ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (730)
  • Spacecraft Propulsion and Power  (682)
  • Cell & Developmental Biology
  • Deutschland
  • Inorganic Chemistry
  • 2005-2009  (1,429)
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 13-16
    Publication Date: 2009
    Description: Beispiele Ambrosia, Eichenprozessionsspinner KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Phänologie
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 17-20
    Publication Date: 2009
    Description: ausgedehnte Ambrosiaareale auch in der Lausitz und dem Berliner Raum KATASTER-BESCHREIBUNG: Neben Sensibilisierung gegen Ambrosia auch Kreuzreationen bei Sensibilisierung gegen Beifuß möglich KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Phänologie
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009
    Description: einheimische und importierte  vektorassoziierte  Infektionen, Gastrointestinale  Infektionskrankheiten KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Infektionskrankheiten
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 21-23
    Publication Date: 2009
    Description: weltweite Verbreitung der Asiatischen Tigermücke Aedes albopictus innerhalb der letzten zwei Jahrzehnte im Zusammenhang mit Chikungunya-Ausbruch im Sommer 2007 in Italien KATASTER-BESCHREIBUNG: Transportwege der Globalisierung als wesentlicher Faktor neben Klimaänderungen KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Infektionskrankheiten
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 24-28
    Publication Date: 2009
    Description: Gesundheitliche Bewertung ultravioletter Strahlung KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; UV-Strahlung
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.
    Keywords: Earth Resources and Remote Sensing
    Type: To be published in Journal of Geophysical Research/American Geophysical Union
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m(sup 2), 20 W/m(sup 2), 5 mm/day, 0.3 mm/day, and 100 mm, respectively. These results are highly relevant to continental- to global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. Based on the results presented here, we expect that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA's Global Forecast System (GFS).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: An earlier issue presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA s Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit.
    Keywords: Earth Resources and Remote Sensing
    Type: The Earth Observer; Volume 21; Iss. 3; 4-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 29-40, 115-124; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The ascent engine was the last one from the moon, and I want to focus on the idea of redundancy and teams in regard to the engine. By teams, I mean teamwork - not just within Rocketdyne. It was teamwork within Rocketdyne; it was teamwork within Grumman; it was teamwork within NASA. These were all important elements leading to the successful development of the lunar excursion module (LEM) engine. Communication, rapid response, and cooperation were all important. Another aspect that went into the development of the ascent engine was the integration of technology and of lessons learned. We pushed all the above, plus technology and lessons learned, into a program, and that led to a successful result. One of the things that I like to think about - again in retrospect - is how it is very "in" now to have integrated product and process teams. These are buzzwords for teamwork in all program phases. That s where you combine a lot of groups into a single organization to get a job done. The ascent engine program epitomized that kind of integration and focus, and because this was the mid- to late-1960s; this was new ground for Rocketdyne, Grumman, and NASA. Redundancy was really a major hallmark of the Apollo Program. Everything was redundant. Once you got the rocket going, you could even lose one of the big F-1 engines, and it would still make it to orbit. And once the first stage separated from the rest of the vehicle, the second stage could do without an engine and still make a mission. This redundancy was demonstrated when an early Apollo launch shut down a J-2 second-stage engine. Actually, they shut down two J-2 engines on that flight. Even the third stage, with its single J-2 engine, was backed up because the first two stages could toss it into a recoverable orbit. If the third stage didn't work, you were circling the earth, and you had time to recover the command module and crew. Remember how on the Apollo 13 flight, there was sufficient system redundancy even when we lost the service module. That was a magnificent effort. TRW Inc. really ought to be proud of their engine for that. (See Slide 2, Appendix I) We had planned for redundancy; we had landed on the moon. However, weight restrictions in the architecture said, "You can t have redundancy for ascent from the moon. You've got one engine. It s got to work. There is no second chance. If that ascent engine doesn't work, you re stuck there." It would not have looked good for NASA. It wouldn't have looked good for the country. There was a letter written that President Richard Nixon would read if the astronauts got stuck on the moon, expressing how sorry we were and so forth. It was a scary letter, really. The ascent engine was an engine that had to work. (See Slide 3, Appendix I).
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 89-97, 173-180; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: As we went through the program, what we determined, and what we all agreed on, was that the thrust coefficient (Cf) of the nozzle, after you get past a certain point, is really an engineering parameter. It s not a fundamental parameter that is going to be highly variable. Once we knew what the contour of the nozzle was, and once we knew what its characteristic was out to 2:1, we could calculate what the 48:1 thrust coefficient was going to be. In every case that we made a test, the calculation was precise. We weren't looking for a problem out at 48:1. Once we crushed the nozzle and said, "Yeah, we can land on the boulder," and once we had the thermal profile of that columbium nozzle, we did not require a lot of effort there. The real characterization was done in throttling over the 10:1 with the injector and controlling the mixture ratio on that - the whole head-end assembly - out to 2:1. I think everybody at NASA and Grumman agreed that flying like you test is great, particularly if you are using an aircraft engine. But, in this case, the thrust coefficient of the nozzle was not an issue. We had the tandem configuration of the service module, the command module, and the LEM sitting out there, and we were to fire the LEM. On Apollo 5, we were firing the LEM to show how it would work. There was a problem. I can t remember where the problem was, but something caused a problem before that engine had finished its burn. It was not in the engine, but there was some other problem, and NASA made a controlled shutdown. Then, they came to us and asked, "Hey, we re up there. We want to finish this test program. Is it okay if we restart that engine again in space with this tandem configuration?" We said, "As long as it has been more than forty minutes since you shut down, our analysis says that you will be okay in terms of the thermal characteristics of the inside of that chamber." They restarted it and pushed that system around in orbit on Apollo 5. It turned out, that when it came to Apollo 13, we went back into the record, and said, "Hey, we have pushed this system around up there on Apollo 5, and we have also restarted this tandem configuration." The requirements on Apollo 13 were to put it back into play. The spacecraft was out of free return to the earth at the time of the accident. It would not have come back. NASA said, "Okay, we ll use the descent engine to put the spacecraft in a free trajectory; it will go around the moon and be on free trajectory back to Earth." Then, as it came around the far side of the moon, the guys found out that they had an oxygen problem. As you remember, things were getting pretty bad in there. They said, "We ve got to get it back as fast as we can. Is it okay if we re-fire the engine? Now, we re in a free trajectory, so we want to put as much delta-v (or change in velocity) in as we can. Can we re-fire right now?" We said, "Yes, the data says it has been this period of time." We could re-fire the engine, run the rest of the duty cycle up as far as we needed while preserving enough fluids to make the final correction as the spacecraft got near Earth, and restart the engine. It was pretty fortuitous that we could give them those answers.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 75-88, 153-172; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The general configuration of the SPS engine was 20,000 pounds of thrust, with a chamber pressure of 100 psi and specific impulse (Isp) of 314.5. The very large nozzle had an area ratio of 62.5:1 (exit area to throat area). The propellants were nitrogen tetroxide (also known as N2O4 and nitrous oxide) and A-50. A-50 was a hydrazine family fuel. Aerojet developed it for the Titan Missile Program when they went with Titan II, to store it in the launch silos. They wanted the highest performance they could get. N2H4 was just pure hydrazine, which doesn't take low temperature very well. In fact, it freezes about like water. We started adding unsymmetrical-dimethylhydrazine (UDMH) to the hydrazine until such time as it would meet the environmental specifications the Air Force needed for Titan II. It turned out it s roughly a fifty-fifty mix. We still had to be careful with that fuel because the two fluids didn't mix very well chemically. We had to spray the two fluids through some special nozzles to get them to emulsify with each other into a single fluid. If we ever got it too cold or froze it, the hydrazine separated back out. Then, if we tried to run the engine, things could go boom in the night. The inlet pressure was only 165 pounds per square inch absolute (psia), but we needed at least forty psi pressure drop across the injector just to get some kind of stable flow. It was a whole new game for some of us. We didn't have much supply pressure to work with. It had the aluminum injector to keep the weight down. That was a couple feet in diameter, and we didn't have a lot of propellant to cool it. In fact, we had to use both propellants to keep the injector cool. There were twenty-two ring channels in the injector. Specification required 750 seconds duration, or fifty engine restarts during a flight. There were several first flight things we accomplished with the engine. It was the first ablative thrust chamber of any size to fly. (See Slide 6, Appendix G) There were no liners in it. It was just straight ablative material. It took us a while to figure that out. It was a throat-gimbaled engine, and it was the first engine to fly with columbium (also known as niobium, used as an alloying element in steels and superalloys) in the nozzle.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 61-74, 145-152; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Before I go into the history of F-1, I want to discuss the F-1 engine s role in putting man on the moon. The F-1 engine was used in a cluster of five on the first stage, and that was the only power during the first stage. It took the Apollo launch vehicle, which was 363 feet tall and weighed six million pounds, and threw it downrange fifty miles, threw it up to forty miles of altitude, at Mach 7. It took two and one-half minutes to do that and, in the process, burned four and one-half million pounds of propellant, a pretty sizable task. (See Slide 2, Appendix C) My history goes back to the same year I started working at Rocketdyne. That s where the F-1 had its beginning, back early in 1957. In 1957, there was no space program. Rocketdyne was busy working overtime and extra days designing, developing, and producing rocket engines for weapons of mass destruction, not for scientific reasons. The Air Force contracted Rocketdyne to study how to make a rocket engine that had a million pounds of thrust. The highest thing going at the time had 150,000 pounds of thrust. Rocketdyne s thought was the new engine might be needed for a ballistic missile, not that it was going to go on a moon shot.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 17-28, 105-113; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The 70-pound SE-7 engine is very similar with its two valves, ablative material, a silicon carbide liner, a silicon carbide throat, and overall configuration. There were different wraps. One had a ninety-degree ablative material orientation. That is important because it caused problems with the SE-8, but not for this application. It was not overly stressed. It was a validation of the off-the-shelf application approach. There were two SE-7 engines located on the stage near the bottom. They had their own propellant tanks. That was the application. All it did was give a little bit of gravity by firing to push the propellants to the bottom of the tanks for start or restart. It was not a particularly complicated setup. (See Slides 6 and 7, Appendix F) What had we learned? This was a proven engine in a space environment. There weren't any development issues. Off-the-shelf seemed to work. There were no operational issues, which made the SE-7 very cost-effective. Besides NASA, the customer for this application was the Douglas Aircraft Company. Douglas decided the off-the-shelf idea was cost-effective. With the Gemini Program, the company was McDonnell Aircraft Corporation, which was part of the reason the off-the-shelf idea was applied to the Apollo. (See Slide 8, Appendix F) However, here are some differences between Apollo and Gemini vehicles. For one thing, the Apollo vehicle was really moving at high speed when it re-entered the atmosphere. Instead of a mere 17,000 miles per hour, it was going 24,000 miles per hour. That meant the heat load was four times as high on the Apollo vehicle as on the Gemini craft. Things were vibrating a little more. We had two redundant systems. Apollo was redundant where it could be as much as possible. That was really a keystone or maybe an anchor point for Apollo. We decided to pursue the off-the-shelf approach. However, the prime contractor was a different entity - the North American Space Division. They thought they ought to tune up this off-the-shelf setup. It was a similar off-the-shelf application, but at a higher speed. They wanted to improve it. What they wanted to improve was the material performance of silicon carbide. They were uncomfortable with the cracks they were seeing. They were uncomfortable with the cracks in the throat, and feeling that the environment was a little tougher, that maybe it was going to rattle, perhaps something would fall out, and they would have a problem. They wanted to eliminate the ceramic liner, and they wanted a different throat material. (See Slides 9 and 10, Appendix F) The Rocketdyne solutions were to replace silicon carbide material with a more forgiving ceramic material. Also, due to the multiple locations within the vehicle, the shape of the nozzles varied. Some nozzles were long, and some nozzles were short. We came up with a single engine design with variable nozzle extensions and configurations to fit particular vehicle locations. (See Slides 10 and 11, Appendix F)
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 53-60, 135-143; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: All the engines were both qualification and acceptance tested at Marquardt s facilities. After we won the Apollo Program contract, we went off and built two vacuum test facilities, which simulated altitude continuous firing for as long as we wanted to run an engine. They would run days and days with the same capability we had on steam ejection. We did all of the testing in both for the qualification and the acceptance test. One of them was a large ball, which was an eighteen-foot diameter sphere, evacuated again with a big steam ejector system that could be used for system testing; that s where we did the Lunar Excursion Module testing. We put the whole cluster in there and tested the entire cluster at the simulated altitude conditions. The lowest altitude we tested at - typically an acceptance test - was 105,000 feet simulated altitude. The big ball - because people were interested in what they called goop formation, which is an unburned hydrazine product migrating to cold surfaces on different parts of spacecraft - was built to address those kinds of issues. We ran long-life tests in a simulated space environment with the entire inside of the test cell around the test article, liquid nitrogen cooled, so it could act as getter for any of the exhaust products. That particular facility could pull down to about 350,000 feet (atmosphere) equivalent altitude, which was pushing pretty close to the thermodynamic triple point of the MMH. It was a good test facility. Those facilities are no longer there. When the guys at Marquardt sold the company to what eventually became part of Aerojet, all those test facilities were cut off at the roots. I think they have a movie studio there at this point. That part of it is truly not recoverable, but it did some excellent high-altitude, space-equivalent testing at the time. Surprisingly, we had very few problems while testing in the San Fernando Valley. In the early 1960s, nobody had ever seen dinitrogen tetroxide (N2O4), so that wasn't too big a deal. We really did only make small, red clouds. In all the hundreds of thousands of tests and probably well over one million firings that I was around that place for, in all that thirty-something years, we had a total of one serious injury associated with rocket engine testing and propellants. Because we were trying to figure out what propellants would really be good, we tried all of the fun stuff like the carbon tetrafluoride, chlorine pentafluoride, and pure fluorine. The materials knowledge wasn't all that great at the time. On one test, the fluorine we had didn't react well with the copper they were using for tubing, and it managed to cause another unscheduled disassembly of the facility. It was very serious. It's like one of those Korean War stories. The technician happened to be walking past the test facility when it decided to blow itself up. A piece of copper tubing pierced one cheek and came out the other. That was the only serious accident in all of the engines handled in all those years. Now, we did have a problem with the EPA later because they figured out what the brown clouds were about. We built a whole bunch of exhaust mitigation scrubbers to take care of engine testing in the daytime. In general, we operated the big shuttle (RCS) engine, the 870- pounder at nominal conditions; they scrubbed the effluents pretty well. If you operated that same 870-pound force engine at a level where you get a lot of excess oxidizer, yeah, there s a brown cloud. But, you know, it doesn't show up well in the dark. They did do some of that. But, that s gone; it was addressed one way or another. RELEASED -
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 41-52, 125-134; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-05
    Description: Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-02
    Description: The amount of solar radiation reflected back to space or reaching the Earth's surface is primarily governed by the amount of cloud cover and, to a much lesser extent, by Rayleigh scatteri ng, aerosols, and various absorbing gases (e.g., O3, NO2, H2O). A useful measure of the effect of cloud plus aerosol cover is given by the amount that the 331 run Lambert Equivalent Reflectivity (LER) ofa scene exceeds the surfuce reflectivity for snow/ice-free scenes after Rayleigh scattering has been removed. Twenty-eight years of reflectivity data are available by overlapping data from several satellites: N7 (Nimbus 7, TOMS; 331 nm) from 1979 to 1992, SBUV-2 series (Solar Backscatter Ultraviolet, NOAA; 331 nm) 1985 to 2007, EP (Earth-Probe, TOMS; 331 nm) 1997 to 2006, SW (SeaWiFS; 412 nm) 1998 to 2006, and OMI (Ozone Measuring Instrument; 331 nm) 2004-2007. Only N7 and SW have a sufficiently long data record, Sun-synchronous orbits, and are adequately calibrated for long-term reflectivity trend estimation. Reflectivity data derived from these instruments and the SBUV-2 series are compared during the overlapping years. Key issues in determining long-term reflecti vity changes that have occurred during the N7 and SW operating periods are discussed. The largest reflectivity changes in the 412 nm SW LER and 331 nm EP LER are found to occur near the equator and are associated with a large EI Nino-Southern Oscillation event. Most other changes that have occurred are regional, such as the apparent cloud decrease over northern Europe since 1998. The fractional occurrence (fraction of days) of high reflectivity values over Hudson Bay, Canada (snow/ice and clouds) appears to have decreased when comparing reflectivity data from 1980 to 1992 to 1997-2006, suggesting shorter duration of ice in Hudson Bay since 1980.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This article presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA's Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit. The second half of the story is presented in another issue of this journal
    Keywords: Earth Resources and Remote Sensing
    Type: The Earth Observer; Volume 21; Issue 2; 13-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Volume 113; Issue 10; 2130-2141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to map areas of snow that are actively melting.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: The Arctic is home to many indigenous peoples, including those who depend on reindeer herding for their livelihood, in one of the harshest environments in the world. For the largely nomadic peoples, reindeer not only form a substantial part of the Arctic food base and economy, but they are also culturally important, shaping their way of life, mythologies, festivals and ceremonies. Reindeer pastoralism or husbandry has been practiced by numerous peoples all across Eurasia for thousands of years and involves moving herds of reindeer, which are very docile animals, from pasture to pasture depending on the season. Thus, herders must adapt on a daily basis to find optimal conditions for their herds according to the constantly changing conditions. Climate change and variability plus rapid development are increasingly creating major changes in the physical environment, ecology, and cultures of these indigenous reindeer herder communities in the North, and climate changes are occurring significantly faster in the Arctic than the rest of the globe, with correspondingly dramatic impacts (Oskal, 2008). In response to these changes, Eurasian reindeer herders have created the EALAT project, a comprehensive new initiative to study these impacts and to develop local adaptation strategies based upon their traditional knowledge of the land and its uses - in targeted partnership with the science and remote sensing community - involving extensive collaborations and coproduction of knowledge to minimize the impacts of the various changes. This chapter provides background on climate and development challenges to reindeer husbandry across the Arctic and an overview of the EALAT initiative, with an emphasis on indigenous knowledge, remote sensing, Geographic Information Systems (GIS), and other scientific data to 'co-produce' datasets for use by herders for improved decision-making and herd management. It also provides a description of the EALAT monitoring data integration and sharing system and portal being developed for reindeer pastoralism. In addition, the chapter provides some preliminary results from the EALAT Project, including some early remote sensing research results.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Volume 113; Supplement 1; S110-S122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing Environment (ISSN 0034-4257); Volume 113; Issue 11; 2366-2379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-05
    Description: Several recent studies have found that the brightness of clear sky systematically increases near clouds. Understanding this increase is important both for a correct interpretation of observations and for improving our knowledge of aerosol-cloud interactions. However, while the studies suggested several processes to explain the increase, the significance of each process is yet to be determined. This study examines one of the suggested processes three-dimensional (3-D) radiative interactions between clouds and their surroundings by analyzing a large dataset of MODIS (Moderate Resolution Imaging Spectroradiometer) observations over the Northeast Atlantic Ocean. The results indicate that 3-D effects are responsible for a large portion of the observed increase, which extends to about 15 km away from clouds and is stronger (i) at shorter wavelengths (ii) near optically thicker clouds and (iii) near illuminated cloud sides. This implies that it is important to account for 3-D radiative effects in the interpretation of solar reflectance measurements over clear regions in the vicinity of clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-05
    Description: In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.
    Keywords: Earth Resources and Remote Sensing
    Type: Geoscience and Remote Sensing (ISSN 0196-2892); Volume 47; Issue 12; 4095-4114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-27
    Description: We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: NASA's new Ares Launch Vehicle will require twelve thrusters to provide roll control of the vehicle during the first stage firing. All twelve roll control thrusters will be located at the inter-stage segment that separates the solid rocket booster first stage from the second stage. NASA selected a mono propellant hydrazine solution and as a result awarded Aerojet-General a contract in 2007 for an advanced development program for an MR-80- series 625 Ibf vacuum thrust monopropellant hydrazine thruster. This thruster has heritage dating back to the 1976 Viking Landers and most recently for the 2011 Mars Science Laboratory. Prior to the Ares application, the MR-80-series thrusters had been equipped with throttle valves and not typically operated in pulse mode. The primary objective of the advanced development program was to increase the technology readiness level and retire major technical risks for the future flight qualification test program. Aerojet built on their heritage MR-80 rocket engine designs to achieve the design and performance requirements. Significant improvements to cost and lead-time were achieved by applying Design for Manufacturing and Assembly (DFMA) principles. AerojetGeneral has completed Preliminary and Critical Design Reviews, followed by two successful rocket engine development test programs. The test programs included qualification random vibration and firing lite that significantly exceed the flight qualification requirements. This paper discusses the advanced development program and the demonstrated capability of the MR-80C engine. Y;
    Keywords: Spacecraft Propulsion and Power
    Type: M10-0087 , 46th AIAA Joint Propulsion Conference; Jul 25, 2010 - Jul 28, 2010; Nashville, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: GRACE is unique among remote sensing systems in its ability to "see" below the first few centimeters of the land surface, and it has provided the first global observations of total terrestrial water storage variations. Now that we have more than seven years of GRACE measurements, it is tempting to look for trends in the data. Auxiliary information is almost always required in order to arrive at the correct diagnosis of an apparent trend. Here we will present a map of GRACE derived terrestrial water storage tendencies since 2002 and attempt to explain which are likely to continue due to climatic or human pressures, and which are short-term expressions of natural interannual variability.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 American Geophysical Union Conference; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific examples will be cited, including CloudSat's relocation (to accommodate a new viewing angle for the CALIPSO satellite), Glory's replan to move closer to PARASOL, and OCO's long term plans to minimize on-orbit operations costs while maintaining safety. In all cases, safety is ensured, science returns are enhanced, and operational flexibility is retained to the maximum extent possible.
    Keywords: Earth Resources and Remote Sensing
    Type: IAA Symposium on Small Satellites for Earth Observation; May 04, 2009 - May 08, 2009; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is generally performed within two arenas: (1) Production testing for certification and acceptance, and (2) Developmental testing for prototype or experimental purposes. The customer base consists of NASA programs, DOD programs, and commercial programs. Resources in place to perform on-site testing include both civil servants and contractor personnel, hardware and software including data acquisition and control, and 6 test stands with a total of 14 test positions/cells. For several business reasons there is the need to augment understanding of the test costs for all the various types of test campaigns. Historical propulsion test data was evaluated and analyzed in many different ways with the intent to find any correlation or statistics that could help produce more reliable and accurate cost estimates and projections. The analytical efforts included timeline trends, statistical curve fitting, average cost per test, cost per test second, test cost timeline, and test cost envelopes. Further, the analytical effort includes examining the test cost from the perspective of thrust level and test article characteristics. Some of the analytical approaches did not produce evidence strong enough for further analysis. Some other analytical approaches yield promising results and are candidates for further development and focused study. Information was organized for into its elements: a Project Profile, Test Cost Timeline, and Cost Envelope. The Project Profile is a snap shot of the project life cycle on a timeline fashion, which includes various statistical analyses. The Test Cost Timeline shows the cumulative average test cost, for each project, at each month where there was test activity. The Test Cost Envelope shows a range of cost for a given number of test(s). The supporting information upon which this study was performed came from diverse sources and thus it was necessary to build several intermediate databases in order to understand, validate, and manipulate data. These intermediate databases (validated historical account of schedule, test activity, and cost) by themselves are of great value and utility. For example, for the Project Profile, we were able to merged schedule, cost, and test activity. This kind of historical account conveys important information about sequence of events, lead time, and opportunities for improvement in future propulsion test projects. The Product Requirement Document (PRD) file is a collection of data extracted from each project PRD (technical characteristics, test requirements, and projection of cost, schedule, and test activity). This information could help expedite the development of future PRD (or equivalent document) on similar projects, and could also, when compared to the actual results, help improve projections around cost and schedule. Also, this file can be sorted by the parameter of interest to perform a visual review of potential common themes or trends. The process of searching, collecting, and validating propulsion test data encountered a lot of difficulties which then led to a set of recommendations for improvement in order to facilitate future data gathering and analysis.
    Keywords: Spacecraft Propulsion and Power
    Type: SSTI-8080-0028 , AIAA Space 2009 Conference and Exposition; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: Characterizing soil moisture (theta) variability is important for inferring high-resolution information from coarse estimates provided by remote sensors. In this study, we analyze the spatial variability and scale invariance of high-resolution theta estimates collected in two contrasting semiarid areas, Arizona (AZ) and Sonora (SON), during the Soil Moisture Experiment - North American Monsoon in 2004 (SMEX04- NAME). Results reveal that as the mean theta condition (〈theta〉) becomes drier, the spatial standard deviation becomes smaller in both domains. The coefficient of variation of theta decreases with 〈theta〉 in SON, but does not display a clear tendency with 〈theta〉 in AZ. We also found the presence of scale invariance and multifractality in the range of support scales from 51.2 km to 0.8 km for all soil moisture fields in the two regions. The multifractal properties of theta are clearly linked to 〈theta〉 in SON, while the relation is affected by more dispersion in AZ. We argue this is due to differences in the dynamic (rainfall) and static (vegetation) controls on theta in the two domains.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Arid Environments; 74; 572-578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally displaces the air. Using the conservation of mass, momentum, and energy equations, as well as the VOF equations, one can predict the behavior of the sloshing fluid and calculate the forces, pressure gradients, and velocity field for the entire liquid as a function of time.
    Keywords: Spacecraft Propulsion and Power
    Type: KSC-2008-292 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.
    Keywords: Spacecraft Propulsion and Power
    Type: Paper 203603 , E-18237 , 3rd Topical Meeting on Nuclear and Emerging Technologies for Space 2009 (NETS 2009); Jun 14, 2009 - Jun 19, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated valve concept, as well as a pressure control module, which will regulate pressure from the propellant tank. Cross-platform component standardization and simplification are being investigated through the Standard Architecture task to reduce first user costs for implementing electric propulsion systems. Progress on current hardware development, recent test activities and future plans are discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: IEEEAC Paper 1628 , E-18261 , 2009 IEEE Aerospace Conference; Mar 07, 2009 - Mar 11, 2009; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with approximately 50 kW(sub e) of electrical power in Mars orbit for crew life support and spacecraft subsystem needs. Vehicle assembly involves autonomous Earth orbit rendezvous and docking between the propulsion stages, in-line propellant tanks and payload elements. Nine Ares-V launches -- five for the two cargo MTVs and four for the crewed MTV -- deliver the key components for the three MTVs. Details on mission, payload, engine and vehicle characteristics and requirements are presented and the results of key trade studies are discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: Paper 203599 , E-18236 , Nuclear and Emerging Technologies for Space 2009; Jun 14, 2009 - Jun 19, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Surface mining and reclamation is the dominant driver of land cover land use change (LCLUC) in the Central Appalachian Mountain region of the Eastern U.S. Accurate quantification of the extent of mining activities is important for assessing how this LCLUC affects ecosystem services such as aesthetics, biodiversity, and mitigation of flooding.We used Landsat imagery from 1976, 1987, 1999 and 2006 to map the extent of surface mines and mine reclamation for eight large watersheds in the Central Appalachian region of West Virginia, Maryland and Pennsylvania. We employed standard image processing techniques in conjunction with a temporal decision tree and GIS maps of mine permits and wetlands to map active and reclaimed mines and track changes through time. For the entire study area, active surface mine extent was highest in 1976, prior to implementation of the Surface Mine Control and Reclamation Act in 1977, with 1.76% of the study area in active mines, declining to 0.44% in 2006. The most extensively mined watershed, Georges Creek in Maryland, was 5.45% active mines in 1976, declining to 1.83% in 2006. For the entire study area, the area of reclaimed mines increased from 1.35% to 4.99% from 1976 to 2006, and from 4.71% to 15.42% in Georges Creek. Land cover conversion to mines and then reclaimed mines after 1976 was almost exclusively from forest. Accuracy levels for mined and reclaimed cover was above 85% for all time periods, and was generally above 80% for mapping active and reclaimed mines separately, especially for the later time periods in which good accuracy assessment data were available. Among other implications, the mapped patterns of LCLUC are likely to significantly affect watershed hydrology, as mined and reclaimed areas have lower infiltration capacity and thus more rapid runoff than unmined forest watersheds, leading to greater potential for extreme flooding during heavy rainfall events.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; 113; 1; 62-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 IEEE International Geoscience and Remote Sensing Symposium: Earth Observation - Origins to Applications; Jul 12, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN2267 , Biogeosciences; 6; 2369-2381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: My project was two-fold, with both parts involving the J-2X Upper Stage engine (which will be used on both the Ares I and V). Mainly, I am responsible for using a program called Iris to create visual represen tations of the rocket engine's telemetry data. Also, my project includes the application of my newly acquired Pro Engineer skills in develo ping a 3D model of the engine's nozzle.
    Keywords: Spacecraft Propulsion and Power
    Type: KSC-2009-223
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Pulsed laser signals and a time gated receiver are used to isolate the laser echo signals from the surface, to reject laser photons scattered in the atmosphere, and measure the surface height and scattering profile in the path. We have recently completed a second design study for the space instrument. For the study, we selected a nominal sun-synchronous orbit with an altitude of 400 km and equator crossing time of 1:30 pm, and a receiver telescope with 1.5 m diameter.
    Keywords: Earth Resources and Remote Sensing
    Type: 3rd International Workshop on Active CO2 DIAL Remote Sensing; Oct 13, 2009 - Oct 15, 2009; Hampton, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: A profiling airborne LiDAR is used to estimate the forest resources of Hedmark County, Norway, a 27390 square kilometer area in southeastern Norway on the Swedish border. One hundred five profiling flight lines totaling 9166 km were flown over the entire county; east-west. The lines, spaced 3 km apart north-south, duplicate the systematic pattern of the Norwegian Forest Inventory (NFI) ground plot arrangement, enabling the profiler to transit 1290 circular, 250 square meter fixed-area NFI ground plots while collecting the systematic LiDAR sample. Seven hundred sixty-three plots of the 1290 plots were overflown within 17.8 m of plot center. Laser measurements of canopy height and crown density are extracted along fixed-length, 17.8 m segments closest to the center of the ground plot and related to basal area, timber volume and above- and belowground dry biomass. Linear, nonstratified equations that estimate ground-measured total aboveground dry biomass report an R(sup 2) = 0.63, with an regression RMSE = 35.2 t/ha. Nonstratified model results for the other biomass components, volume, and basal area are similar, with R(sup 2) values for all models ranging from 0.58 (belowground biomass, RMSE = 8.6 t/ha) to 0.63. Consistently, the most useful single profiling LiDAR variable is quadratic mean canopy height, h (sup bar)(sub qa). Two-variable models typically include h (sup bar)(sub qa) or mean canopy height, h(sup bar)(sub a), with a canopy density or a canopy height standard deviation measure. Stratification by productivity class did not improve the nonstratified models, nor did stratification by pine/spruce/hardwood. County-wide profiling LiDAR estimates are reported, by land cover type, and compared to NFI estimates.
    Keywords: Earth Resources and Remote Sensing
    Type: IUFRO Division Extending Forest Inventory and Monitoring over Space and Time; May 19, 2009 - May 22, 2009; Quebec City; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Models are foundational for estimating states of the earth's climate system, both as tools to extrapolate information in time and space, and as observation 'operators' used to relate what is analyzed and predicted to what is observed. Expanding the simulation approach further, observing system simulation experiments (OSSEs) are designed to mimic the complete process of analyzing the climate state by replacing real observations with entirely simulated ones determined from a model-based depiction of nature. OSSEs provide a framework to 'fly' simulated satellite instruments through a synthetic atmosphere and investigate the trade-spaces of measurements for various satellite configurations and sampling strategies, and assess their measurement impact on modeling and forecasting capabilities. Such a tool is a crucial but as yet unfulfilled need for future mission selection and design. The components of a state-of-the-art OSSE system are being assembled at the Global Modeling and Assimilation Office (GMAO, Code 610.1) at NASA/GSFC, leveraging on the GMAO's existing modeling and data assimilation infrastructure for numerical weather prediction (NWP). The OSSE framework is based on the GMAO's Goddard Earth Observing System atmospheric general circulation model, version 5 (GEOS-5) and the Gridpoint Statistical Interpolation (GSI) observational analysis scheme, combined with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model developed by the Atmospheric Chemistry and Dynamics Branch (Code 613.3). This system is an evolving, key component of Goddard's planned development of an Integrated Earth System Analysis (IESA) capability, which will bring together into a single, fully interactive system Goddard's modeling and assimilation efforts in atmosphere, ocean and chemistry and aerosols to provide a comprehensive analysis and prediction system for weather and climate In addition to providing a state-of-the-art capability for assimilating current observation types, GEOS-5, and the future IESA, provide the capability to identify the need for, and assess the potential impact of, future observing systems under consideration for improving weather and climate prediction.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: The AM Short Course on The Modern Era Retrospective-analysis for Research and Applications (MERRA) data and accessibility will be held on January 11, 2009 preceding the 89th Annual Meeting in Phoenix, Arizona. Preliminary programs, registration, hotel, and general information will be posted on the AMS Web site in mid-September 2008. Retrospective-analyses (or reanalyses) have been established as an important tool in weather and climate research over the last decade. As computer power increases, the data assimilation and modeling systems improve and become more advanced, the input data quality increases and so reanalyses become more reliable. In 2008, NASA Global Modeling and Assimilation Office began producing a new reanalysis called the Modem Era Retrospective-analysis for Research and Applications (MERRA). The initial data from the reanalysis has been made available to the community and should be complete through 30 years (1979-present) by Fall of 2009. MERRA has taken advantage of the advancement of computing resources to provide users more data than previously available. The native spatial resolution is nominally 1/2 degrees and the surface two dimensional data are one hourly frequency. In addition to the meteorological analysis data, complete mass, energy and momentum budget data and also stratospheric data are provided. The eventual data holdings will exceed 150Tb. In order to facilitate user accessibility to the data, it will be stored in online hard drives (not tape storage) and available through several portals. Subsetting tools will also be available to allow users to tailor their data requests. The goals of this short course are to provide hands on users of reanalyses instruction on MERRA systems and also interactive experience with the online data and access tools. The course is intended for students and research scientists who will be actively interested in accessing and applying MERRA data in their weather, climate or applications work. The course has three parts. There will be an overview of the MERRA system, the validation of the system and the native data format. Second, Instructors will provide examples of weather and climate data analysis using various software packages (primarily GrADS) as well as the online access tools for subsetting and download, as well as visualization (e.g. Giovanni and Google Earth). This will also include examples on changing the data format to fit user's preferences and also to regrid the data for comparisons to other reanalyses and observational data. Lastly, there will he time set aside for participants to have hands on access to the data and software while interacting with the instructors and other developers. The course convener is Dr. Michael Bosilovich, NASA GSFC Global Modeling and Assimilation Office (GMAO). He will be joined by several GMAO, Goddard Earth Science Data and information Services Center (GES DISC) and Software Integration and Visualization Office (SIVO) staff.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing data and products to support these federally funded efforts on multiple fronts. Landsat and ASTER data is being analyzed to assess changes in barrier island land cover over the last 35 years. ASTER, SRTM, and EAARL terrain products and other NASA airborne imagery are being applied in assessing changes in barrier island geomorphology and geospatial extent. MODIS data is being examined as a tool for sediment transport modeling by supplying geospatial data that quantifies in-water sediment concentrations. MODIS satellite data is being assessed for monitoring changes in the spatial extent of individual barrier islands. Results thus far indicate that NASA data products are useful in assessing barrier island conditions and changes. This value is enhanced with additional historical geospatial data, commercial high resolution satellite data, other non-NASA aerial imagery, and field survey data. The project s products are relevant to the Gulf of Mexico Alliance priority issues, including coastal habitat conservation, restoration and coastal community resilience. Such products will be available to state and federal agencies involved with coastal restoration. Potential end-users of these products include the National Park Service, U.S. Geological Survey, U.S. Army Corps of Engineers, Environmental Protection Agency, Mississippi Department of Environmental Quality, and Mississippi Department of Marine Resources.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0182 , OCEANS''09 MTS/IEEE Conference and Exhibition; Oct 26, 2009 - Oct 29, 2009; Biloxi, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-26
    Description: The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215700 , L-19388 , LF99-5605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: Members of the Space Shuttle Main Engine (SSME) team review some of their memories of working on the turbines for the SSME. Included are views of the shuttle launch, landing and testing of the SSME.
    Keywords: Spacecraft Propulsion and Power
    Type: M11-0770
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-12
    Description: The videos (Powerhead and Ducts, Test and Flight Operations) review the Space Shuttle Main Engine (SSME) program from Pratt and Whitney Rocketdyne. They include highlights from the engine's development and lifecycle through the engine testing to the deployment in the space shuttle.
    Keywords: Spacecraft Propulsion and Power
    Type: M10-0004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This report examines the physics governing certain aspects of plasma propellant flow through a magnetic nozzle, specifically the integrity of the interface between the plasma and the nozzle s magnetic field. The injection of 100s of eV plasma into a magnetic flux nozzle that converts thermal energy into directed thrust is fundamental to enabling 10 000s of seconds specific impulse and 10s of kW/kg specific power piloted interplanetary propulsion. An expression for the initial thickness of the interface is derived and found to be approx.10(exp -2) m. An algorithm is reviewed and applied to compare classical resistivity to gradient-driven microturbulent (anomalous) resistivity, in terms of the spatial rate and time integral of resistive interface broadening, which can then be related to the geometry of the nozzle. An algorithm characterizing plasma temperature, density, and velocity dependencies is derived and found to be comparable to classical resistivity at local plasma temperatures of approx. 200 eV. Macroscopic flute-mode instabilities in regions of "adverse magnetic curvature" are discussed; a growth rate formula is derived and found to be one to two e-foldings of the most unstable Rayleigh-Taylor (RT) mode. After establishing the necessity of incorporating the Hall effect into Ohm s law (allowing full Hall current to flow and concomitant plasma rotation), a critical nozzle length expression is derived in which the interface thickness is limited to about 1 ion gyroradius.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TP-2009-213439 , E-14974
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-12
    Description: 100 pound thrust liquid Oxygen-Methane thruster sized for RCS (Reaction Control System) applications. Innovative Design Characteristics include: a) Simple compact design with minimal part count; b) Gaseous or Liquid propellant operation; c) Affordable and Reusable; d) Greater flexibility than existing systems; e) Part of NASA'S study of "Green Propellants." Hot-fire testing validated performance and functionality of thruster. Thruster's dependence on mixture ratio has been evaluated. Data has been used to calculate performance parameters such as thrust and Isp. Data has been compared with previous test results to verify reliability and repeatability. Thruster was found to have an Isp of 131 s and 82 lbf thrust at a mixture ratio of 1.62.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0716
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-12
    Description: Develop and test a rocket engine that operates on environmentally friendly propellants; Liquid Oxygen (LOX) and Liquid Methane (LCH4). Due to modifications the rocket engine designed last summer (KJ_REX) is not the same rocket thruster tested this summer, but very similar. The new modified rocket thruster was built for NASA by Orion Propulsion Inc. (OPI), Huntsville, AL.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0715
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Ares I, NASA s new solid rocket based crew launch vehicle, is a two stage in line rocket that has made its waytothe forefront of NASA s endeavors. The Ares I s Upper Stage (US) will be propelled by a J-2X engine which is fueled by liquid hydrogen and liquid oxygen. The J-2X is a variation based on two of its predecessor s, the J-2 and J-2S engines. ET50 is providing the design support for hardware required to run tests on the J-2X Gas Generator (GG) that increases the delivery pressure of the supplied combustion fuels that the engine burns. The test area will be running a series of tests using different lengths and curved segments of pipe and different sized nozzles to determine the configuration that best satisfies the thrust, heat, and stability requirements for the engine. I have had to research the configurations that are being tested and gain an understanding of the purpose of the tests. I then had to research the parts that would be used in the test configurations. I was taken to see parts similar to the ones used in the test configurations and was allowed to review drawings and dimensions used for those parts. My job over this summer has been to use the knowledge I have gained to design, model, and create drawings for the un-fabricated parts that are necessary for the J-2X Workhorse Gas Generator Phase IIcTest.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0695
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-12
    Description: Which assumption of combustion chemistry - frozen or equilibrium - should be used in the prediction of liquid rocket engine performance calculations? Can a correlation be developed for this? A literature search using the LaSSe tool, an online repository of old rocket data and reports, was completed. Test results of NTO/Aerozine-50 and Lox/LH2 subscale and full-scale injector and combustion chamber test results were found and studied for this task. NASA code, Chemical Equilibrium with Applications (CEA) was used to predict engine performance using both chemistry assumptions, defined here. Frozen- composition remains frozen during expansion through the nozzle. Equilibrium- instantaneous chemical equilibrium during nozzle expansion. Chamber parameters were varied to understand what dimensions drive chamber C* and Isp. Contraction Ratio is the ratio of the nozzle throat area to the area of the chamber. L is the length of the chamber. Characteristic chamber length, L*, is the length that the chamber would be if it were a straight tube and had no converging nozzle. Goal: Develop a qualitative and quantitative correlation for performance parameters - Specific Impulse (Isp) and Characteristic Velocity (C*) - as a function of one or more chamber dimensions - Contraction Ratio (CR), Chamber Length (L ) and/or Characteristic Chamber Length (L*). Determine if chamber dimensions can be correlated to frozen or equilibrium chemistry.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0679
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: Based on the Apollo-era J-2 that powered the second and third stages of the Saturn V, the current J-2X is the liquid hydrogen and oxygen high-altitude rocket engine in development for both the Ares I Upper Stage and Ares V Earth Departure Stage. During my summer 2009 internship, J-2X was at a stage in its design maturity where verification testing needed to be considered for the benefit of adequate test facility preparation. My task was to focus on gimbal requirements and gimbal related hot-fire test plans. Facility capabilities were also of interest, specifically for hot-fire testing slated to occur at test stands A-1, A-2, and A-3 at Stennis Space Center(SSC) in Bay St. Louis, Mississippi. Gimbal requirements and stage interface conditions were investigated by applying a top-to-bottom systems engineering approach, which involved system level requirements, engine level requirements from both government and engine contractor perspectives, component level requirements, and the J-2X to Upper Stage and Earth Departure Stage interface control documents. Previous hydrogen and oxygen liquid rocket engine gimbal verification methods were researched for a glimpse at lessons learned. Discussion among the J-2X community affected by gimballing was organized to obtain input relative to proper verification of their respective component. Implementing suggestions such as gimbal pattern, angulated dwell time, altitude testing options, power level, and feed line orientation, I was able to match tests to test stands in the A Complex at SSC. Potential test capability gaps and risks were identified and pursued. The culmination of all these efforts was to coordinate with SSC to define additional facility requirements for both the A-3 altitude test stand that is currently under construction and the A-1 sea level test stand which is being renovated
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0680
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Electrodynamic tether (EDT) thrusters work by virtue of the force a magnetic field exerts on a wire carrying an electrical current. The force, which acts on any charged particle moving through a magnetic field (including the electrons moving in a current-carrying wire), were concisely expressed by Lorentz in 1895 in an equation that now bears his name. The force acts in a direction perpendicular to both the direction of current flow and the magnetic field vector. Electric motors make use of this force: a wire loop in a magnetic field is made to rotate by the torque the Lorentz Force exerts on it due to an alternating current in the loop times so as to keep the torque acting in the same sense. The motion of the loop is transmitted to a shaft, thus providing work. Although the working principle of EDT thrusters is not new, its application to space transportation may be significant. In essence, an EDT thruster is just a clever way of getting an electrical current to flow in a long orbiting wire (the tether) so that the Earth s magnetic field will accelerate the wire and, consequently the payload attached to the wire. The direction of current flow in the tether, either toward or away from the Earth along the local vertical, determines whether the magnetic force will raise or lower the orbit. The bias voltage of a vertically deployed metal tether, which results just from its orbital motion (assumed eastward) through Earth s magnetic field, is positive with respect to the ambient plasma at the top and negative at the bottom. This polarization is due to the action of the Lorentz force on the electrons in the tether. Thus, the natural current flow is the result of negative electrons being attracted to the upper end and then returned to the plasma at the lower end. The magnetic force in this case has a component opposite to the direction of motion, and thus leads to a lowering of the orbit and eventually to re-entry. In this generator mode of operation the Lorentz Force serves both to drive the current and then to act on the current to decelerate the system. One of the most important features of tether thrusters is that they use renewable energy sources to drive the electrical current flow in either the orbit-raising or orbit-lowering modes. Sources inherent to Earth orbit are used. To raise the orbit, sunlight can be converted to the electrical energy required to drive the tether current. To lower the orbit, the orbital energy itself (supplied by the Earth-to-orbit launcher when it raises the system into orbit) is the energy source of the tether current via the action of the Lorentz Force. Electrodynamic tethers can be directly applied to a wide spectrum of uses in space. As a propulsion system, they include satellite de-orbit, transfer of a satellite from one orbit to another, altitude maintenance for large spacecraft such as the International Space Station, and since it works wherever there is a magnetic field and an ionosphere planetary exploration missions. An electrodynamic tether upper stage could be used as an Orbit Transfer Vehicle (OTV) to move payloads within low earth orbit. The OTV would rendezvous with the payload and launch vehicle, grapple the payload and maneuver it to a new orbital altitude or inclination without the use of boost propellant. The tug could then lower its orbit to rendezvous with the next payload and repeat the process. Conceivably, such a system could perform several orbital maneuvering assignments without resupply, making it relatively inexpensive to operate.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0669
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-12
    Description: Many significant advances have occurred during the last two decades in remote sensing instrumentation, computation, storage, and communication technology. A series of Earth observing satellites have been launched by U.S. and international agencies and have been operating and collecting global data on a regular basis. These advances have created a data rich environment for scientific research and applications. NASA s Earth Observing System (EOS) Data and Information System (EOSDIS) has been operational since August 1994 with support for pre-EOS data. Currently, EOSDIS supports all the EOS missions including Terra (1999), Aqua (2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively capturing, processing and archiving several terabytes of standard data products each day. It has also been distributing these data products at a rate of several terabytes per day to a diverse and globally distributed user community (Ramapriyan et al. 2009). There are other NASA-sponsored data system activities including measurement-based systems such as the Ocean Data Processing System and the Precipitation Processing system, and several projects under the Research, Education and Applications Solutions Network (REASoN), Making Earth Science Data Records for Use in Research Environments (MEaSUREs), and the Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) programs. Together, these activities provide a rich set of resources constituting a value chain for users to obtain data at various levels ranging from raw radiances to interdisciplinary model outputs. The result has been a significant leap in our understanding of the Earth systems that all humans depend on for their enjoyment, livelihood, and survival. The trend in the community today is towards many distributed sets of providers of data and services. Despite this, visions for the future include users being able to locate, fuse and utilize data with location transparency and high degree of interoperability, and being able to convert data to information and usable knowledge in an efficient, convenient manner, aided significantly by automation (Ramapriyan et al. 2004; NASA 2005). We can look upon the distributed provider environment with capabilities to convert data to information and to knowledge as an Intelligent Archive in the Context of a Knowledge Building system (IA-KBS). Some of the key capabilities of an IA-KBS are: Virtual Product Generation, Significant Event Detection, Automated Data Quality Assessment, Large-Scale Data Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Requesting (Ramapriyan et al. 2004).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-12
    Description: West Nile Virus is a mosquito-borne virus of the family Flaviviridae. It infects birds and various mammals, including humans, and can cause encephalitis that may prove fatal, notably among vulnerable populations. Since its identification in New York City in 1999, WNV has become established in a broad range of ecological settings throughout North America, infecting more than 25,300 people and killing 1133 as of 2008 (CDC,2009). WNV is transmitted by mosquitoes that feed on infected birds. As a result, the degree of human infection depends on local ecology and human exposure. This study hypothesizes that remote sensing and GIS can be used to analyze environmental determinants of WNV transmission, such as climate, elevation, land cover, and vegetation densities, to map areas of WNV risk for surveillance and intervention.
    Keywords: Earth Resources and Remote Sensing
    Type: M09-0452 , Poster at Alabama Univ., Birmingham's Public Health Day
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-12
    Description: The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg from mission analyses conducted utilizing the NEXT propulsion system. The LDT is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. This paper presents the performance of the NEXT LDT to date with emphasis on performance variations following throttling of the thruster to the new operating condition and comparison of performance to the NSTAR extended life test.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215611 , AIAA Paper 2008-4527 , E-16927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-12
    Description: The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/TM-2009-215519 , E-16692
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-12
    Description: The NESC Assessment Team reviewed a computer simulation of the LC-39 External Tank (ET) GH2 Vent Umbilical system developed by United Space Alliance (USA) for the Space Shuttle Program (SSP) and designated KSC Analytical Tool ID 451 (KSC AT-451). The team verified that the vent arm kinematics were correctly modeled, but noted that there were relevant system sensitivities. Also, the structural stiffness used in the math model varied somewhat from the analytic calculations. Results of the NESC assessment were communicated to the model developers.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215570 , NESC-RP-05-114/05-013-E , L-19605 , LF99-8397
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-13
    Description: The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-13
    Description: By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need sophisticated climate models, in situ process studies, and data sets that extend back well before the introduction of satellite technology. Nonetheless, the repetitive, global view provided by satellites is contributing in a major way to our improved recognition of how the Earth im changing, a recognition that is none too soon in view of the magnitude of the impacts that humans can now have.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA Earth System Science at 20 Symposium: Accomplishments, Plans, and Challenges; Jun 22, 2009 - Jun 24, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-13
    Description: Ignition data for tests with a LOX/methane igniter that utilized a glow plug as the ignition source are presented. The tests were conducted in a vacuum can with thermally conditioned (cold) hardware. Data showing the effects of glow plug geometry, type, and igniter operating conditions are discussed. Comparisons between experimental results and multidimensional, transient computer models are also made.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215522 , E-16799 , Sixth Modeling and Simulation Subcommittee Meeting; Dec 08, 2008 - Dec 12, 2008; Orlando, FL; United States|Third Spacecraft Propulsion Subcommittee Meeting; Dec 08, 2008 - Dec 12, 2008; Orlando, FL; United States|Fourth Liquid Propulsion Subcommittee Meeting; Dec 08, 2008 - Dec 12, 2008; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-28
    Description: Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-9908 , International Conference on Applied Energy; Apr 21, 2010 - Apr 23, 2010; Singapore; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-13
    Description: A Hall thruster includes inner and outer electromagnets, with the outer electromagnet circumferentially surrounding the inner electromagnet along a centerline axis and separated therefrom, inner and outer poles, in physical connection with their respective inner and outer electromagnets, with the inner pole having a mostly circular shape and the outer pole having a mostly annular shape, a discharge chamber separating the inner and outer poles, a combined anode electrode/gaseous propellant distributor, located at an upstream portion of the discharge chamber and supplying propellant gas and an actuator, in contact with a sleeve portion of the discharge chamber. The actuator is configured to extend the sleeve portion or portions of the discharge chamber along the centerline axis with respect to the inner and outer poles.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
    Keywords: Spacecraft Propulsion and Power
    Type: 7th International Energy Conversion and Engineering Conference (IECEC 2009); Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference 2009; Aug 03, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Promoted ignition testing is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. In these tests, a promoter is used to ignite each metal rod to start the sample burning. Experiments were performed to better understand the promoted ignition test by obtaining insight into the effect a burning promoter has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Various ignition promoters were used to ignite the test samples. The thermocouple measurements and test video was synchronized to determine temperature increase with respect to time and length along each test sample. A recommended length of test sample that must be consumed to be considered a flammable material was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-17608 , 12th International Symposium on Flammability and Sensitivity; Oct 07, 2009 - Oct 09, 2009; Berlin, Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we compare a daily version of MCD43B3 with the daily albedo from MOD10A1. and MCD43B3 with a 16-day average of MOD10A1, over Greenland. We also discuss some near-future planned enhancements to MOD10A1.
    Keywords: Earth Resources and Remote Sensing
    Type: 89th Annual AMS Meeting; Jan 12, 2009 - Jan 16, 2009; Phoenix, AZ; United States|23rd Conference on Hydrology; Jan 12, 2009 - Jan 16, 2009; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs operate as expected. The generator which will undergo this testing is of the most recent A-3 configuration, and will be instrumented far in excess of what is normally required for operation. The extra data will allow for easier troubleshooting and more complete knowledge of expected generator performance. In addition, the early testing will give SSC personnel experience in operating the CSG systems, which will expedite the process of installation and activation at A-3. Each Chemical Steam Generator is supported by a complement of valves, instruments, and flow control devices, with the entire assembly called a "module." The generators will be installed in groups of three, historically called "units". A module is so called because of its modular ability to be replaced or serviced without disturbing the other two modules installed on the same unit. A module is pictured in Figure 1, shown with its generator secured by white bands in its shipping (vs. installed) configuration. The heritage system at WSTF is composed of a single unit (three generator modules), pictured in Figure 2 as it was installed in 1965. In contrast, A-3 will have nine units operating in parallel to achieve vacuum conditions appropriate for testing the J-2X engine. Each of the combustors operates in two modes and achieves the so-called "full-steam" mode after all three of its stages ignite. Ignition of the first stage is achieved by exciting a spark plug; the second stage and main stage are lit by the flame front of the previous stage. The main stage burns approximately 97% of the total propellant flow and uses the heat energy to vaporize water into superheated steam. While the main stage remains unlit, the combustor is in so-called "idle" mode. In the WSTF system, this idle mode is not optimized for water usage, and does not need to be, as the water is pumped from a large reservoir. The water supply at A-3 will be contained in tanks with finite volume, so water optimization is preferred for the modnized configuration. Multiple solutions for this issue have been proposed, with the leading concept being a change to the operational definition of "idle mode," with the generator running in a lower heat flux condition.
    Keywords: Spacecraft Propulsion and Power
    Type: SSTI-2220-0175 , AIAA JPC Conference; Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0180 , Oceans ''09 MTS/IEEE Conference; Oct 26, 2009 - Oct 29, 2009; Biloxi, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 Fall AGU Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 Fall AGU Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Joint Propulsion Conference; Aug 03, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: Satellite remote sensing technology and the science associated with the evaluation of the resulting data are constantly evolving. To meet the growing needs related to this industry, a team of personnel that understands the fundamental science as well as the scientific applications related to remote sensing is essential. Therefore, the workforce that will excel in this field requires individuals who not only have a strong academic background, but who also have practical hands-on experience with remotely sensed data, and have developed knowledge of its real-world applications. NASA's DEVELOP Program has played an integral role in fulfilling this need. DEVELOP is a NASA Science Mission Directorate Applied Sciences training and development program that extends the benefits of NASA Earth science research and technology to society.
    Keywords: Earth Resources and Remote Sensing
    Type: LF99-8618
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Electrodynamic (Drag) Tether Thrust Principles: a) Uses both solar energy and consumes no propellant. b) Tether's orbital velocity v (approx. 7500 m/s) through North-pointing geomagnetic field B(sub north) (0.18 - 0.32 Gauss) induces voltage (35 - 160 V/km) in tether. c) Return current is through surrounding plasma. d) Current I produces a drag thrust force F on the tether. e) Magnetic force F from current I through insulated tether of length l: F = lI x B(sub north).
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0306
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/CR-2009-215516 , E-16819
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215426 , E-16595
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-17237-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: This slide presentation describes the propulsion system for the Apollo Lunar Module (LM). It defines they systems for the LM propulsion and the control system. It lists the times during the mission at which each system was used. It describes the basic components and the operation of the Descent and Ascent Propulsion systems. It also describes LM reaction control system.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-17237-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-17237-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: In-situ sensors near volcanoes would be alerted by the Earth Observing-1 (EO-1) craft to take more frequent data readings. This project involves developing a sulfur-dioxide-sensing volcano monitor that will be able to transmit its readings through an Iridium modem.
    Keywords: Earth Resources and Remote Sensing
    Type: NPO-45445 , NASA Tech Briefs, April 2009; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-17237-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.
    Keywords: Earth Resources and Remote Sensing
    Type: JSC-17962-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215483 , E-16687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of September 1, 2007, the thruster has accumulated 11,570 h of operation primarily at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. The thruster has processed 237 kg of xenon surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 (DS1) flight spare. The NEXT LDT has demonstrated a total impulse of 9.78 10(exp 6) N(dot)s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. Lifetime-limiting component erosion rates have been consistent with the NEXT service life assessment, which predicts the earliest failure sometime after 750 kg of xenon propellant throughput; well beyond the mission-derived lifetime requirement. The NEXT wear test data confirm that the erosion of the discharge keeper orifice, enlarging of nominal-current-density accelerator grid aperture cusps at full-power, and the decrease in cold grid-gap observed during NSTAR wear testing have been mitigated in the NEXT design. NEXT grid-gap data indicate a hot grid-gap at full-power that is 60 percent of the nominal cold grid-gap. This paper presents the status of the NEXT LDT to date with emphasis on comparison to the NSTAR extended life test results.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2009-215265 , IEPC-2007-033 , E-16534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: The Urban Environmental Monitoring (UEM) project, now known as the 100 Cities Project, at Arizona State University (ASU) is a baseline effort to collect and analyze remotely sensed data for 100 urban centers worldwide. Our overarching goal is to use remote sensing technology to better understand the consequences of rapid urbanization through advanced biophysical measurements, classification methods, and modeling, which can then be used to inform public policy and planning. Urbanization represents one of the most significant alterations that humankind has made to the surface of the earth. In the early 20th century, there were less than 20 cities in the world with populations exceeding 1 million; today, there are more than 400. The consequences of urbanization include the transformation of land surfaces from undisturbed natural environments to land that supports different forms of human activity, including agriculture, residential, commercial, industrial, and infrastructure such as roads and other types of transportation. Each of these land transformations has impacted, to varying degrees, the local climatology, hydrology, geology, and biota that predate human settlement. It is essential that we document, to the best of our ability, the nature of land transformations and the consequences to the existing environment. The focus in the UEM project since its inception has been on rapid urbanization. Rapid urbanization is occurring in hundreds of cities worldwide as population increases and people migrate from rural communities to urban centers in search of employment and a better quality of life. The unintended consequences of rapid urbanization have the potential to cause serious harm to the environment, to human life, and to the resulting built environment because rapid development constrains and rushes decision making. Such rapid decision making can result in poor planning, ineffective policies, and decisions that harm the environment and the quality of human life. Slower, more thought-out, decision making could result in more favorable outcomes. The harm to the environment includes poor air quality, soil erosion, polluted rivers and aquifers, and loss of wildlife habitat. Human life is then threatened because of increased potential for disease spreading, human conflict, environmental hazards, and diminished quality of life. The built environment is potentially threatened when cities are built in areas that can be impacted by events such as hurricanes, tsunamis, earthquakes, fires, and landslides. Our goals include assessing the threat of such events on cities and the people living there.
    Keywords: Earth Resources and Remote Sensing
    Type: JSC-17734
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE RadarCon09 Conference; May 04, 2009 - May 08, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Archaeology can provide insight into interactions of climate change and human activities in sensitive areas such as the Sahara, to the benefit of both disciplines. Such analyses can help set bounds on climate change projections, perhaps identify elements of tipping points, and provide constraints on models. The opportunity exists to more precisely constrain the relationship of natural solar and climate interactions, improving understanding of present and future anthropogenic forcing. We are beginning to explore the relationship of human occupation of the Sahara and long-term solar irradiance variations synergetic with changes in atmospheric-ocean circulation patterns. Archaeological and climate records for the last 12 K years are gaining adequate precision to make such comparisons possible. We employ a range of climate records taken over the globe (e.g. Antarctica, Greenland, Cariaco Basin, West African Ocean cores, records from caves) to identify the timing and spatial patterns affecting Saharan climate to compare with archaeological records. We see correlation in changing ocean temperature patterns approx. contemporaneous with drying of the Sahara approx. 6K years BP. The role of radar images and other remote sensing in this work includes providing a geographically comprehensive geomorphic overview of this key area. Such coverage is becoming available from the Japanese PALSAR radar system, which can guide field work to collect archaeological and climatic data to further constrain the climate change chronology and link to models. Our initial remote sensing efforts concentrate on the Gilf Kebir area of Egypt.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 IEEE Radar Conference; May 04, 2009 - May 08, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Topics discussed include: Rocketdyne - F-1 Saturn V First Stage Engine; Rocketdyne - J-2 Saturn V 2nd & 3rd Stage Engine; Rocketdyne - SE-7 & SE-8 Engines; Aerojet - AJ10-137 Apollo Service Module Engine; Aerojet - Attitude Control Engines; TRW - Lunar Descent Engine; and Rocketdyne - Lunar Ascent Engine.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/SP-2009-4545 , Remembering the Giants: Apollo Rocket Propulsion Development; Apr 25, 2006; Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...