ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (710)
  • Engineering
  • 2005-2009  (768)
Collection
Language
Years
Year
  • 1
    Keywords: Engineering ; Laser physics ; Microwaves ; Optical materials ; Physical optics
    ISBN: 9780387686172
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Dordrecht : Springer
    Keywords: Chemicals ; Safety measures ; Engineering ; Materials ; Polymers
    ISBN: 9781402053566
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electronics ; Engineering ; Nanotechnology ; Optical materials ; System safety
    ISBN: 9783540269458
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Nanotechnology
    ISBN: 9783540375784
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Nanotechnology
    ISBN: 9783540726753
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry, Physical organic ; Engineering ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9783540745518
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Engineering ; Optical materials ; Physical optics
    ISBN: 9781402084256
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Computer science ; Engineering ; Materials ; Nuclear engineering ; Thermodynamics
    ISBN: 9781402084225
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Chemistry ; Engineering ; Magnetism ; Materials ; Optical materials
    ISBN: 9781402087967
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Condensed matter ; Engineering ; Materials ; Nanotechnology ; Optical materials
    ISBN: 9781402089039
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Keywords: Electronics ; Engineering ; Optical materials ; Spectrum analysis
    ISBN: 9783540274124
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Electronics ; Engineering ; Optical materials ; Physical optics
    ISBN: 9783540718925
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Keywords: Condensed matter ; Engineering ; Optical materials
    ISBN: 9783540734567
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Engineering ; Nanotechnology ; Particles (Nuclear physics)
    ISBN: 9783540745570
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Materials ; Nanotechnology ; Optical materials
    ISBN: 9783540401865
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Engineering ; Magnetism ; Nanotechnology ; Optical materials
    ISBN: 9783540493365
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Keywords: Biochemistry ; Chemistry, Physical organic ; Engineering ; Life sciences ; Nanotechnology ; Physical optics
    ISBN: 9783540284727
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Crystallography ; Engineering ; Particles (Nuclear physics) ; Surfaces (Physics)
    Edition: Third Edition
    ISBN: 9783540738862
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Analytical biochemistry ; Chemistry ; Chemistry, Physical organic ; Engineering
    ISBN: 9783540745983
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Keywords: Chemistry, inorganic ; Engineering ; Materials
    ISBN: 9783540687580
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry, Physical organic ; Condensed matter ; Engineering ; Optical materials
    ISBN: 9783540712954
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Keywords: Engineering ; Optical materials ; Particles (Nuclear physics) ; Physical optics ; Polymers
    ISBN: 9783540719236
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Keywords: Building construction ; Engineering ; Materials ; Physics
    ISBN: 9781852334277
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Electronics ; Engineering ; Nanotechnology
    ISBN: 9783540283089
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Computer engineering ; Engineering ; Nanotechnology ; Optical materials ; Physical optics ; Quantum optics
    ISBN: 9783540469360
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry ; Mathematics ; Engineering ; Operations research ; Systems theory
    ISBN: 9783540488804
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Magnetism ; Materials ; Nanotechnology
    ISBN: 9783540495765
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Keywords: Engineering ; Materials ; Materials ; Materials ; Mechanics ; Nuclear engineering
    ISBN: 9781402053290
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Keywords: Electromagnetism ; Engineering ; Laser physics ; Remote sensing
    ISBN: 9781402065033
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Keywords: Condensed matter ; Engineering ; Materials ; Nanotechnology ; Optical materials
    ISBN: 9781402035623
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Keywords: Engineering ; Materials
    ISBN: 9781402085840
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry, inorganic ; Condensed matter ; Engineering ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9783540368076
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Keywords: Chemistry, Physical organic ; Chemistry, inorganic ; Condensed matter ; Engineering ; Materials ; Structural control (Engineering)
    ISBN: 9781402034718
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9783540343158
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Unknown
    Boston, MA : Springer
    Keywords: Engineering ; Machinery ; Materials
    ISBN: 9780387725284
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Analytical biochemistry ; Biotechnology ; Engineering ; Food science ; Medical laboratories
    ISBN: 9783540457435
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Unknown
    Boston, MA : Springer US
    Keywords: Chemistry ; Engineering ; Materials ; Mechanical engineering ; Surfaces (Physics)
    ISBN: 9780387476858
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Unknown
    Totowa, NJ : Humana Press
    Keywords: Biochemical engineering ; Biotechnology ; Chemical engineering ; Engineering ; Environmental sciences ; Microbiology
    ISBN: 9781592599967
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Unknown
    New York, NY : Springer
    Keywords: Engineering ; Optical materials ; Physical optics
    ISBN: 9780387748016
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Optical materials ; Surfaces (Physics)
    ISBN: 9783540264620
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Keywords: Electronics ; Engineering ; Nanotechnology ; Thermodynamics
    ISBN: 9783540736073
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Keywords: Condensed matter ; Engineering ; Engineering design ; Materials ; Physics
    ISBN: 9780387345659
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Engineering ; Optical materials ; Particles (Nuclear physics) ; Physical optics
    ISBN: 9783540745297
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Unknown
    Boston, MA : Kluwer Academic Publishers
    Keywords: Engineering ; Materials
    ISBN: 9781402081330
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Keywords: Chemistry, Physical organic ; Engineering ; Nanotechnology ; Optical materials ; Physics
    ISBN: 9783540687528
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-12-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiermeier, Quirin -- England -- Nature. 2008 Nov 27;456(7221):540-1. doi: 10.1038/nj7221-540a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19112617" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/trends ; *Ecosystem ; Employment/statistics & numerical data ; Engineering ; Greenhouse Effect ; Industry/manpower ; Marine Biology/manpower/trends ; Oceanography/education/*manpower/*trends ; Oceans and Seas ; Petroleum ; Physics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2009 Feb 19;457(7232):942-3. doi: 10.1038/457942b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Engineering ; *Federal Government ; Fishes ; *Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Hobbies/history ; Marine Biology ; Physics ; *Research Personnel ; United States ; United States Government Agencies/*organization & administration ; Wine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teich, Al -- White, Wendy D -- New York, N.Y. -- Science. 2006 May 5;312(5774):657.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675666" target="_blank"〉PubMed〈/a〉
    Keywords: Engineering ; *Foreign Professional Personnel ; Humans ; *International Cooperation ; *Security Measures ; *Students ; Travel ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-14
    Description: We have used 19.9 million papers over 5 decades and 2.1 million patents to demonstrate that teams increasingly dominate solo authors in the production of knowledge. Research is increasingly done in teams across nearly all fields. Teams typically produce more frequently cited research than individuals do, and this advantage has been increasing over time. Teams now also produce the exceptionally high-impact research, even where that distinction was once the domain of solo authors. These results are detailed for sciences and engineering, social sciences, arts and humanities, and patents, suggesting that the process of knowledge creation has fundamentally changed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wuchty, Stefan -- Jones, Benjamin F -- Uzzi, Brian -- New York, N.Y. -- Science. 2007 May 18;316(5827):1036-9. Epub 2007 Apr 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Northwestern Institute on Complexity (NICO), Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431139" target="_blank"〉PubMed〈/a〉
    Keywords: *Authorship ; Bibliometrics ; Biomedical Research/statistics & numerical data/trends ; Databases as Topic/statistics & numerical data ; Engineering ; Humanities ; *Knowledge ; *Patents as Topic ; Publishing/statistics & numerical data/*trends ; Research/statistics & numerical data/*trends ; Sociology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bolon, Craig -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1187. doi: 10.1126/science.322.5905.1187a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023062" target="_blank"〉PubMed〈/a〉
    Keywords: Engineering ; Lawyers ; *Occupations ; Physicians ; Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Travis, John -- New York, N.Y. -- Science. 2008 Mar 28;319(5871):1750-2. doi: 10.1126/science.319.5871.1750.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369115" target="_blank"〉PubMed〈/a〉
    Keywords: *Awards and Prizes ; *Commerce ; *Diffusion of Innovation ; Drug Industry ; Engineering ; *Internet ; *Problem Solving ; Research ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, John D -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):344-6. doi: 10.1126/science.1168085.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242, USA. jdlee@engineering.uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372419" target="_blank"〉PubMed〈/a〉
    Keywords: *Attention ; *Automobile Driving ; Engineering ; Feedback ; Humans ; Risk ; *Safety ; *Technology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharjee, Yudhijit -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1722-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961635" target="_blank"〉PubMed〈/a〉
    Keywords: Authorship ; *Aviation ; Commerce ; *Editorial Policies ; Engineering ; International Cooperation ; Iran ; Publishing ; Security Measures ; *Societies, Scientific ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattick, John S -- Gagen, Michael J -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):856-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia. j.mattick@imb.uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705831" target="_blank"〉PubMed〈/a〉
    Keywords: Computers ; Engineering ; Gene Expression Regulation ; Industry ; *Mathematics ; Software ; *Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):584.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources ; *Ecosystem ; Engineering ; *Environment ; Geologic Sediments ; *Rivers ; *Salmon ; Trees ; Washington
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):582-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068234" target="_blank"〉PubMed〈/a〉
    Keywords: California ; Conservation of Natural Resources ; *Ecosystem ; Engineering ; *Environment ; *Fresh Water ; Plant Development ; Rivers ; Water Movements ; Water Supply
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, Briahna -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1382-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16959987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Science Disciplines ; *Biomimetic Materials ; Biomimetics ; Computer Simulation ; Engineering ; *Fishes/physiology ; Interdisciplinary Communication ; Mathematics ; Pressure ; *Sense Organs/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alberts, Bruce -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1435. doi: 10.1126/science.1168790.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056942" target="_blank"〉PubMed〈/a〉
    Keywords: Engineering ; *Government ; *Public Policy ; *Science ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-11
    Description: The slosh dynamics in cryogenic fuel tanks under microgravity is a pressing problem that severely affects the reliability of launching spacecraft. After reaching low Earth orbit, the propellant in a multistage rocket experiences large and cyclic changes in temperature as a result of solar heating. Tank wall heating can induce thermal stratification and propellant boiloff, particularly during slosh-inducing vehicle maneuvers. Precise understanding of the dynamic and thermodynamic effects of propellant slosh caused by these maneuvers is critical to mission performance and success. Computational fluid dynamics (CFD) analysis is used extensively within the space vehicle industry in an attempt to characterize the behavior of liquids in microgravity, yet experimental data to quantify these predictions is very limited and reduces confidence in the analytical predictions. A novel approach designed to produce high-fidelity data for correlation to CFD model predictions is being developed with the assistance of Florida Institute of Technology (FIT) and Sierra Lobo, Inc. With few exceptions, previous work in slosh dynamics was theoretical or treated the mass of fuel as a variable of inertia only; such models did not consider the viscosity, surface tension, or other important fluid effects. The challenges in this research are in the development of instrumentation able to measure the required parameters, the computational ability to quantify the fluid behaviors, and the means to assess both the measurements and predictions. The design of this experiment bridges the understanding of slosh dynamics in microgravity by a comprehensive approach that combines CFD tools, dynamic simulation tools, semianalytical models of the predominant fluid effects, and an experimental framework that includes measurement and characterization of liquid slosh in one-degree-of-freedom (DOF) and two-DOF experiments, and ultimately experiments in a NASA low-gravity aircraft.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 86-87/88; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-11
    Description: Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Fuild Mechanics; Volume 523; 37-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-12
    Description: New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in some detail. The objectives of each effort were noted. Issues relative to code validation for injector design were discussed in some detail. The requirement for CFD support during the design of the experiment was noted and discussed in terms of instrumentation placement and experimental rig uncertainty. In conclusion, MSFC has made significant progress in the last two years in advancing CFD toward the goal of application to injector design. A parallel effort focused on program support and technology development via the SCIT Task have enabled the progress.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-12
    Description: Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this approach, the numeric grid size can be much larger than the thickness of double layer. Presented in this report are a description of the approach, methodology for implementation and several validation simulations for micro flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; VII-1 - VII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of level-two design tools for PARSEC. The "CFD Multiphysics Tool" will be the propulsive element of the tool set. The name acknowledges that space propulsion performance assessment is primarily a fluid mechanics problem. At the core of the CFD Multiphysics Tool is an open-source CFD code, HYP, under development at ERAU. ERAU is renowned for its undergraduate degree program in Aerospace Engineering the largest in the nation. The strength of the program is its applications-oriented curriculum, which culminates in one of three two-course Engineering Design sequences: Aerospace Propulsion, Spacecraft, or Aircraft. This same philosophy applies to the HYP Project, albeit with fluid physics modeling commensurate with graduate research. HYP s purpose, like the Multiphysics Tool s, is to enable calculations of real (three-dimensional; geometrically complex; intended for hardware development) applications of high speed and propulsive fluid flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXIII-5 - XXXIII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-12
    Description: Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XIX-1 - XIX-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-12
    Description: The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the objectives listed, the following tasks were accomplished: 1) Parametric Study Of Preconditioning Parameters And Other Code Inputs; 2) Code Modifications To Reduce Runtimes; 3) Investigation Of Compiler Options To Reduce Code Runtime; and 4) Development/Enhancement of Users Manuals for Aardvark and Phantom
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXVI-1 - XXVI-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XVIII-1 - XVIII-11; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-11
    Description: The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-11
    Description: Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-06
    Description: A final report is presented from the industry panel group. The contents include: 1) General comments; 2) Positive progress since Minnowbrook IV; 3) Industry panel outcome; 4) Prioritized turbine projects; 5) Prioritized compressor projects; and 6) Miscellaneous.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook V: 2006 Workshop on Unsteady Flows in Turbomachinery; NASA/CP-2006-214484
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-06
    Description: An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Journal; Volume 45; No. 3; 607-614
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-06
    Description: The present paper deals with an experimental study of the stagnation-point heat transfer to a cooled copper surface with gas injection under subsonic conditions. Test were made with a probe that combined a steady-state water-cooled calorimeter that allows the capability to study convective blockage and to perform heat transfer measurements in presence of gas injection in the stagnation region. The copper probe was pierced by 52 holes, representing 2.4% of the total probe surface. The 1.2 MW high enthalpy plasma wind tunnel was operated at anode powers between 130 and 230 kW and a static pressures from 35 hPa up to 200 hPa. Air, carbon dioxide and argon were injected in the mass flow range 0-0.4 g/s in the boundary layer developed around the 50 mm diameter probe. The measured stagnation-point heat transfer rates are reported and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2nd International Planetary Probe Workshop; 69-74; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-02
    Description: Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-02
    Description: NASA Glenn Research Center s Capillary Flow Experiments (CFE) program is developing experiment payloads to explore fluid interfaces in microgravity on the International Space Station. The information to be gained from the CFE is relevant to the design of fluid-bearing systems in which capillary forces predominate, for example in the passive positioning of liquids in spacecraft fuel tanks. To achieve the science goals of CFE, Glenn researchers constructed several types of experiment vessels. One type of vessel, known as the interior corner flow (ICF), will be used to determine important transients for low-gravity liquid management in a two-phase system. Each vessel has a cylindrical fluid reservoir connected to each end of the test chamber by internal transport tubes, each with a quarter-turn shutoff valve (see the following photograph). These multipiece vessels are made from polymethylmethacrylate (PMMA) because of its excellent optical properties (i.e., the fluids can be observed easily in the vessel). Because of the complexity of certain vessels, the test chamber had to be manufactured in pieces and welded chemically. Some past experience with adhesive bonded plastic showed that the experiment fluid degraded the adhesive to the point of failure. Therefore, it was necessary to see if the fluid also degraded the chemically welded PMMA joints.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-09-11
    Description: This paper presents the thermal performance of a low-cost loop heat pipe (LHP) consisting of a single evaporator and a single condenser. The evaporator has an outer diameter of 14mm and a length of 50mm. An organic solvent was used as the working fluid. The low-cost LHP was made possible through a new manufacturing process. The LHP demonstrated excellent performance over heat loads ranging from 1W to 15OW and sink temperatures between 253K and 293K. Tests performed included start-up, power cycle, sink temperature cycle, high power and low power operations. No performance anomalies were seen.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-02
    Description: Experimental data were obtained to help validate analytical and computational fluid dynamics (CFD) codes used to compute unsteady cascade aerodynamics in a supersonicaxial- flow regime. Results from two analytical codes and one CFD code were compared with experimental data. One analytical code did not account for airfoil thickness or camber; another, using piston theory (piston code), accounted for thickness and camber upstream of the first shockwave/airfoil impingement locations. The Euler CFD code accounted fully for airfoil shape.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: The NPARC (National Project for Application-oriented Research in CFD) Alliance has released Version 1.0 of Wind-US, the latest in its line of general-purpose, multizone, compressible-flow Navier-Stokes solvers. The NPARC Alliance is a formal partnership between the NASA Glenn Research Center and the Air Force Arnold Engineering Development Center, with additional significant involvement by the Boeing Company s Phantom Works Group, whose mission is to provide an applications-oriented computational fluid dynamics (CFD) system primarily for aerospace flow simulation. The alliance is committed to the long-range maintenance and improvement of this capability, with teams focused on user support, code development, and validation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-06
    Description: High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-05
    Description: Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-05
    Description: The Microgravity Observation of Bubble Interactions (MOBI) experiment is working to better understand the physics of gas-liquid suspensions. To study such suspensions, researchers generate bubbles in a large cylindrical flow channel. Then, they use various types of instrumentation, including video imaging, to study the bubbly suspension. Scientists will need a camera view of the majority of the gas-liquid suspension inside of the couette in order to gather the information needed from the MOBI experiment. This will provide the scientists with a qualitative picture of the flow that may indicate flow instabilities or imperfect axial mixing inside the couette. These requirements pose a significant challenge because the imaging and lighting system must be confined to a very tight space since the space available on the International Space Station experiment racks is very limited. In addition, because of the large field of view needed and the detail needed to see the gas-liquid suspension behavior in the image, a digital video camera with high resolution (1024 by 1024 pixels) had to be used. Although the high-resolution camera will provide scientists with the image quality they need, it left little space on the experiment rack for the lighting system. Many configurations were considered for the lighting system, including front-lighting and back-lighting, but because of mechanical design limitations with the couette, back-lighting was not an option.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-05
    Description: NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-05
    Description: Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-05
    Description: The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-05
    Description: In 2004, President Bush outlined a new space exploration vision for NASA. The exploration programs will seek profound answers to questions of our origins, whether life exists beyond Earth, and how we could live in other worlds. In response, research projects from NASA s Fluid Physics Research Program were moved into the Exploration Systems Mission Directorate and realigned to support the major milestones of this directorate. A new goal of this research is to obtain an understanding of the physical phenomena that are important in the design of the many space-based and ground-based fluids systems that utilize multiphase flow, such as life support, propulsion, and power systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October - November, 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolution of the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those measurement systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-11
    Description: The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KC-135 and Other Microgravity Simulations; 9-14; NASA/TM-2005-213162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-11
    Description: The mass-averaged compressible Navier-Stokes equations are solved for circulation control airfoils. Numerical solutions are computed with a multigrid method that uses an implicit approximate factorization smoother. The effects of flow conditions (e.g., free-stream Mach number, angle of attack, momentum coefficient) and mesh on the prediction of circulation control airfoil flows are considered. In addition, the impact of turbulence modeling, including curvature effects and modifications to reduce eddy viscosity levels in the wall jet (i.e., Coanda flow), is discussed. Computed pressure distributions are compared with available experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1; 227-273; NASA/CP-2005-213509/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-11
    Description: In an effort to validate computational fluid dynamics procedures for calculating flows around circulation control airfoils, the commercial flow solver FLUENT was utilized to study the flow around a general aviation circulation control airfoil. The results were compared to experimental and computational fluid dynamics results conducted at the NASA Langley Research Center. The current effort was conducted in three stages: 1. A comparison of the results for free-air conditions to those from experiments. 2. A study of wind-tunnel wall effects. and 3. A study of the stagnation-point behavior.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 2; 813-843; NASA/CP-2005-213509/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2nd International Planetary Probe Workshop; 313-316; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-11
    Description: The general decomposition of the spectral correlation tensor R(sub ij)(k) by Cambon et al. (J. Fluid Mech., 202, 295; J. Fluid Mech., 337, 303) into directional and polarization components is applied to the representation of R(sub ij)(k) by spherically averaged quantities. The decomposition splits the deviatoric part H(sub ij)(k) of the spherical average of R(sub ij)(k) into directional and polarization components H(sub ij)(sup e)(k) and H(sub ij)(sup z)(k). A self-consistent representation of the spectral tensor in the limit of weak anisotropy is constructed in terms of these spherically averaged quantities. The directional polarization components must be treated independently: models that attempt the same representation of the spectral tensor using the spherical average H(sub ij)(k) alone prove to be inconsistent with Navier-Stokes dynamics. In particular, a spectral tensor consistent with a prescribed Reynolds stress is not unique. The degree of anisotropy permitted by this theory is restricted by realizability requirements. Since these requirements will be less severe in a more accurate theory, a preliminary account is given of how to generalize the formalism of spherical averages to higher expansion of the spectral tensor. Directionality is described by a conventional expansion in spherical harmonics, but polarization requires an expansion in tensorial spherical harmonics generated by irreducible representations of the spatial rotation group SO(exp 3). These expansions are considered in more detail in the special case of axial symmetry.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-11
    Description: Current NASA flight rules limit the maximum cabin temperature (23.9 C) during re-entry and landing to protect crewmembers from heat stress while wearing the Advanced Crew Escape Suit (ACES) and Liquid Cooling Garment (LCG). The primary purpose of this ground-based project was to determine whether the LCG could provide adequate cooling if ambient temperature reached 26.7 "C. The secondary objective was to determine whether there would be a graded effect of ambient temperature profiles with maximum temperatures of 23.9 (LO), 26.7 (MPD), and 29.4 C (HI). METHODS: Eight subjects underwent a 5-h temperature profile (22.8,26.7 C) in an environmental chamber while wearing the ACES and LCG. Subjects controlled the amount of cooling provided by the LCG. Core (T(sub core)),skin temperatures (T(sub sk)) and heart rate (HR) were measured every 15-min. A 10-minute stand test was administered pre- and post-chamber. Additionally, 4 subjects underwent the three 5-h temperature profiles (LO, MID, and HI) with the same measurements. RESULTS: In the 8 subjects completing the MID profile, T(sub core), and T(sub sk) decreased from the start' to the end of the chamber stay. Subjects completed the stand test without signs of orthostatic intolerance. In the 4 subjects who underwent all 3 profiles, there was no discernible pattern in T(sub core), T(sub sk), and HR responses across the temperature profiles. CONCLUSIONS: In the range of temperatures tested, subjects were able to sufficiently utilize the self-selected cooling to avoid any potential deleterious effects of wearing the ACES. However, these subjects were not microgravity exposed, which has been suggested to impair thermoregulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-27
    Description: Aircraft induced contrails have been found to have a net warming influence on the climate system, with strong regional dependence. Persistent linear contrails are detectable in 1 Km thermal imagery and, using an automated Contrail Detection Algorithm (CDA), can be identified on the basis of their different properties at the 11 and 12 m w av.el enTgthshe algorithm s ability to distinguish contrails from other linear features depends on the sensitivity of its tuning parameters. In order to keep the number of false identifications low, the algorithm imposes strict limits on contrail size, linearity and intensity. This paper investigates whether including additional information (i.e. meteorological data) within the CDA may allow for these criteria to be less rigorous, thus increasing the contrail-detection rate, without increasing the false alarm rate.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-8777 , RSPSoc Annual Conference; 8-11 Sept. 2009; Leicester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-27
    Description: Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 35th International Conference On Metallurgical Coatings And Thin Films (ICMCTF 2008); 27 Apr. 2 May 2008; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-27
    Description: The conservation element and solution element (CESE) development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new 4th-order neutrally stable CESE solver of the advection equation Theta u/Theta + alpha Theta u/Theta x = 0. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables u(sup n) (sub j), (u(sub x))(sup n) (sub j) , and (uxz)(sup n) (sub j) (the numerical analogues of u, Theta u/Theta x, and Theta(exp 2)u/Theta x(exp 2), respectively) and four equations per mesh point, the new scheme is referred to as the alpha(3) scheme. As in the case of other similar CESE neutrally stable solvers, the alpha(3) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. These forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove that the alpha(3) scheme must be neutrally stable when it is stable. Moreover it is proved rigorously that all three amplification factors of the alpha(3) scheme are of unit magnitude for all phase angles if |v| 〈= 1/2 (v = alpha delta t/delta x). This theoretical result is consistent with the numerical stability condition |v| 〈= 1/2. Through numerical experiments, it is established that the alpha(3) scheme generally is (i) 4th-order accurate for the mesh variables u(sup n) (sub j) and (ux)(sup n) (sub j); and 2nd-order accurate for (uxx)(sup n) (sub j). However, in some exceptional cases, the scheme can achieve perfect accuracy aside from round-off errors.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2007-4321 , 18th AIAA Computational Fluid Dynamics Conference; 25-28 Ju. 2007; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-27
    Description: The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2007-215049 , TFAWS 07-1012 , E-16260 , Thermal and Fluids Analysis Workshop (TFAWS) 2007; 10-14 Seo, 2007; Warrensville Heights, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-27
    Description: Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 43rd AIAA Aerospace Sciences Meeting and Exhibit; 10-13 Ja. 2005; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...