ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Space Sciences (General)  (741)
  • Chemical Engineering
  • 2005-2009  (743)
  • 1
    Keywords: Biomass conversion ; Biotechnology ; Chemical Engineering ; Chemistry industry ; Industrial Chemistry ; Kent ; Riegel ; biochemical engineering
    Description / Table of Contents: Substantially revising and updating the classic reference in the field, this handbook offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. It provides not only the underlying science and technology for important industry sectors, but also broad coverage of critical supporting topics. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in chapters on Green Engineering and Chemistry (specifically, biomass conversion), Practical Catalysis, and Environmental Measurements; as well as expanded treatment of Safety, chemistry plant security, and Emergency Preparedness. Understanding these factors allows them to be part of the total process and helps achieve optimum results in, for example, process development, review, and modification. Important topics in the energy field, namely nuclear, coal, natural gas, and petroleum, are covered in individual chapters. Other new chapters include energy conversion, energy storage, emerging nanoscience and technology. Updated sections include more material on biomass conversion, as well as three chapters covering biotechnology topics, namely, Industrial Biotechnology, Industrial Enzymes, and Industrial Production of Therapeutic Proteins.
    Pages: Online-Ressource (XIV, 1562 pages)
    ISBN: 9780387278438
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-11-17
    Description: Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, David Yu -- Turberfield, Andrew J -- Yurke, Bernard -- Winfree, Erik -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computation and Neural Systems, California Institute of Technology, MC 136-93, 1200 East California Boulevard, Pasadena, CA91125, USA. dzhang@dna.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chemical Engineering ; *Computers, Molecular ; DNA/*chemistry ; Entropy ; Equipment Design ; Feedback, Physiological ; Mice ; Nanotechnology ; Nucleic Acid Hybridization ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: Cassini-Huygens is a multidisciplinary, international planetary mission consisting of an orbiting spacecraft and a probe. The Huygens probe successfully landed on Titan's surface on January 14, 2005, while the orbiter has performed observations of Saturn, its rings, satellites, and magnetosphere since it entered orbit around Saturn on July 1, 2004. The Cassini mission has been prolific in its scientific discoveries about the Saturn system. In this special section, we present new mission results with a focus on the 'icy satellites,' which we define as all Saturn's moons with the exception of Titan. The results included in this section have come out of the Cassini SOST--Satellites Orbiter Science Team--a multi-instrument and multidiscipline group that works together to better understand the icy satellites and their interactions with Saturn and its rings. Other papers included in this issue present ground-based observations and interior modeling of these icy moons.
    Keywords: Space Sciences (General)
    Type: Icarus (ISSN 0019-1035); Volume 193; No. 2; 305-308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The device and associated analysis methodology summarized in this report were developed for the purpose of estimating the size of discontinuities in the surface of the foam that covers the Space Shuttle External Tank. These surface offsets are thought to be due to subsurface cracks in the foam insulation. The mathematical analysis and procedure described here provide a method to quantity the dimensions of the crack offset in a direction perpendicular to the surface, making use of the projected laser target device (PLTD) tool and a laser line projector. The keys to the construction and use of the PLTD are the following geometrical design requirements: Laser dots are on a square grid: length on a side. Laser beams are perpendicular to projected surface. Beams are parallel out to the distance being projected. The PLTD can be used to (1) calibrate fixed cameras of unknown magnification and orientation (far-field solution); (2) provide equivalent calibration to multiple cameras, previously achieved only by the use of known target points, for example, in 3.D foreign-object debris tracking on a fixed launch platform; (3) compute scaling for conventional 2.D images, and depth of field for 3.D images (near-field solution); and (4) in conjunction with a laser line projector, achieve accurate measurements of surface discontinuity (cracks) in a direction perpendicular to the surface.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 22-23; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected dust angle, as a function of Lunar Module altitude.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 44-45; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 38-39; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A special system was fabricated to properly calibrate the wireless inclinometer, a new device that will measure the Orbiter s hang angle. The wireless inclinometer has a unique design and method of attachment to the Orbiter that will improve the accuracy of the measurements, as well as the safety and ease of the operation. The system properly calibrates the four attached inclinometers, in both the horizontal and vertical axes, without needing to remove any of the component parts. The Wireless Inclinometer Calibration System combines (1) a calibration fixture that emulates the point of attachment to the Orbiter in both the horizontal and vertical axes and the measurement surfaces, (2) an application-specific software program that accepts calibration data such as dates, zero functions, or offsets and tables, and (3) a wireless interface module that enables the wireless inclinometer to communicate with a calibration PC.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 114-115; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 106; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A SALT effort was initiated in late 2005 with seed funding from the Office of Safety and Mission Assurance Human Factors organization. Its objectives included demonstrating human behavior and performance modeling and simulation technologies for launch team analysis, training, and evaluation. The goal of the research is to improve future NASA operations and training. The project employed an iterative approach, with the first iteration focusing on the last 70 minutes of a nominal-case Space Shuttle countdown, the second iteration focusing on aborts and launch commit criteria violations, the third iteration focusing on Ares I-X communications, and the fourth iteration focusing on Ares I-X Firing Room configurations. SALT applied new commercial off-the-shelf technologies from industry and the Department of Defense in the spaceport domain.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 100-101; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is shown.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 116-117; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...