we shall accommodate this knowledge to the extent possible.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6; 2; 109-121; NASA/CP-2002-211212/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-15
    Description: This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact the addition of gravity as a variable parameter may help us to better understand the physics of turbulence attenuation. The experiments are conducted in a turbulence chamber capable of producing stationary or decaying isotropic turbulence with nearly zero mean flow and Taylor microscale Reynolds numbers up to nearly 500. The chamber is a 410 mm cubic box with the corners cut off to make it approximately spherical. Synthetic jet turbulence generators are mounted in each of the eight corners of the box. Each generator consists of a loudspeaker forcing a plenum and producing a pulsed jet through a 20 mm diameter orifice. These synthetic jets are directed into ejector tubes pointing towards the chamber center. The ejector tubes increase the jet mass flow and decrease the velocity. The jets then pass through a turbulence grid. Each of the eight loudspeakers is forced with a random phase and frequency. The resulting turbulence is highly Isotropic and matches typical behavior of grid turbulence. Measurements of both phases are acquired using particle image velocimetry (PIV). The gas is seeded with approximately 1 micron diameter seeding particles while the solid phase is typically 150 micron diameter spherical glass particles. A double-pulsed YAG laser and a Kodak ES-1.0 10-bit PIV camera provide the PIV images. Custom software is used to separate the images into individual images containing either gas-phase tracers or large particles. Modern high-resolution PIV algorithms are then used to calculate the velocity field. A large set of image pairs are acquired for each case, then the results are averaged both spatially and over the ensemble of acquired images. The entire apparatus is mounted in two racks which are carried aboard NASA's KC-135 Flying Microgravity Laboratory. The rack containing the turbulence chamber, the laser head, and the camera floats freely in the airplane cabin (constrained by competent NASA personnel) to minimize g-jitter.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 515-528; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-15
    Description: The discovery of single-bubble sonoluminescence has led to a renewed interest in the forced radial oscillations of gas bubbles. Many of the more recent studies devoted to this topic have used several simplifications in the modelling, and in particular in accounting for liquid compressibility and thermal processes in the bubble. In this paper the significance of these simplifications is explored by contrasting the results of Lohse and co-workers with those of a more detailed model. It is found that, even though there may be little apparent difference between the radius-versus time behaviour of the bubble as predicted by the two models, quantities such as the spherical stability boundary and the threshold for rectified diffusion are affected in a quantitatively significant way. These effects are a manifestation of the subtle dependence upon dissipative processes of the phase of radial motion with respect to the driving sound field. The parameter space region, where according to the theory of Lohse and co-workers, sonoluminescence should be observable, is recalculated with the new model and is found to be enlarged with respect to the earlier estimate. The dependence of this parameter region on sound frequency is also illustrated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Philosophical Transactions of the Royal Society of London A; 357; 203-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-15
    Description: Detailed measurements of aerodynamic heating rates in the wake of a Mars-Pathfinder configuration model have been made. Heating data were obtained in a conventional wind tunnel, the NASA LaRC 31" Mach 10 Air Tunnel, and in a high-enthalpy impulse facility, the NASA HYPULSE expansion tube, in which air and CO2 were employed as test gases. The enthalpy levels were 0.7 MJ/kg in the Mach 10 Tunnel, 12 MJ/kg at Mach 9.8 for HYPULSE CO2 tests and 14 MJ/kg at Mach 7.9 for HYPULSE air tests. Wake heating rates were also measured on three similar parametric configurations, and forebody heating measurements were made in order to facilitate CFD comparisons. The ratio of peak wake heating to forebody stagnation point heating in the Mach 10 Tunnel varied from 7% to 15% depending on the freestream Reynolds number. In HYPULSE, the ratio was ~5% for both air and CO 2. It was observed that an increase in the ratio of forebody corner radius to nose radius resulted in a decrease in peak wake heating, and moved the peak closer to the base of the forebody. The wake flow establishment process in HYPULSE was studied, and a method was developed to determine when the wake has become fully established.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 95-2314 , 26th AIAA Fluid Dynamics Conference; Jun 19, 1995 - Jun 22, 1995; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-15
    Description: The present paper studies the numerical simulation of flows with shock/boundary-layer upstream interaction, under conditions of symmetry in geometry, boundary conditions, and grid. For this purpose, a series of two- and three-dimensional numerical test-cases were carried out. The tests showed that standard numerical schemes, which appear to be symmetry preserving under most flow configurations, produce nonsymmetric perturbations when large separated regions are present. These perturbations are amplified when the core flow is under compression. If the flow-blockage due to separation is sufficiently large, the symmetry of the flow may collapse altogether. Experimental evidence of this numerical behavior is also considered.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2001-0084 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-15
    Description: To provide insight into the roles of electrical forces, experiments on the stability of a liquid bridge were carried out during the 1996 Life And Microgravity Science Mission on the space shuttle Columbia. In terrestrial laboratories a Plateau configuration (where the bridge is surrounded by a matched density liquid) is necessary to avoid deformation due to buoyancy. This complicates the electrical boundary conditions, since charge is transported across the liquid-liquid interface. In the microgravity environment, a cylindrical bridge can be deployed in a gas which considerably simplifies the boundary condition. Nevertheless, to provide a tie-in to terrestrial experiments, two-phase experiments were carried out. The agreement with previous work was excellent. Then several experiments were conducted with a bridge deployed in a dielectric gas, SF6. In experiments with steady fields, it was found that the bridge was less stable than predicted by a linearized stability analysis using the Taylor-Melcher leaky dielectric model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 579-583; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-15
    Description: Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 441-446; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 399-410; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-15
    Description: Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 347-352; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-15
    Description: A method of calculation is presented that allows the simulation of the time-dependent three-dimensional motion of thin liquid layers on solid substrates for systems with finite equilibrium contact angles. The contact angle is a prescribed function of position on the substrate. Similar mathematical models are constructed for substrates with a pattern of roughness. Evolution equations are given, using the lubrication approximation, that include viscous, capillary and disjoining forces. Motion to and from dry substrate regions is made possible by use of a thin energetically-stable wetting layer. We simulate motion on heterogeneous substrates with periodic arrays of high contact-angle patches. Two different problems are treated for heterogenous substrates. The first is spontaneous motion driven only by wetting forces. If the contact-angle difference is sufficiently high, the droplet can find several different stable positions, depending on the previous history of the motion. A second simulation treats a forced cyclical motion. Energy dissipation per cycle for a heterogeneous substrate is found to be larger than for a uniform substrate with the same total energy. The Landau-Levich solution for plate removal from a liquid bath is extended to account for a pattern of roughness on the plate.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 121-126; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-15
    Description: Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two- and three-body forces in the bulk as well as study the influence of soft walls. We qualitatively explain the effects of the walls on the forces and demonstrate that many-body effects are negligible in our system. With adjustments in the parameters, the DLVO pair-potential can describe the results quantitatively. Besides electrostatic interactions, entropic depletion effects that arise from (hard-core) exclusion play an important role in determining the behavior of multi-component colloidal suspensions. A standard theory for depletion forces is due to Asakura and Oosawa and is based on the ideal gas approximation. To go beyond this approximation, we have studied entropic forces in molecular dynamics simulations of systems of hard spheres (the effects of the solvent have been ignored). The effective depletion forces for these systems can be found either from equilibrium distribution functions or from direct momentum transfer calculations. Our results obtained by either method show qualitative differences from the Asakura-Oosawa forces, indicating a longer range, higher value at contact and most importantly a more complicated structure, comprising of several maxima and minima. Our calculations include the determination of effective forces between two spheres, a hard sphere and a wall, and the behavior of a hard sphere near a step-edge and a corner. We also demonstrate that such entropic forces do not necessarily satisfy pairwise additivity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 148-153; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-15
    Description: Colloidal suspensions are materials with a variety of uses from cleaners and lubricants to food, cosmetics, and coatings. In addition, they can be used as a tool for testing the fundamental tenets of statistical physics. Colloidal suspensions can be synthesized from a wide variety of materials, and in the form of monodisperse particles, which can self-assemble into highly ordered colloidal crystal structures. As such they can also be used as templates for the construction of highly ordered materials. Materials design of colloids has, to date, relied on entropic self-assembly, where crystals form as result of lower free energy due to a transition to order. Here, our goal is to develop a completely new method for materials fabrication using colloidal precursors, in which the self-assembly of the ordered colloidal structures is driven by a highly controllable, attractive interaction. This will greatly increase the range of potential structures that can be fabricated with colloidal particles. In this work, we demonstrate that colloidal suspensions can be crosslinked through highly specific biological crosslinking reactions. In particular, the molecules we use are protein-carbohydrate interactions derived from the immune system. This different driving force for self-assembly will yield different and novel suspensions structures. Because the biological interactions are heterotypic (A binding to B), this chemical system can be used to make binary alloys in which the two colloid subpopulations vary in some property - size, density, volume fraction, magnetic susceptibility, etc. An additional feature of these molecules which is unique - even within the realm of biological recognition - is that the molecules bind reversibly on reasonable time-scales, which will enable the suspension to sample different configurations, and allow us to manipulate and measure the size of the suspension dynamically. Because of the wide variety of structures that can be made from these novel colloids, and because the suspension structure can be altered dynamically, we believe this biocolloid system will yield a novel set of materials with many technological applications, including sensors (both biological and non-biological), optical filters and separation media.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 346; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-15
    Description: Late-time dynamics and morphology of a stratified turbulent shear layer are examined using 1) Reynolds-stress and heat-flux budgets, 2) the single-point structure tensors introduced by Kassinos et al. (2001), and 3) flow visualization via 3D volume rendering. Flux reversal is observed during restratification in the edges of the turbulent layer. We present a first attempt to quantify the turbulence-mean-flow interaction and to characterize the predominant flow structures. Future work will extend this analysis to earlier times and different values of the Reynolds and Richardson numbers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Studying Turbulence Using Numerical Simulation Databases - IX: Proceedings of the 2002 Summer Program; 245-255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-15
    Description: Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 579-605; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-15
    Description: This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to characterize the transition region in an earth-bound experiment. In the DE modeling, we analyze dynamics of a sheared granular system in Couette geometry in two (2D) and three (3D) space dimensions. Here, the idea is to both better understand what we might encounter in a reduced-g environment, and at a deeper level to deduce the physics of sheared systems in a density regime that has not been addressed by past experiments or simulations. One aspect of the simulations addresses sheared 2D system in zero-g environment. For low volume fractions, the expected dynamics of this type of system is relatively well understood. However, as the volume fraction is increased, the system undergoes a phase transition, as explained above. The DES concentrate on the evolution of the system as the solid volume fraction is slowly increased, and in particular on the behavior of very dense systems. For these configurations, the simulations show that polydispersity of the sheared particles is a crucial factor that determines the system response. Figures 1 and 2 below, that present the total force on each grain, show that even relatively small (10 %) nonuniformity of the size of the grains (expected in typical experiments) may lead to significant modifications of the system properties, such as velocity profiles, temperature, force propagation, and formation shear bands. The simulations are extended in a few other directions, in order to provide additional insight to the experimental system analyzed above. In one direction, both gravity, and driving due to vibrations are included. These simulations allow for predictions on the driving regime that is required in the experiments in order to analyze the jamming transition. Furthermore, direct comparison of experiments and DES will allow for verification of the modeling assumptions. We have also extended our modeling efforts to 3D. The (preliminary) results of these simulations of an annular system in zero-g environment will conclude the presentation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 453-475; NASA/CP-2002-211212/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-15
    Description: The present invention provides a pump for inducing a displacement of a fluid from a first medium to a second medium, including a conduit coupled to the first and second media, a transducing material piston defining a pump chamber in the conduit and being transversely displaceable for increasing a volume of the chamber to extract the fluid from the first medium to the chamber and for decreasing the chamber volume to force the fluid from the chamber to the second medium, a first transducing material valve mounted in the conduit between the piston and the first medium and being transversely displaceable from a closed position to an open position to admit the fluid to the chamber, and control means for changing a first field applied to the piston to displace the piston for changing the chamber volume and for changing a second field applied to the first valve to change the position of the first valve.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-15
    Description: Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 249-252; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-15
    Description: The research carried out in the Heat Transfer Laboratory of the Johns Hopkins University was motivated by previous studies indicating that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 when compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The influence of electric fields on bubble formation has been investigated both experimentally and theoretically.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 77-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-15
    Description: This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: URC97062 , NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment; 1; 361-366
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-15
    Description: This paper addresses some theoretical modelling and control issues for a mixing chamber used in rocket engine testing at NASA Stennis Space Center. The mixer is responsible for combining high pressure LH2 and GH2 to produce a hydrogen flow that meets certain thermodynamic properties before it is fed into a test article. The desired properties are maintained by precise control of the LH2 and GH2 flows. The mixer is modelled as a general multi-flow lumped volume for single constituent fluids using density and internal energy as states. The set of nonlinear differential equations is modelled in the SIMULINK environment including a table look-up feature of the fluid thermodynamic properties. a small-signal (linear) model is developed based on the nonlinear model and simulated as well. Pulse disturbances are introduced to the valve positions and the quality of the linear model is ascertained by comparing its behavior against the nonlinear model simulations. Valve control strategies that simulate an operator-in-the-loop scenario are then explored demonstrating the need for automatic feedback control. Finally, classical optimal single-output and multi-output Proportional/Integral controllers are designed based on the linear model and applied to the nonlinear model with excellent results to track simultaneous, constant setpoint changes in desired exit flow, exit temperature, and mixer pressure, as well as to reject unmeasurable but bounded additive step perturbations in the valve positions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SE-2002-09-00062-SSC , 2003 American Control Conference; Jun 04, 2003 - Jun 06, 2003; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-15
    Description: This paper addresses some modeling and control issues for a mixing chamber used in rocket engine testing at NASA Stennis Space Center. The mixer must combine high pressure liquid hydrogen (LH2) and gaseous hydrogen (GH2) to produce and output flow that meets certain thermodynamic properties before it is fed into a test article. More precisely, this paper considers that the quantities to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The available control inputs are given by three value positions, namely those of the GH2, LH2 and exit valves. The mixer is modelled by a system of two nonlinear ordinary differential equations having density and internal energy as states. The model must be simple enough to lend itself to subsequent feedback controller design, yet its accuracy must be tested against real data. For this reason, the model includes function calls to thermodynamic property data. Some structural properties of the resulting model that pertain to controller design, such as controllability and uniqueness of the equilibrium point are shown to hold. Validation of the model against real data is also provided. As a first control approach, a small-signal (linear) model is developed based on the nonlinear model and simulated as well. Pulse disturbances are introduced to the valve positions and the quality of the linear model is ascertained by comparing its behavior against the nonlinear model simulations. Valve control strategies that simulate an operator-in-the-loop scenario are then explored demonstrating the need for automatic feedback control. Classical optimal single-output and multi-output Proportional/Integral controllers are designed based on the linear model and applied to the nonlinear model with excellent results to track simultaneous, constant setpoint changes in desired exit flow, exit temperature, and mixer pressure, as well as to reject unmeasurable but bounded additive step perturbations in the valve positions. A feedback linearization controller is designed and used to achieve tracking and regulation of the outputs over an extended range of the variables of interest.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SE-2002-11-00076-SSC , 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-15
    Description: A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SE-2002-08-00056-SSC , 2003 American Control Conference; Jun 04, 2003 - Jun 06, 2003; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-15
    Description: Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-15
    Description: Linear response (specifically, Fourier's Law) in He-4 has been observed to fail in heat flow experiments near the superfluid transition. A detailed analysis of the data suggests that the hydrostatic pressure gradient across the helium column limits the divergence of the correlation length in our earth-based experiments. This is consistent with other observations, such as the surprising lack of mutual friction and hysteresis near the superfluid transition, and a 'rounding' of the transition that appears to be independent of heat flux in the low heat flux limit. I will discuss these unusual results from earth-based measurements, and will show predictions for the very different results that may result when we make our measurements on orbit as part of the M1 Mission of the Low- Temperature, Microgravity Physics Facility. This work has been funded by the Fundamental Physics Discipline within the Physical Sciences Research Office of NASA, and is conducted by the DYNAMX (UNM) and CQ (Caltech) Groups, with assistance from the Low Temperature Science and Quantum Sensors Group at JPL.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 52; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-15
    Description: Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Space Technology and Applications International Forum (STAIF-2005); Feb 13, 2005 - Feb 17, 2005; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-15
    Description: Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AD-A427075 , MIT/WHOI 2004-05
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-15
    Description: The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 485-499; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-14
    Description: Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2nd International Symposium on Physical Sciences in Space/Spacebound 2003; May 04, 2003 - May 08, 2003; Toronto, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-13
    Description: The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2003-212598 , E-14154 , Two-Phase Flow, Fluid Stability and Dynamics Workshop; May 15, 2003; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-13
    Description: System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-13
    Description: Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2003-212731 , E-14256 , NAS 1.15:212731 , 39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Hazards/Third Modeling and Simulation Joint Subcommittee Meeting; Dec 01, 2003 - Dec 05, 2003; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-13
    Description: Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 95-3112 , AIAA 31st Joint Propulsion Conference; Jul 10, 1995 - Jul 12, 1995; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: In 1995, Carlos Jorquera left NASA s Jet Propulsion Laboratory (JPL) to focus on erasing the growing void between high-performance cameras and the requisite software to capture and process the resulting digital images. Since his departure from NASA, Jorquera s efforts have not only satisfied the private industry's cravings for faster, more flexible, and more favorable software applications, but have blossomed into a successful entrepreneurship that is making its mark with improvements in fields such as medicine, weather forecasting, and X-ray inspection. Formerly a JPL engineer who constructed imaging systems for spacecraft and ground-based astronomy projects, Jorquera is the founder and president of the three-person firm, Boulder Imaging Inc., based in Louisville, Colorado. Joining Jorquera to round out the Boulder Imaging staff are Chief Operations Engineer Susan Downey, who also gained experience at JPL working on space-bound projects including Galileo and the Hubble Space Telescope, and Vice President of Engineering and Machine Vision Specialist Jie Zhu Kulbida, who has extensive industrial and research and development experience within the private sector.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Spinoff 2003: 100 Years of Powered Flight; 64-65; NASA/NP-2003-08-307-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: This is the report of a Scientific Working Group (SWG) formed by NASA to determine the feasibility of using a liquid metal cooled nuclear reactor and Rankine energy conversion cycle for dual purpose power and propulsion in space. This is a high level technical report which is intended for use by NASA management in program planning. The SWG was composed of a team of specialists in nuclear energy and multiphase flow and heat transfer technology from academia, national laboratories, NASA and industry. The SWG has identified the key technology issues that need to be addressed and have recommended an integrated short term (approx. 2 years) and a long term (approx. 10 year) research and development (R&D) program to qualify a Rankine cycle power plant for use in space. This research is ultimately intended to give NASA and its contractors the ability to reliably predict both steady and transient multiphase flow and heat transfer phenomena at reduced gravity, so they can analyze and optimize designs and scale-up experimental data on Rankine cycle components and systems. In addition, some of these results should also be useful for the analysis and design of various multiphase life support and thermal management systems being considered by NASA.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213142 , E-14657
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-13
    Description: An analytic model for predicting the effect of unsteady local surface injection on the flow separating from a streamlined body at angle of attack is proposed. The model uses the premise that separation control results from enhanced mixing along the shear layer that develops between the main stream and the fluid in the underlying recirculation zone. High-Reynolds-number asymptotic methods are used to connect the unsteady surface injection to an instability wave propagating on the separating shear layer and then to the large-scale coherent structures that produce the increased mixing. The results is a tool that can guide the choice of fluid-actuator parameters to maximize flow-control effectiveness and may also facilitate computer-based numerical experiments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213176 , E-14667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-13
    Description: The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SSTI-3000-0001-FLUIDS , 52 JANNAF Propulsion Meeting; May 10, 2004 - May 13, 2004; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-13
    Description: For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF CS/APS/PSHS/MSS Joint Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-13
    Description: This viewgraph presentation provides information on activities pertaining to the experimental characterization of gas/gas injector flowfields. An experimental testbed for uni-element gas/gas injector studies at realistic conditions has been fabricated and verified. Experiments for characterizing mixing/combustion of gas/gas injectors with raman spectroscopy have been initiated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 38th JANNAF Combustion Subcommittee; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-13
    Description: This viewgraph presentation gives an overview on recent improvements in the Finite Difference Navier Stokes (FDNS) computational fluid dynamics (CFD) code and its associated process. The development of a utility, PreViewer, has essentially eliminated the creeping of simple human error into the FDNS Solution process. Extension of PreViewer to encapsulate the Domain Decompression process has made practical the routine use of parallel processing. The combination of CVS source control and ATS consistency validation significantly increases the efficiency of the CFD process.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF 38th Combustion Subcommittee Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-13
    Description: A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213044 , FEDSM2003-45527 , E-14481 , Fourth Joint Fluids Engineering Conference; Jul 06, 2003 - Jul 10, 2003; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-13
    Description: The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 89; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-13
    Description: When a large density stratification is no longer a problem in a microgravity environment, one would like to increase the sample size in order to increase the signal-to-noise ratio for a specific heat measurement. To reduce the equilibration time associated with the large sample size, we designed a cylindrical cell containing a stack of plates that separate the bulk fluid into 60 equally thin layers. To understand the thermal behavior of the whole cell, we analyzed the thermal behavior of a 2-D composite system of a cylindrical near-critical fluid layer in contact with a cylindrical copper plate. In this 2-D analysis, the circumference boundary of the two cylindrical layers is subjected to a step temperature change. The solution of this 2-D composite system includes the piston effect that speeds up the equilibration in the near-critical fluid layer and the pure diffusion in the copper plate. The results of this analysis indicate that the characteristic length for the equilibration of the stacked cell is determined by an effective thickness of a single fluid layer instead of the total height of the cylindrical cell.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 88; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-13
    Description: We have observed a new temperature-entropy wave that propagates opposite to the direction of a steady heat flux Q when the helium column is heated from above. This propagating mode is due to non-linear thermo-conductance of the helium sample in the self-organized state. Such a mode had been predicted to exist on the self-organized heat transport state for Q less than about 100 nW/sq cm. We confirm that this mode exists in this regime. However, we also observe that it propagates even when the helium is pushed away from the self-organized heat transport state into the normal state.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 86; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-13
    Description: The shape of the liquid-gas coexistence curve of He-3 very near the critical point (-2x10(exp -6) 〈 t 〈 -5x10(exp -3) was measured using the quasi-static thermogram method. The study was performed in Earth s gravitational field using two different height calorimetry cells, both originally designed for simultaneous measurements of the isochoric heat capacity, isothermal compressibility, and PVT. The heights of two cells were 0.5 mm and 4.8 cm. The uncertainty in measuring the phase transition temperature was typically +/-2 micro-K. The measured coexistence curve near the critical point was strongly affected by the gravitational field. Away from the critical point, the coexistence curve obtained using this technique was also consistent with the earlier work using the local density measurements of Pittman et al. The recent crossover parametric model of the equation-of-state are used to analyze the height-dependent measured coexistence curves. Data analyses have indicated that microgravity will permit measurements within two additional decades in reduced temperatures beyond the best gravity-free data obtained in Earth-bound experiments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 63; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-13
    Description: In addition to its primary role of studying non-linear heat transport effects near the lambda transition of He-4, the DYNAMX apparatus is suitable for measurements of the specific heat and the velocity of second sound. We plan to take advantage of available time on orbit to make measurements in these areas near to the lambda transition. The specific heat work would be similar to LPE, aimed at improving our knowledge of the singularity in the bulk heat capacity at the transition, but would provide more accurate results close to the transition. It would focus roughly equally on each side of the transition and would be synergistic with the CQ experiment, providing wider-range data at Q = 0. The second sound measurements are made possible by the fast time constant and high resolution of the DYNAMX thermometers, which allow accurate time-of-flight measurements of second sound pulses. It appears possible to measure the second sound velocity to about 1% at a reduced temperature of t = 5x10(exp -8) by averaging over a moderate number of pulses. The data would complement and extend earlier ground-based measurements, leading to improved tests of the theory of static critical phenomena at the lambda transition.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 51; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: Break-throughs in the study of superfluid He-3 weak links and recent demonstration of Josephson effect in He-4 are a result of significant advances in ultra-sensitive transducer and nanofabrication technology. However, further progress in the performance of superfluid weak links and quantum rotation interferometry devices depends, in part, on reducing the mechanical noise and increasing the effective duty cycle of such devices. In existing devices, the DC Josephson effect is driven by chemical potential difference produced by a pressure applied across the weak link. We propose a novel drive technique, where the chemical potential is due to a controlled temperature difference. This technique promises to eliminate mechanical shock associated with the switch of the direction of applied pressure and to achieve 100% duty cycle. The thermally driven Josephson effect may also answer outstanding questions about dissipation in superfluid weak links.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 76; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-13
    Description: Over the years, many ground-based studies have been performed near liquid-gas critical points to elucidate the expected divergences in thermodynamic quantities. The unambiguous interpretation of these studies very near the critical point is hindered by a gravity-induced density stratification. However, these ground-based measurements can give insight into the crossover behavior between the asymptotic critical region near the transition and the mean field region farther away. We have completed a detailed analysis of heat capacity, susceptibility and coexistence curve measurements near the He-3 liquid-gas critical point using the minimal-subtraction renormalization (MSR) scheme within the phi(exp 4) model. This MSR scheme, using only two adjustable parameters, provides a reasonable global fit to all of these experimental measurements in the gravity-free region out to a reduced temperature of |t| approx. 2x10(exp -2). Recently this approach has also been applied to the earlier microgravity measurements of Haupt and Straub in SF(sub 6) with surprising results. The conclusions drawn from the MSR analyses will be presented. Measurements in the gravity-affected region closer to the He-3 critical point have also been analyzed using the recent crossover parametric model (CPM) of the equation-of-state. The results of fitting heat capacity measurements to the CPM model along the He-3 critical isochore in the gravity-affected region will also be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 13; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-13
    Description: We present measurements of the thermal conductivity near the superfluid transition of He-4 in confined geometries. The confinements we have studied include: cylindrical geometries with radii L=.5 and 1.0 microns, and parallel plates with 5 micron spacing. For L=1.0 microns, measurements at six pressures were conducted, whereas only SVP measurements have been done for other geometries. For the 1-D confinement in cylinders, the data are consistent with a universal scaling for all pressures at and above T(sub lambda). There are indications of breakdown of scaling and universality below T(sub lambda). For the 2-D confinement between parallel plates, the preliminary results indicate that the thermal conductivity is finite at the bulk superfluid transition temperature. Further analyses are needed to compare the 2-D results with those in bulk and 1-D confinement.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 64; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-13
    Description: We present a formal thermodynamic treatment of superfluid flow in a Josephson junction. We show that the current and the phase difference are thermodynamic conjugate variables. We derive quantitative expressions for the rms fluctuations of these variables. Also, we discuss the thermodynamic stability and the thermal activation to the phase slip region. We apply the developed formalism to show why an array of apertures in He-4 can exhibit the Josephson effect near the Lambda transition despite strong thermal fluctuations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 26; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-13
    Description: A vortex-loop theory of the superfluid lambda transition has been developed over the last decade, with many results in agreement with experiments. It is a very simple theory, consisting of just three basic equations. When it was first proposed the main uncertainty in the theory was the use Flory scaling to find the fractal dimension of the random-walking vortex loops. Recent developments in high-resolution Monte Carlo simulations have now made it possible to verify the accuracy of this Flory-scaling assumption. Although the loop theory is not yet rigorously proven to be exact, the Monte Carlo results show at the least that it is an extremely good approximation. Recent loop calculations of the critical Casimir effect in helium films in the superfluid phase T 〈 Tc will be compared with similar perturbative RG calculations in the normal phase T 〉 Tc; the two calculations are found to match very nicely right at Tc.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 54; JPL-Pub-04-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-13
    Description: The wall-matching methodology of Wilcox is modified to include a solid-wall, thermal-conduction model. This coupled fluid-thermal-structure model is derived assuming that the wall thermal-structure behavior is locally one-dimensional and that structural deformations, due to thermally induced stresses, are not significant. The one-dimensional coupled fluid-thermal-structure model is derived such that the wall temperature is removed as an independent boundary condition variable. The one-dimensional coupled fluid-thermal-structure model is also derived for the general case of an arbitrary mixture of thermally prefect gases and a wall of arbitrary thickness and conductivity by using a compressible, streamwise-pressure-gradient-corrected, wall-matching function and Fourier's law of heat conduction. The resulting model was implemented in the VULCAN CFD code as a new boundary condition type. VULCAN was then used to simulate a two-dimensional Mach 6 wind tunnel facility nozzle flow to demonstrate/validate the one-dimensional coupled fluid-thermal-structure model. The nozzle internal-wall surface temperature and heat transfer distributions computed using the one-dimensional coupled fluid-thermal-structure model are compared to wall temperature and heat transfer distributions from an iterative multi-dimensional analysis obtained by coupling the VULCAN CFD code and the MSC/NASTRAN-thermal code. The one-dimensional coupled fluid-thermal-structure model analysis is shown to be very robust and in excellent agreement with the multi-dimensional iteratively coupled analysis. It is also shown that the one-dimensional analysis can be used as an initial guess for the multi-dimensional iteratively coupled analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF 2002 CS/APS/PSHS/MSS Joint Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-13
    Description: This paper provides a discussion of the history of Carbon Cloth Phenolic (CCP) ply lifting in the Redesigned Solid Rocket Motor (RSRM) Program, a brief presentation of theoretical methods used for analytical evaluation, and results of parametric analyses of CCP material subject to test conditions of the Laser Hardened Material Evaluation Laboratory. CCP ply lift can occur in regions of the RSRM nozzle where ply angle to flame surface is generally less than about 20 degrees. There is a heat rate dependence on likelihood and severity of the condition with the higher heating rates generally producing more ply lift. The event occurs in-depth, near the heated surface, where the load necessary to mechanically separate the CCP plies is produced by the initial stages of pyrolysis gas generation due to the thermal decomposition of the phenolic resin matrix. Due to the shallow lay-up angle of the composite, normal components of the indepth mechanical load, due to "pore pressure", are imparted primarily as a cross-ply tensile force on the interlaminar ply boundaries. Tensile capability in the cross-ply (out of plane) direction is solely determined by the matrix material capability. The elevated temperature matrix material capabilities are overcome by pressure induced mechanical normal stress and ply-lift occurs. A theoretical model used for CCP in-depth temperature, pressure, and normal stress prediction, based on first principles, is briefly discussed followed by a parametric evaluation of response variables subject to boundary conditions typical of on-going test programs at the LHMEL facility. Model response demonstrates general trends observed in test and provides insight into the interactivity of material properties and constitutive relationships.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 36th Structures and Mechanical Behavior Subcommittee Meetings; Mar 30, 2004 - Apr 01, 2004; New Orleans, LA; United States|JANNAF 14th Nondestructuve Evaluation; Mar 30, 2004 - Apr 01, 2004; New Orleans, LA; United States|23rd Rocket Nozzle Technology; Mar 30, 2004 - Apr 01, 2004; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Spinoff; NASA/NP-2004-10-374-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-13
    Description: The present research concerns the development of high-frequency pressure and temperature probes and related instrumentation capable of performing spectral characterization of unsteady pressure and temperature fluctuations over the 0.05 20 kHz range, at the exit of a gas turbine combustor operating at conditions close to nominal ones for large power generation turbomachinery. The probes used a transient technique pioneered at Oxford University; in order to withstand exposure to the harsh environment the probes were fitted on a rapid injection and cooling system jointly developed by Centrospazio CPR and Syracuse University. The experimental runs were performed on a large industrial test rig being operated by ENEL Produzione. The achieved results clearly show the satisfactory performance provided by this diagnostic tool, even though the poor location of the injection port prevented the tests from yielding more insight of the core flow turbulence characteristics. The pressure and temperature probes survived several dozen injections in the combustor hot jet, while consistently providing the intended high frequency performance. The apparatus was kept connected to the combustor during long duration firings, operating as an unobtrusive, self contained, piggy-back experiment: high frequency flow samplings were remotely recorded at selected moments corresponding to different combustor operating conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2003-212540 , E-14106 , NAS 1.26:212540
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...