ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (791)
  • Fluid Mechanics and Thermodynamics  (710)
  • Engineering
  • 2005-2009  (1,559)
Collection
Language
Years
Year
  • 101
    Publication Date: 2018-06-06
    Description: We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2018-06-06
    Description: We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2018-06-06
    Description: We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature 〈 or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of 〈 or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2018-06-06
    Description: We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2018-06-06
    Description: We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2018-06-06
    Description: Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2018-06-06
    Description: We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2018-06-06
    Description: We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 〈 z 〈 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 〈 z 〈 l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2018-06-06
    Description: We have made comparative studies of ion anisotropy and high-energy variability of solar energetic particle (SEP) events previously examined by the Solar, Heliospheric, and Interplanetary Environment (SHINE) Workshop campaign. We have found distinctly different characteristics of SEPs between two large "gradual" events having very similar solar progenitors (the 2002 April 21 and August 24 events). Since the scattering centers of SEPs are approximately frozen in the solar wind, we emphasize work in the solar-wind frame where SEPs tend to be isotropized, and small anisotropies are easier to detect. While in the August event no streaming reversal occurred, in the April event the field-aligned anisotropy of all heavy ions showed sign of streaming reversal. The difference in streaming reversal was consistent with the difference in the presence of the outer reflecting boundary. In the April event the magnetic mirror, which was located behind the interplanetary shock driven by the preceding coronal mass ejection (CME), could block the stream of SEPs, while in the August event SEPs escaped freely because of the absence of nearby boundary. The magnetic mirror was formed at the bottleneck of magnetic field lines draped around a flank of the preceding CME. In the previous SHINE event analysis the contrasting event durations and Fe/O ratios of the both events were explained as the interplay between shock geometry and seed population. Our new findings, however, indicate that event duration and time as well as spectral variation are also affected by the presence of a nearby reflecting boundary.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2018-06-06
    Description: We report the results of more than seven years of monitoring of PSR J0537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the Rossi X-ray Timing Explorer. During this campaign the pulsar experienced 22 sudden increases in frequency ("glitches" - 21 with increases of at least eight microHz) amounting to a total gain of over six parts per million of rotation frequency superposed on its gradual spindown of nu-dot = -2 x 10(exp -l0) Hz /s. The time interval from one glitch to the next obeys a strong linear correlation to the amplitude of the first glitch, with a mean slope of about 400 days per part per million (6.5 days per micro Hz), such that these intervals can be predicted to within a few days, an accuracy which has never before been seen in any other pulsar. There appears to be an upper limit of approximately 40 micro Hz for the size of glitches in all pulsars, with the 1999 April glitch of PSR J0537-6910 as the largest so far. The change of its spindown across the glitches, delta (nu-dot), appears to have the same hard lower limit of -1.5 x 10 (exp -13) Hz/s, as, again, that observed in all other pulsars. The spindown continues to increase in the long term, nu-dot = -10(exp -21) Hz / s(exp 2), and thus the timing age of PSR 505374910 (-0.5 nu nu-dot (exp -1) continues to decrease at a rate of nearly one year every year, consistent with movement of its magnetic moment away from its rotational axis by one radian every 10,000 years, or about one meter per year. PSR J0537-6910 was likely to have been born as a nearly-aligned rotator spinning at 75-80 Hz, with a absolute value of nu considerably smaller than its current value of 2x 10(exp -10) Hz per second. Its pulse profile consists of a single pulse which is found to be flat at its peak for at least 0.02 cycles. Glitch activity may grow exponentially with a timescale of 170 years nu nu-dot ((nu nu-dot)(sub crab))exp -l in all young pulsars.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2018-06-06
    Description: The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2018-06-06
    Description: Table 1 in our paper had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays; tau. The correct values for these parameters as described in the original text are given in the table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2018-06-06
    Description: A final report is presented from the industry panel group. The contents include: 1) General comments; 2) Positive progress since Minnowbrook IV; 3) Industry panel outcome; 4) Prioritized turbine projects; 5) Prioritized compressor projects; and 6) Miscellaneous.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Minnowbrook V: 2006 Workshop on Unsteady Flows in Turbomachinery; NASA/CP-2006-214484
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2018-06-06
    Description: The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2018-06-06
    Description: Non-photospheric-radius-expansion(non-PRE) double-peaked bursts may be explained in terms of spreading (and temporary stalling) of thermonuclear flames on the neutron star surface, as we argued in a previous study of a burst assuming polar ignition. Here we analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of such a burst (but with a considerably different intensity profile from the previous one) from the low mass X-ray binary (LMXB) system 4U 1636-536, and show that this model can qualitatively explain the observed burst profile and spectral evolution, if we assume an off-polar, but high-latitude ignition, and burning front stalling at a higher latitude compared to that for the previous burst. The off-polar ignition can account for the millisecond period brightness oscillations detected from this burst. This is the first time oscillations have been seen from such a burst. Our model can qualitatively explain the oscillation amplitude measured during the first (weaker) peak, and the absence of oscillations during the second peak. The higher latitude front stalling facilitates the first clear detection of a signature of this stalling, which is the primary result of this work, and may be useful for understanding thermonuclear flame spreading on neutron stars.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2018-06-06
    Description: We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2018-06-06
    Description: As part of the automated response to a new gamma-ray burst (GRB), the Ultraviolet and Optical Telescope (UVOT) instrument on Swift starts a 200-second exposure with the V filter within approximately 100 seconds of the BAT burst trigger. The instrument searches for sources in a 8' x 8' region, and sends the list of sources and a 160" x 160" sub-image centered on the burst position to the ground via Tracking and Data Relay Satellite System (TDRSS). These raw products and additional products calculated on the ground are then distributed through the GCN within a few minutes of the trigger. We describe the sensitivity of these data for detecting afterglows, summarize current results, and outline plans for rapidly distributing future detections.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2018-06-06
    Description: We have obtained Fourier-resolved spectra of the black-hole binary 4U 1543-47 in the canonical states (high/soft, very high, intermediate and low/hard) observed in this source during the decay of an outburst that took place in 2002. Our objective is to investigate the variability of the spectral components generally used to describe the energy spectra of black-hole systems, namely a disk component, a power-law component attributed to Comptonization by a hot corona and the contribution of the iron line due to reprocessing of the high energy (E greater than or approx, equal to 7 keV) radiation. We find that i) the disk component is not variable on time scales shorter than approx. 100 seconds, ii) the reprocessing emission as manifest by the variability of the Fe K(alpha) line responds to the primary radiation variations down to time scales of approx. 70 ms in the high and very-high states, but longer than 2 s in the low state, iii) the low-frequency QPOs are associated with variations of the X-ray power law spectral component and not to the disk component and iv) the spectra corresponding to the highest Fourier frequency are the hardest (show the flatter spectra) at a given spectral state. These results questions the models that explain the observed power spectra as due to modulations of the accretion rate only.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2018-06-06
    Description: The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2018-06-06
    Description: An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Journal; Volume 45; No. 3; 607-614
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2018-06-06
    Description: This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.
    Keywords: Astrophysics
    Type: LISA Science Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2018-06-06
    Description: A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. This paper describes simple numerical experiments designed to examine some of these issues. Similar studies have been carried out previously in the context of solar UV lines by Gianetti et al. (2000); Savin & Laming (2002) and in the context of the iron M shell UTA in NGC 3783 by Netzer (2004).
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 124-128; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2018-06-06
    Description: Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular data base maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 233-238; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2018-06-06
    Description: A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for rates of collisionally induced vibrational-translation (VT) energy exchange that has been shown to be accurate over variations of orders of magnitude as a function of temperature in a variety of systems. This includes excellent agreement with reported experimental and theoretical results for the fundamental self-relaxation rate of molecular hydrogen H2(v = 1) + H2 yields H2(v = 0) + H2. The analytic rate successfully follows the five-orders-of-magnitude change in experimental values for the temperature range 50-2000 K. This approach is now applied to isotope effects in the vibrational relaxation rates of excited HD and D2 in collision with H2: HD(v = 1)+H2 yields HD(v = 0)+H2 and D2(v = 1)+H2 yields D2(v = 0)+H2. The simplicity of the analytic expression for the thermal rate lends itself to convenient application in modeling the evolving vibrational populations of molecular hydrogen in shocked astrophysical environments.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 299-302; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Spectroscopy of comets, in the X-ray and far-ultraviolet from space, and in the near infrared and millimeter from the ground, have revealed a wealth of new information, particularly about the molecular constituents that make up the volatile fraction of the comet s nucleus. Interpretation of these data requires not only proper wavelengths for identification but also information about the photolytic and excitation processes at temperatures typical of the inner coma (70-100 K) that lead to the observed spectral signatures. Several examples, mainly from Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope spectra of comets observed during the last few years, will be given to illustrate some of the current issues.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 62-67; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2018-06-06
    Description: A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 68-72; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2018-06-06
    Description: Our present knowledge of the molecular universe has come primarily from radio observations [ I include here millimeter and submillimeter in this rubric]. There are a number of reasons for this but the primary one is the extremely high spectral resolution. The ease of observing emission from the volume of dense molecular clouds without significant attenuation by scattering from dust has shown this to be the powerful observational tool for molecular astronomy. Finally the relative simplicity of rotational compared to vibrational or electronic spectroscopy allows carrier identification as well as facile evaluation of cloud conditions such as density and temperature. These virtues become tenuous as the astronomical observations are pushed to higher frequencies for enhanced observational sensitivity. Thus precision rest frequencies are mandatory for the search for new species. We may inquire about which new species require particular attention, and which species may be relatively safely predicted on the basis of lower frequency laboratory measurements. For a rigid rotor the three rotational constants are sufficient to completely specify the transition frequencies. The intensities require the three components of the electric dipole moment. For semirigid species, where the centrifugal distortion, may be treated at the quartic level of angular momentum (Bunker et al. 1998), up to five additional constants are required (Watson 1967). There are a number of such species of considerable interest, where laboratory measurements are adequate for astronomical searches.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 133-135; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2018-06-06
    Description: The cooling of neutral gas of primordial composition, or with very low levels of metal enrichment, depends crucially on the formation of molecular coolants, such as H2 and HD within the gas. Although the chemical reactions involved in the formation and destruction of these molecules are well known, the same cannot be said for the rate coefficients of these reactions, some of which are uncertain by an order of magnitude. Here we discuss two reactions for which large uncertainties exist the formation of H2 by associative detachment of H- with H and the destruction of H- by mutual neutralization with protons. We show that these uncertainties can have a dramatic impact on the effectiveness of cooling during protogalactic collapse.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 248-251; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 34-44; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2018-06-06
    Description: The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 264-267; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2018-06-06
    Description: Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 1-15; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2018-06-06
    Description: The interpretation of cosmic spectra relies on a vast sea of atomic data which are not readily obtainable from analytic expressions or simple calculations. Rather, their evaluation typically requires state-of-the-art atomic physics calculations, with the inclusion of weaker effects (spin-orbit and configuration interactions, relaxation, Auger broadening, etc.), to achieve the level of accuracy needed for use by astrophysicists. Our NASA-supported research program is focused on calculating data for three important atomic processes, 1) dielectronic recombination (DR), 2) inner-shell photoabsorption, and 3) fluorescence and Auger decay of inner-shell vacancy states. Some additional details and examples of our recent findings are given.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 190-193; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2018-06-06
    Description: Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 129-132; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2018-06-06
    Description: High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 198-201; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2018-06-06
    Description: The present paper deals with an experimental study of the stagnation-point heat transfer to a cooled copper surface with gas injection under subsonic conditions. Test were made with a probe that combined a steady-state water-cooled calorimeter that allows the capability to study convective blockage and to perform heat transfer measurements in presence of gas injection in the stagnation region. The copper probe was pierced by 52 holes, representing 2.4% of the total probe surface. The 1.2 MW high enthalpy plasma wind tunnel was operated at anode powers between 130 and 230 kW and a static pressures from 35 hPa up to 200 hPa. Air, carbon dioxide and argon were injected in the mass flow range 0-0.4 g/s in the boundary layer developed around the 50 mm diameter probe. The measured stagnation-point heat transfer rates are reported and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2nd International Planetary Probe Workshop; 69-74; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2018-06-12
    Description: The Energetic X-ray Imaging Survey Telescope (EXIST), under study to be the Black Hole Finder Probe in NASA's Beyond Einstein Program, would image the sky every 95 min in the energy range 10-600 keV. Although the main scientific objectives of EXIST are the systematic, all-sky survey of heavily obscured AGNs and gamma-ray bursts, there is a substantial capability of EXIST for the observation of transient and persistent hard X-ray lines from several astrophysical sources.
    Keywords: Astrophysics
    Type: New Astronomy Reviews (ISSN 1387-6473); Volume 50; 637-639
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2018-06-02
    Description: Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2018-06-02
    Description: NASA Glenn Research Center s Capillary Flow Experiments (CFE) program is developing experiment payloads to explore fluid interfaces in microgravity on the International Space Station. The information to be gained from the CFE is relevant to the design of fluid-bearing systems in which capillary forces predominate, for example in the passive positioning of liquids in spacecraft fuel tanks. To achieve the science goals of CFE, Glenn researchers constructed several types of experiment vessels. One type of vessel, known as the interior corner flow (ICF), will be used to determine important transients for low-gravity liquid management in a two-phase system. Each vessel has a cylindrical fluid reservoir connected to each end of the test chamber by internal transport tubes, each with a quarter-turn shutoff valve (see the following photograph). These multipiece vessels are made from polymethylmethacrylate (PMMA) because of its excellent optical properties (i.e., the fluids can be observed easily in the vessel). Because of the complexity of certain vessels, the test chamber had to be manufactured in pieces and welded chemically. Some past experience with adhesive bonded plastic showed that the experiment fluid degraded the adhesive to the point of failure. Therefore, it was necessary to see if the fluid also degraded the chemically welded PMMA joints.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2018-06-02
    Description: As part of basic and applied research on advanced instrumentation technologies, the NASA Glenn Research Center is examining applications for sonoluminescence: ultrasonically produced glowing bubbles that are hotter than the Sun. In the last decade, those outside of the ultrasonic community have become interested in understanding sonoluminescence and in using some of its more interesting properties. First discovered in the 1930s as a byproduct of early work on sonar, the phenomenon is defined as the generation of light energy from sound waves. This glow, which was originally thought to be a form of static electricity, was found to be generated in flashes of much less than a billionth of a second that result when microscopic bubbles of air collapse. The temperature generated in the collapsing bubbles is at least 4 times that of the surface of the Sun.
    Keywords: Astrophysics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2018-06-06
    Description: Based upon analysis of the entire EGRET data from Mrk 421, it is found that the time-averaged spectra are inconsistent with the predictions of current theoretical models that have had success in describing simultaneous X-ray/TeV observations, and suggest additional components in the GeV band, as well as complex time variability. Current theoretical pictures explain the GeV emission as comptonization of the synchrotron photons in the jet, and predict hard spectra that should join smoothly with the TeV emission. Our analysis shows that the situation is more complex. The spectrum ranges from hard to soft during individual epochs, and shows a convext break in the aggregated data. We also present the mission-averaged EGRET spectrum for PKS 2155-304, which shows a similar (but not as pronounced) convex curvature. We discuss a series of possible explanations for the 10(exp 22) - 10(exp 23) HZ declining part of the EGRET nu F(sub nu), spectrum for Mrk 421, and suggest that it is synchrotron emission from the high energy tail of the electron population that produces the X-rays during the highest X-ray states. Such multi-MeV photons are produced by electrons accelerated close to the limit of diffusive shock acceleration. Simultaneous GLAST and X-ray observations of high X-ray states will address the issue of the convex curvature in the future.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The giant flares produced by highly magnetized neutron stars, "magnetars," are the brightest sources of high energy radiation outside our solar system. Serendipitous observations with NASA's Rossi X-ray Timing Explorer (RXTE) of the two most recent flares resulted in the discovery of high frequency oscillations in their X-ray fluxes. The frequencies of these oscillations range from approx. 20 Hz to as high as 1800 Hz, and may represent the first detection of global oscillation modes of neutron stars. Here I will present an observational and theoretical overview of these oscillations and discuss how they might allow us to probe neutron star interiors and dense matter physics.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2018-06-06
    Description: We have developed a method for constructing a spectrum of the particle-induced instrumental background of the XMM-Newton EPIC MOS detectors that can be used for observations of the diffuse background and extended sources that fill a significant fraction of the instrument field of view. The strength and spectrum of the particle-induced background, that is, the background due to the interaction of particles with the detector and the detector surroundings, is temporally variable as well as spatially variable over individual chips. Our method uses a combination of the filter-wheel-closed data and a database of unexposed-region data to construct a spectrum of the "quiescent" background. We show that, using this method of background subtraction, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear evidence of solar wind charge exchange emission. We use the blank sky observations to show that contamination by SWCX emission is a strong function of the solar wind proton flux, and that observations through the flanks of the magnetosheath appear to be contaminated only at much higher solar wind fluxes. We have also developed a spectral model of the residual soft proton flares, which allows their effects to be removed to a substantial degree during spectral fitting.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2018-06-06
    Description: We report the finding of an unusual, weak precursor to a thermonuclear X-ray burst from the accreting millisecond pulsar SAX 51808.4-3658. The burst in question was observed on Oct. 19, 2002 with the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA). The precursor began approx. equal to 1 s prior to the onset of a strong radius expansion burst, lasted for about 0.4 s, and exhibited strong oscillations at the 401 Hz spin frequency. Oscillations are not detected in the approx. equal to 0.5 s interval between the precursor and the main burst. The estimated peak photon flux and energy fluence of the precursor are about 1/25, and 1/500 that of the main burst, respectively. From joint spectral and temporal modeling, we find that an expanding burning region with a relatively low temperature on the spinning neutron star surface can explain the oscillations, as well as the faintness of the precursor with respect to the main part of the burst. We discuss some of the implications of our findings for the ignition and spreading of thermonuclear flames on neutron stars.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2018-06-06
    Description: We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2018-06-06
    Description: Gamma-ray lines are produced in nature by a variety of different physical processes. They can be valuable astrophysical diagnostics providing information the may be unobtainable by other means. We have carried out an extensive search for gamma-ray lines in the first year of public data from the Spectrometer (SPI) on the INTEGRAL mission. INTEGRAL has spent a large fraction of its observing time in the Galactic Plane with particular concentration in the Galactic Center (GC) region (approximately 3 Msec in the first year). Hence the most sensitive search regions are in the Galactic Plane and Center. The phase space of the search spans the energy range 20-8000 keV, and line widths from 0-1000 keV (FWHM) and includes both diffuse and point-like emission. We have searched for variable emission on time scales down to approximately 1000 sec. Diffuse emission has been searched for on a range of different spatial scales from approximately 20 degrees (the approximate field-of-view of the spectrometer) up to the entire Galactic Plane. Our search procedures were verified by the recovery of the known gamma-ray lines at 511 keV and 1809 keV at the appropriate intensities and significances. We find no evidence for any previously unknown gamma-ray lines. The upper limits range from a few x10(exp -5) per square centimeter per second to a few x10(exp -3) per square centimeter per second depending on line width, energy and exposure. Comparison is made between our results and various prior predictions of astrophysical lines
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2018-06-06
    Description: We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2018-09-11
    Description: A technique involving Fe-55 X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e(-) ADU(-1) ), as well as aid detector design and performance studies. We calibrate the Fe-15 X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 micron flight grade detectors. The results show that each Ka X-ray generates 2273 +/- 137 electrons, which corresponds to a pair-production energy of 2.61 +/- 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2018-09-11
    Description: This paper presents the thermal performance of a low-cost loop heat pipe (LHP) consisting of a single evaporator and a single condenser. The evaporator has an outer diameter of 14mm and a length of 50mm. An organic solvent was used as the working fluid. The low-cost LHP was made possible through a new manufacturing process. The LHP demonstrated excellent performance over heat loads ranging from 1W to 15OW and sink temperatures between 253K and 293K. Tests performed included start-up, power cycle, sink temperature cycle, high power and low power operations. No performance anomalies were seen.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2018-08-10
    Description: Aims: The aim of this work is to investigate the dynamic behavior of a C-class solar flare through the evolution of temperature, emission measure, energy loss and velocity. In particular, the variation of these properties with time are studied using multi-wavelength observations in combination with a recently developed 0-D hydrodynamic model. Methods: The temperature and emission measure evolution were studied using several instruments covering a wide range of temperatures - the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI, 〉5 MK), GOES-12 (5- 30 MK), the Transition Region and Coronal Explorer (TRACE 171 A, 1 MK) and the Coronal Diagnostic Spectrometer (CDS, 0.03-8 MK). The temperature and emission measure were analysed through the systematic cooling of flare plasma through the response functions of these instruments. These parameters were then investigated using the Enthalpy Based Thermal Evolution of Loops model (EBTEL). The Doppler shifts at both flare footpoints were analysed using five emission lines seen by CDS. Results: The flare began with clear evidence for pre-flare heating. Upflows of approx.90 km/s and low level emission, both observed in Fe XIX before the main impulsive phase were explained by pre-flare gentle chromospheric evaporation. During the main impulsive phase, the flare plasma was heated to a temperature of 〉13 MK in approximately 10 minutes. Explosive chromospheric evaporation was observed, driving upflows of approx.80 km/s in Fe XIX and simultaneous downflows of approx.20 km/s in He I and O v. At the peak of the Rare, conduction modelled by EBTEL was found to be the dominant loss mechanism, working efficiently to both lower the temperatures and drive gentle chromospheric evaporation. As the temperature fell below approx.8 MK, radiation became the dominant loss mechanism. During the final stages of the decay phase, downflowing plasma was observed at the footpoints in He I, O v and Mg x at velocities of up to approx.40 km/s, suggesting loop draining occurred. Conclusions. This is the first extensive study of the evolution of flare plasma using both spectroscopic and broad-band instruments in conjunction with a comprehensive hydrodynamic model. The flare began with pre-flare heating and then evolved following the predictions of the standard flare model. Detailed analysis of the plasma heating mechanisms was carried out and the heating function most consistent with observations was found to be Gaussian in shape. The simulations suggested that both direct heating and heating by a non-thermal beam played significant roles in this event.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2017-10-02
    Description: H(2-2), N2 and CO are the most abundant molecular constituents in astrophysical environments, including protostellar nebulae. Although some organic molecules may be produced on very long timescales by the irradiation of ices formed on the cold surfaces of interstellar grains and these molecules may be an important source of raw materials leading to the origin of life on Earth, pre-solar organics could be swamped by the efficient conversion of nebular H2, N2 and CO to simple organic materials.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXVI, Part 14; LPI-Contrib-1234-Pt-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2017-10-02
    Description: On 2 January, 2004, the Stardust spacecraft flew by the nucleus of comet 81P/Wild 2 with a closest approach distance of approx. 240 km. During the encounter, the Stardust Optical Navigation Camera (ONC) obtained 72 images of the nucleus with exposure times alternating between 10 ms (near-optimal for most of the nucleus surface) and 100 ms (used for navigation, and revealing additional details in the coma and dark portions of the surface. Phase angles varied from 72 deg. to near zero to 103 deg. during the encounter, allowing the entire sunlit portion of the surface to be imaged. As many as 20 of the images near closest approach are of sufficiently high resolution to be used in mapping the nucleus surface; of these, two pairs of short-exposure images were used to create the nucleus shape model and derived products reported here. The best image resolution obtained was approx. 14 m/pixel, resulting in approx. 300 pixels across the nucleus. The Stardust Wild 2 dataset is therefore markedly superior from a stereomapping perspective to the Deep Space 1 MICAS images of comet Borrelly. The key subset of the latter (3 images) covered only about a quarter of the surface at phase angles approx. 50 - 60 and less than 50 x 160 pixels across the nucleus, yet it sufficed for groups at the USGS and DLR to produce digital elevation models (DEMs) and study the morphology and photometry of the nucleus in detail.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXVI, Part 11; LPI-Contrib-1234-Pt-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-12-01
    Description: Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into following sections: Photosphere and Chromosphere; Transition Region; Corona and Coronal Heating; Coronal Jets; Flares; Coronal Mass Ejection Initiation; Global Coronal Waves and Shocks; Coronal Dimming; The Link Between Low Coronal CME signatures and Magnetic Clouds; Coronal Mass Ejections in the Heliosphere; and Coronal Mass Ejections and Space Weather. Primary authorship is indicated at the beginning of each section.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2018-06-02
    Description: Experimental data were obtained to help validate analytical and computational fluid dynamics (CFD) codes used to compute unsteady cascade aerodynamics in a supersonicaxial- flow regime. Results from two analytical codes and one CFD code were compared with experimental data. One analytical code did not account for airfoil thickness or camber; another, using piston theory (piston code), accounted for thickness and camber upstream of the first shockwave/airfoil impingement locations. The Euler CFD code accounted fully for airfoil shape.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: The NPARC (National Project for Application-oriented Research in CFD) Alliance has released Version 1.0 of Wind-US, the latest in its line of general-purpose, multizone, compressible-flow Navier-Stokes solvers. The NPARC Alliance is a formal partnership between the NASA Glenn Research Center and the Air Force Arnold Engineering Development Center, with additional significant involvement by the Boeing Company s Phantom Works Group, whose mission is to provide an applications-oriented computational fluid dynamics (CFD) system primarily for aerospace flow simulation. The alliance is committed to the long-range maintenance and improvement of this capability, with teams focused on user support, code development, and validation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2018-06-11
    Description: In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (〈+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: We report the discovery of X-rays from both components of Cepheus A, East and West, with the XMM-Newton observatory. HH 168 joins the ranks of other energetic Herbig-Haro objects that are sources of T ≥ 10(6) K X-ray emission. The effective temperature of HH 168 is T = 5.8(-2.3)(+3.5) x 10(6) K, and its unabsorbed luminosity is 1: 1; 10(29) ergs s(-1), making it hotter and less luminous than other representatives of its class. We also detect prominent X-ray emission from the complex of compact radio sources believed to be the power sources for Cep A. We call this source HWX, and it is distinguished by its hard X-ray spectrum, T = 1.2(-0.5)(+1.2) 10(8) K, and its complex spatial distribution. It may arise from one or more protostars associated with the radio complex, the outflows, or a combination of the two. We detect 102 X-ray sources, many presumed to be pre-main-sequence stars on the basis of the reddening of their optical and IR counterparts.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2018-06-06
    Description: A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2018-06-06
    Description: Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.
    Keywords: Astrophysics
    Type: Space Science Reviews; Volume 143; No. 1-4; 253-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2018-06-06
    Description: High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2018-06-06
    Description: The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2018-06-06
    Description: We present an analysis of the visible through near infrared spectrum of Eta Car and its ejecta obtained during the "Eta Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)". This is a part of the larger effort to present a complete Eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 Angstrom) to 10,430 Angstrom. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 Angstroms, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 Angstroms.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2018-06-06
    Description: We continue a systematic study of chemical abundances of the Strontium Filament found in the ejecta of eta Carinae. To this end we interpret the emission spectrum of Sc II and Cr II using multilevel non-LTE models of these systems. Since the atomic data for these ions was previously unavailable, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. The observed spectrum is emitted from a mostly neutral region with electron density of the order of 10(exp 7) cm (exp -3) and a temperature between 6000 and 7000 K. These conditions are consistent with our previous diagnostics from [Ni II], [Ti II], amd [Sr II]. The observed spectrum indicates an abundance of Sc relative Ni that more than 40 times the solar values, while the Cr/Ni abundance ratio is roughly solar. Various scenarios of depletion and dust destruction are suggested to explain such abnormal abundances.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2018-06-06
    Description: We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2018-06-06
    Description: The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2018-06-06
    Description: We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2018-06-06
    Description: This viewgraph document reviews the atomic calculations and the measurements from the laboratory that are relevant to our understanding of X-Ray Warm Absorbers. Included is a brief discussion of the theoretical and the experimental tools. Also included is a discussion of the challenges, and calculations relevant to dielectronic recombination, photoionization cross sections, and collisional ionization. A review of the models is included, and the sequence that the models were applied.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2018-06-06
    Description: We present analysis of the visible through near infrared spectrum of eta Car and its ejecta obtained during the 'eta Car Campaign with the Ultraviolet Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)'. This is a part of larger effort to present a complete eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments apertures. This paper provide a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2018-06-06
    Description: Witten (1984): 3 quark flavors implies same P.E., but less K.E. by Pauli Principle. Farhi and Jaffe find SQN B.E./q rises to asymptotic value as N=A/3 rises. A. De Rujula and S. Glashow identify bunch of methods of detecting SQNs. M. Alford, K.Rajagopa1, and F.Wilczek find Cooper pairing of SQN q's. Primordial: depends on cooling by evaporation being less than cooling by neutrino emission and any other mechanisms. Evap approx. MA(sup 2/3); neutrinos NM. M〉10{20} works. Collisions of SQS's from NS binaries. Explosive events could give trifecta: gamma absorption for E〉2m(e); emission at 2m(e); and emission at m(e-) from e+ production. There are questions of e+ production in COG, and of pair instability Sne. SQM roles possible. Possible detection of SQN emission line from e- capture during X-ray flare needs estimate.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2018-06-06
    Description: The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
    Keywords: Astrophysics
    Type: Astrophysics and Space Science; Volume 320; No. 1-3; 217-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2018-06-06
    Description: This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 701; no. 2; 1872-1879
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2018-06-05
    Description: We calculate the intergalactic photon density as a function of both energy and redshift for 0〈z〈6 for photon energies from.003 eV to the Lyman limit cutoff at 13.6 eV in a (Omega)CDM universe with (Omega)(Lambda)=0.7 and (Omega)m=0.3. The basic features of our backward-evolution model for galaxies were developed in earlier papers by Malkan & Stecker. With a few improvements, we find that this evolutionary model gives predictions of new deep number counts from Spitzer, as well as a calculation of the spectral energy distribution of the diffuse infrared background, which are in good agreement with the data. We then use our calculated intergalactic photon densities to extend previous work on the absorption of high-energy Gamma-rays in intergalactic space owing to interactions with low-energy photons and the 2.7 K cosmic microwave background radiation. We calculate the optical depth of the universe, Tau , for Gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from 0 to 5. We also give an analytic fit with numerical coefficients for approximating (E(Gamma), z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z=0.117 and compare it with the spectrum observed by the HESS air Cerenkov Gamma-ray telescope array.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 648; Number 2, Part 1; 774-783
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2018-06-05
    Description: Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2018-06-05
    Description: The Microgravity Observation of Bubble Interactions (MOBI) experiment is working to better understand the physics of gas-liquid suspensions. To study such suspensions, researchers generate bubbles in a large cylindrical flow channel. Then, they use various types of instrumentation, including video imaging, to study the bubbly suspension. Scientists will need a camera view of the majority of the gas-liquid suspension inside of the couette in order to gather the information needed from the MOBI experiment. This will provide the scientists with a qualitative picture of the flow that may indicate flow instabilities or imperfect axial mixing inside the couette. These requirements pose a significant challenge because the imaging and lighting system must be confined to a very tight space since the space available on the International Space Station experiment racks is very limited. In addition, because of the large field of view needed and the detail needed to see the gas-liquid suspension behavior in the image, a digital video camera with high resolution (1024 by 1024 pixels) had to be used. Although the high-resolution camera will provide scientists with the image quality they need, it left little space on the experiment rack for the lighting system. Many configurations were considered for the lighting system, including front-lighting and back-lighting, but because of mechanical design limitations with the couette, back-lighting was not an option.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2018-06-05
    Description: NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2018-06-05
    Description: Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2018-06-05
    Description: The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2018-06-05
    Description: In 2004, President Bush outlined a new space exploration vision for NASA. The exploration programs will seek profound answers to questions of our origins, whether life exists beyond Earth, and how we could live in other worlds. In response, research projects from NASA s Fluid Physics Research Program were moved into the Exploration Systems Mission Directorate and realigned to support the major milestones of this directorate. A new goal of this research is to obtain an understanding of the physical phenomena that are important in the design of the many space-based and ground-based fluids systems that utilize multiphase flow, such as life support, propulsion, and power systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2018-06-06
    Description: The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z 〉 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z 〉 1.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2018-06-06
    Description: We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2018-06-06
    Description: The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2018-06-06
    Description: We present the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 micron emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation, usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the Holmberg II ULX. We find that the luminosity and the morphology of the line emission is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is radiation bounded both in the line of sight direction and to the west, and probably matter bounded to the east. Evidence for a massive black hole (BH) in this ULX is mounting. Detailed photoionization models favor an intermediate mass black hole of at least 85 Solar Mass as the ionization source for the [OIV] emission. We find that the spectral type of the companion star strongly affects the expected strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst galaxies containing black hole binaries.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2018-06-06
    Description: Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of approximately 2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of approximately 1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of approximately 2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly. errors in the measured disk temperature are approximately 0.5%.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: In order to analyse diffuse emission that fills the field of view, one must accurately characterize the instrumental backgrounds. For the XMM-Newton EPIC instrument these backgrounds include a temporally variable "quiescent" component. as well as the strongly variable soft proton contamination. We have characterized the spectral and spatial response of the EPIC detectors to these background components and have developed tools to remove these backgrounds from observations. The "quiescent" component was characterized using a combination of the filter-wheel-closed data and a database of unexposed-region data. The soft proton contamination was characterized by differencing images and spectra taken during flared and flare-free intervals. After application of our modeled backgrounds, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear spectral evidence of solar wind charge exchange emission. Using a large sample of blank sky data, we show that strong magnetospheric SWCX emission requires elevated solar wind fluxes; observations through the densest part of the magnetosheath are not necessarily strongly contaminated with SWCX emission.
    Keywords: Astrophysics
    Type: Astronomy and Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2018-06-06
    Description: We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2018-06-06
    Description: We present detailed time-averaged X-ray spectroscopy in the 0.5-10 keV band of the Seyfert 1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). The source had a factor approximately 3 higher 2-10 keV flux (approximately 1.2 x l0(exp -11) erg per square cm per s) than the historical minimum and a factor approximately 7 less than the historical maximum. The XIS spectrum of NGC 2992 can be described by several components. There is a primary continuum, modeled as a power-law with a photon index of Gamma = 1.57(sup +0.06) (sup -0.03) that is obscured by a Compton-thin absorber with a column density of 8.01(sup +0.6) (sup -0.5)x l0 (exp 21) per square cm. . There is another, weaker, unabsorbed power-law component (modeled with the same slope as the primary), that is likely to be due to the primary continuum being electron-scattered into our line-of-sight by a region extended on a scale of hundreds of parsecs. We measure the Thomson depth of the scattering zone to be Tau = 0.072 +/- 0.021. An optically-thin thermal continuum emission component, which probably originates in the same extended region, is included in the model and yields a temperature and luminosity of KT = 0.656(sup +0.088) (sup -0.0.61) keV and approximately 1.2 +/- 0.4 x l0 (exp 40) erg per s respectively. We detect an Fe K emission complex which we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level 〉 3 sigma. The broad Fe K alpha line has an equivalent width of 118(sup +32) (sup -61) eV and could originate in an accretion disk (with inclination angle greater than approximately 30 deg) around the putative central black hole. The narrow Fe K alpha line has an equivalent width of 1632(sup +47) (sup -26) eV and is unresolved (FWHM 〈 4630 km per s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in the line-of-sight, and that the mean (historically-averaged) continuum luminosity responsible for forming the line could be a factor of several higher than that measured from the data. We also detect the Fe K Beta line (corresponding to the narrow Fe K alpha line) with a high signal-to-noise ratio and describe a new robust method to constrain the ionization state of Fe responsible for the Fe K alpha and Fe K Beta lines that does not require any knowledge of possible gravitational and Doppler energy shifts affecting the line energies. For the distant line-emitting matter (e. g. the putative obscuring torus) we deduce that the predominant ionization state is lower than Fe VIII (at 99% confidence), conservatively taking into account residual calibration uncertainties in the XIS energy scale and theoretical and experimental uncertainties in the Fe K fluorescent line energies. From the limits on a possible Compton-reflection continuum it is likely that the narrow Fe K alpha and Fe K Beta lines originate in a Compton-thin structure.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2018-06-06
    Description: We report the discovery with XMM-Newton of quasiperiodic variability in the 0.2 - 10 keV X-ray flux from the ultraluminous X-ray source NGC 5408 X-1. The average power spectrum of all EPIC-pn data reveals a strong 20 mHz QPO with an average amplitude (rms) of 9%, and a coherence, Q identical with nu(sub 0)/sigma approximately equal to 6. In a 33 ksec time interval when the 20 mHz QPO is strongest we also find evidence for a 2nd QPO peak at 15 mHz, the first indication for a close pair of QPOs in a ULX source. Interestingly, the frequency ratio of this QPO pair is inconsistent with 3:2 at the 3 sigma level, but is consistent with a 4:3 ratio. A powerlaw noise component with slope near 1.5 is also present below 0.1 Hz with evidence for a break to a flatter slope at about 3 mHz. The source shows substantial broadband variability, with a total amplitude (rms) of about 30% in the 0.1 - 100 mHz frequency band, and there is strong energy dependence to the variability. The power spectrum of hard X-ray photons (greater than 2 keV) shows a "classic" flat-topped continuum breaking to a power law with index 1.5 - 2. Both the break and 20 mHz QPO are detected in the hard band, and the 20 mHz QPO is essentially at the break. The QPO is both strong and narrow in this band, having an amplitude (rms) of 15%, and Q approx. equal to 25. The energy spectrum is well fit by three components, a "cool" disk with kT = 0.15 keV, a steep power law with index 2.56, and a thermal plasma at kT = 0.87 keV. The disk, power law, and thermal plasma components contribute 35, 60, and 5% of the 0.3 - 10 keV flux, respectively. Both the timing and spectral properties of NGC 5408 X-1 are strikingly reminiscent of Galactic black hole systems at high inferred accretion rates, but with its characteristic frequencies (QPO and break frequencies) scaled down by a factor of 10 - 100. We discuss the implications of these findings in the context of models for ULXs, and their implications for the object's mass.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2018-06-06
    Description: We reinvestigate the generation and accumulation of magnetic flux in optically thin accretion flows around active gravitating objects. The source of the magnetic field is the azimuthal electric current associated with the Poynting-Robertson drag on the electrons of the accreting plasma. This current generates magnetic field loops which open up because of the differential rotation of the flow. We show through simple numerical simulations that what regulates the generation and accumulation of magnetic flux near the center is the value of the plasma conductivity. Although the conductivity is usually considered to be effectively infinite for the fully ionized plasmas expected near the inner edge of accretion disks, the turbulence of those plasmas may actually render them much less conducting due to the presence of anomalous resistivity. We have discovered that if the resistivity is sufficiently high throughout the turbulent disk while it is suppressed interior to its inner edge, an interesting steady-state process is established: accretion carries and accumulates magnetic flux of one polarity inside the inner edge of the disk, whereas magnetic diffusion releases magnetic flux of the opposite polarity to large distances. In this scenario, magnetic flux of one polarity grows and accumulates at a steady rate in the region inside the inner edge and up to the point of equipartition when it becomes dynamically important. We argue that this inward growth and outward expulsion of oppositely-directed magnetic fields that we propose may account for the approx. 30 min cyclic variability observed in the galactic microquasar GRS1915+105.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2018-06-06
    Description: The prime scientific objectives of the Rossi X-Ray Timing Explorer (RXTE) were the study of astrophysical compact objects: black holes (galactic and extragalactic), many types of neutron stars, and accreting white dwarfs. RXTE was successful in achieving its original observing objectives of large area and high time resolution observations with broadband (2-200 keV) spectra, scheduled flexibly enough to enable observations of targets of opportunity on any timescale greater than a few hours. These capabilities enabled qualitatively new discoveries about dynamical timescale phenomena related to neutron stars and black holes, phenomena which probe basic physics in the most extreme environments of gravity, density, and magnetic fields. RXTE has extended its lifetime by applying the proportional counter area selectively and maintains schedule flexibility by making use of the distribution of targets around the sky. Proposed future observations emphasize opportunity to discover and study additional millisecond pulsars, pursue the high frequency quasi-periodic oscillations in black hole transients, and connect high frequency phenomena with longer term characteristics. RXTE will continue to strongly support, for both galactic and extragalactic targets, combining RXTE observations with other wavelengths (from IR to TeV) or with other capabilities, such as high spectral resolution.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2018-06-06
    Description: Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October - November, 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolution of the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those measurement systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2018-06-06
    Description: We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2018-06-06
    Description: LISA will be able to detect gravitational waves from inspiralling massive black hole (MBH) binaries out to redshifts z 〉 10. If the binary masses and luminosity distances can be extracted from the Laser Interferometer Space Antenna (LISA) data stream, this information can be used to reveal the merger history of MBH binaries and their host galaxies in the evolving universe. Since this parameter extraction generally requires that LISA observe the inspiral for a significant fraction of its yearly orbit, carrying out this program requires adequate sensitivity at low frequencies, f 〈 10(exp -4) Hz. Using several candidate low frequency sensitivities, we examine LISA's potential for characterizing MBH binary coalescences at redshifts z 〉 1.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2018-06-06
    Description: Building on Nakar & Piran's analysis of the Amati relation relating gamma-ray burst peak energies E(sub p) and isotropic energies E(sub iso ) we test the consistency of a large sample of BATSE bursts with the Amati and Ghirlanda (which relates peak energies and actual gamma-ray energies E(sub gamma)) relations. Each of these relations can be exp ressed as a ratio of the different energies that is a function of red shift (for both the Amati and Ghirlanda relations) and beaming fraction f(sub B) (for the Ghirlanda relation). The most rigorous test, whic h allows bursts to be at any redshift, corroborates Nakar & Piran's r esult - 88% of the BATSE bursts are inconsistent with the Amati relat ion - while only l.6% of the bursts are inconsistent with the Ghirlan da relation if f(sub B) = 1. Modelling the redshift distribution resu lts in an energy ratio distribution for the Amati relation that is sh ifted by an order of magnitude relative to the observed distributions; any sub-population satisfying the Amati relation can comprise at mos t approx. 18% of our burst sample. A similar analysis of the Ghirland a relation depends sensitively on the beaming fraction distribution f or small values of f(sub B); for reasonable estimates of this distrib ution about a third of the burst sample is inconsistent with the Ghir landa relation. Our results indicate that these relations are an artifact of the selection effects of the burst sample in which they were f ound; these selection effects may favor sub-populations for which the se relations are valid.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2018-06-06
    Description: During its nine-year lifetime, the Energetic Gamma Ray Experiment Telescope (EGBET) on the Compton Gamma Ray Observatory (CGRO) detected 1506 cosmic photons with measured energy E〉10 GeV. Of this number, 187 are found within a 1 deg of sources that are listed in the Third EGRET Catalog and were included in determining the detection likelihood, flux, and spectra of those sources. In particular, five detected EGRET pulsars are found to have events above 10 GeV, and together they account for 37 events. A pulsar not included in the Third EGRET Catalog has 2 events, both with the same phase and in one peak of the lower-energy gamma-ray light-curve. Most of the remaining 1319 events appear to be diffuse Galactic and extragalactic radiation based on the similarity of the their spatial and energy distributions with the diffuse model and in the E〉100, MeV emission. No significant time clustering which would suggest a burst was detected.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: X-ray pulses with millisecond-long FWHM have been detected in RXTE (Rossi X-Ray Timing Explorer) satellite observations of Cyg X-1. Their identity as short- timescale variations in the X-ray luminosity of the source, and not stochastic variability in the X-ray flux, is established by their simultaneous occurrence and similar pulse structure in two independent energy bandpasses. The light-time distance corresponding to the timescale of their FWHM indicates that they originate in the inner region of the accretion disk around the system's black hole component. The fluence in the pulses can equal or exceed the fluence of the system's average continuous flux over the duration of the pulse's FWHM in several different bandpasses between 1 and 73 keV. Millisecond pulses are detected during both high and low luminosity states of Cyg X-1, and during transitions between luminosity states.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2018-06-06
    Description: Cosmic infrared background (CIB) contains information about galaxy luminosities over the entire history of the Universe and can be a powerful diagnostic of the early populations otherwise inaccessible to telescopic studies. Its measurements are very difficult because of the strong IR foregrounds from the Solar system and the Galaxy. Nevertheless, substantial recent progress in measuring the CIB and its structure has been made. The measurements now allow to set significant constraints on early galaxy evolution and, perhaps, even detect the elusive Population III era. We discuss briefly the theory behind the CIB, review the latest measurements of the CIB and its structure, and discuss their implications for detecting and/or constraining the first stars and their epochs.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2018-06-06
    Description: The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and 〉2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and 〉2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2018-06-06
    Description: The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2018-06-11
    Description: The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KC-135 and Other Microgravity Simulations; 9-14; NASA/TM-2005-213162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...