ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (44)
  • 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
  • Oceanography
  • Salinity
  • American Meteorological Society
  • MDPI Publishing
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
Collection
  • Articles  (44)
Source
Keywords
  • 1
    Publication Date: 2021-06-08
    Description: The Aegean water masses and circulation structure are studied via two large-scale surveys performed during the late winters of 1988 and 1990 by the R/V Yakov Gakkel of the former Soviet Union. The analysis of these data sheds light on the mechanisms of water mass formation in the Aegean Sea that triggered the outflow of Cretan Deep Water (CDW) from the Cretan Sea into the abyssal basins of the eastern Mediterranean Sea (the so-called Eastern Mediterranean Transient). It is found that the central Aegean Basin is the site of the formation of Aegean Intermediate Water, which slides southward and, depending on their density, renews either the intermediate or the deep water of the Cretan Sea. During the winter of 1988, the Cretan Sea waters were renewed mainly at intermediate levels, while during the winter of 1990 it was mainly the volume of CDW that increased. This Aegean water mass redistribution and formation process in 1990 differed from that in 1988 in two major aspects: (i) during the winter of 1990 the position of the front between the Black Sea Water and the Levantine Surface Water was displaced farther north than during the winter of 1988 and (ii) heavier waters were formed in 1990 as a result of enhanced lateral advection of salty Levantine Surface Water that enriched the intermediate waters with salt. In 1990 the 29.2 isopycnal rose to the surface of the central basin and a large volume of CDW filled the Cretan Basin. It is found that, already in 1988, the 29.2 isopycnal surface, which we assume is the lowest density of the CDW, was shallower than the Kassos Strait sill and thus CDW egressed into the Eastern Mediterranean.
    Description: Published
    Description: 1841-1859
    Description: JCR Journal
    Description: reserved
    Keywords: Aegean Sea ; Water Masses ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.
    Description: This work has been funded by the ENACT Project (Contract EVK2-CT2001-00117) for A. Bellucci and P. Di Pietro, and partially by the ENSEMBLES Project (Contract GOCE-CT-2003-505539) for A. Bellucci.
    Description: Published
    Description: 3785-3807
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean modelling ; data assimilation ; reanalysis ; upper ocean variability ; temperature ; Salinity ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Ensemble experiments are performed with five coupled atmosphere–ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar model-generated initial states, and common diagnostics of predictability are used. We find that variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also potentially predictable on interannual to decadal time scales, albeit with potential skill levels that are less than those seen for MOC variations. This intercomparison represents a step forward in assessing the robustness of model estimates of potential skill and is a prerequisite for the development of any operational forecasting system.
    Description: Published
    Description: 1195-1203
    Description: JCR Journal
    Description: reserved
    Keywords: Decadal Climate ; North Atlantic ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: When the U. S. Bureau of Fisheries, in cooperation with the Museum of Comparative Zoology, commenced the oceanographic survey of the Gulf of Maine in the summer of 1912 (Bigelow, 1925-1927), it was in the hope that this might later be extended to the coastal waters thence southward; eventually even as far as the Gulf of Mexico. Cruises carried out in connection with investigations of the biology of the mackerel, by the Fisheries' steamer "Albatross II" from 1927 to 1932, supplemented by those of the research ship "Atlantis" of the Woods Hole Oceanographic Institution, have made it possible to extend the detailed examination of the physical oceanography of the continental shelf as far as the offing of Chesapeake Bay, and to the offing of Cape Hatteras for some of the months. The present account of the temperature of the region will, it is hoped, be followed shortly by corresponding accounts of salinity, of circulation and of the dominant planktonic communities.
    Keywords: Ocean temperature ; Salinity ; Plankton ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 7687065 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008
    Description: The subtidal circulation of the southeast Greenland shelf is described using a set of highresolution hydrographic and velocity transects occupied in summer 2004. The main feature present is the East Greenland Coastal Current (EGCC), a low-salinity, highvelocity jet with a wedge-shaped hydrographic structure characteristic of other surface buoyancy-driven currents. The EGCC was observed along the entire Greenland shelf south of Denmark Strait, while the transect north of the strait showed only a weak shelf flow. This observation, combined with evidence from chemical tracer measurements that imply the EGCC contains a significant Pacific Water signal, suggests that the EGCC is an inner branch of the polar-origin East Greenland Current (EGC). A set of idealized laboratory experiments on the interaction of a buoyant current with a submarine canyon also supported this hypothesis, showing that for the observed range of oceanic parameters, a buoyant current such as the EGC could exhibit both flow across the canyon mouth or into the canyon itself, setting the stage for EGCC formation. Repeat sections occupied at Cape Farewell between 1997 and 2004 show that the alongshelf wind stress can also have a strong influence on the structure and strength of the EGCC and EGC on timescales of 2-3 days. Accounting for the wind-induced effects, the volume transport of the combined EGC/EGCC system is found to be roughly constant (~2 Sv) over the study domain, from 68°N to Cape Farewell near 60°N. The corresponding freshwater transport increases by roughly 60% over this distance (59 to 96 mSv, referenced to a salinity of 34.8). This trend is explained by constructing a simple freshwater budget of the EGCC/EGC system that accounts for meltwater runoff, melting sea-ice and icebergs, and net precipitation minus evaporation. Variability on interannual timescales is examined by calculating the Pacific Water content in the EGC/EGCC from 1984-2004 in the vicinity of Denmark Strait. The PW content is found to correlate significantly with the Arctic Oscillation index, lagged by 9 years, suggesting that the Arctic Ocean circulation patterns bring varying amounts of Pacific Water to the North Atlantic via the EGC/EGCC.
    Description: Funding for the cruise and analysis was provided by National Science Foundation grant OCE-0450658, which along with NSF grant OCE- 0095427 provided funds for my tuition and stipend as well.
    Keywords: Ocean currents ; Oceanography ; James Clark Ross (Ship) Cruise JR105
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: The interpretation of echoes collected by active remote-sensing systems, such as sonar and radar, is often ambiguous due to the complexities in the scattering processes involving the scatterers, the environment, and the sensing system. This thesis addresses this challenge using a combination of laboratory and fi eld experiments, theoretical modeling, and numerical simulations in the context of acoustic scattering by marine organisms. The unifying themes of the thesis are 1) quantitative characterization of the spectral, temporal, and statistical features derived from echoes collected using both broadband and narrowband signals, and 2) the interpretation of echoes by establishing explicit links between echo features and the sources of scattering through physics principles. This physics-based approach is distinct from the subjective descriptions and empirical methods employed in most conventional fisheries acoustic studies. The fi rst part focuses on understanding the dominant backscattering mechanisms of live squid as a function of orientation. The study provides the first broadband backscattering laboratory data set from live squid at all angles of orientation, and conclusively con firms the fluidlike, weakly-scattering material properties of squid through a series of detailed comparisons between data and predictions given by models derived based on the distorted-wave Born approximation. In the second part, an exact analytical narrowband model and a numerical broadband model are developed based on physics principles to describe the probability density function of the amplitudes of echo envelopes (echo pdf) of arbitrary aggregations of scatterers. The narrowband echo pdf model signi cantly outperforms the conventional mixture models in analyzing simulated mixed assemblages. When applied to analyze fish echoes collected in the ocean, the numerical density of sh estimated using the broadband echo pdf model is comparable to the density estimated using echo integration methods. These results demonstrate the power of the physics-based approach and give a rst-order assessment of the performance of echo statistics methods in echo interpretation. The new data, models, and approaches provided here are important for advancing the eld of active acoustic observation of the ocean.
    Description: Taiwan Merit Scholarship (NSC-095-SAF-I-564-021-TMS), Office of Naval Research (ONR; grants N00014-10-1-0127, N00014-08-1-1162, N00014-07-1-1034), National Science Foundation (NSF; grant OCE-0928801), Naval Oceanographic Offi ce (grant N62306007-D9002), WHOI Ocean Life Institute, and the WHOI Academic Programs O ffice funds.
    Keywords: Oceanography ; Seawater ; Acoustic properties
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 3829-3852, doi:10.1175/JCLI-D-16-0479.1.
    Description: This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.
    Description: Primary support for the study is provided by the NOAAModeling, Analysis, Predictions, and Projections (MAPP) Program’s Climate Reanalysis Task Force (CRTF) through Grant NA13OAR4310106.
    Description: 2017-11-02
    Keywords: Hydrologic cycle ; Precipitation ; Evaporation ; Salinity ; Water budget ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: The series of observations described in this report were planned with the double purpose of measuring the evaporation and transport of water vapor from the ocean into an unstable atmosphere, and of studying the diffusion processes operating in air of this stability class. Measured values of the evaporation from ocean surfaces were conspicuously absent from the meteorological literature until Craig and Montgomery (1949) published values for hydrostatically stable air. The present set of measurements extends our knowledge to include evaporation into a hydrostatically unstable air mass. In addition to evaporation values at the surface, net transports of water vapor at many levels up to 2000 meters have been measured.
    Keywords: Oceanography ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 4741003 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: With the advance in knowledge of oceanic circulation there now exists a demand for additional identifying properties which will serve to trace the origin and movements of water masses in the sea, and to check earlier conclusions based entirely on temperature and salinity distribution. Of all the known identifying properties (except temperature and salinity) oxygen appears to be the most useful, not only because of the ease with which it can be accurately measured at sea, but also because of the large amount of data available on its distribution in the open ocean.
    Keywords: Water ; Dissolved oxygen ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 1191233 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: With the opening of the Woods Hole Oceanographic Institution in July 1931, there was inaugurated a program of investigations in the deep waters of the western North Atlantic for which there had long been a great need. In contrast to most deep-sea investigations, which have had to be planned as single expeditions, the Institution was able to initiate a general program which could be carried out gradually in order to take advantage of knowledge gained during the course of the work. Suffcient funds having been provided for the continuous operation of its research vessel "Atlantis," work could be planned for all seasons of the year. Although these investigations have not been in progress for long and new data are continually being brought in by the "Atlantis," there are several reasons that make it seem desirable at this time to publish a preliminary report based on the completed temperature and salinity observations. In the first place, the problem of oceanic circulation is such that we cannot hope for a satisfactory solution for a long time to come. Moreover, it would be unwise to allow too much data to accumulate, because several years may pass before we can arrive at more important conclusions. Secondly, both the chemical and biological programs undertaken at the same time, require as a background the general scheme of circulation in the western North Atlantic as well as the distribution of temperature and salinity. It is, in fact, the necessity of taking into consideration the movements of the sea water which ties together the whole subject of oceanography. Therefore, it is the duty of those interested in ocean circulation to make available their findings as soon as possible for investigators of other problems in the same area. The "Atlantis" temperature and salinity observations discussed in these pages were planned with two main purposes in view. The first objective was an intensive study of seasonal changes along sections running from the southwestern corner of Nova Scotia to Bermuda and from Bermuda to the mouth of Chesapeake Bay.! This, of course, included an examination of fluctuations in the Gulf Stream, as well as of the variations in the water masses on each side of it. Second, there has been planned and partly carried out, a more general survey of the western North Atlantic, where accurate, deep stations have been sadly lacking.
    Keywords: Oceanography ; Ocean temperature ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 5943486 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2005
    Description: A moored profiler record from the western tropical North Atlantic provides the first continuous time series of temperature, salinity and velocity profiles in a thermohaline staircase. Variations in the intensity of layering and the evolution of layer properties are well documented during the 4.3 month record. Such staircases are the result of strong salt fingering at the interfaces between the mixed layers, and these data provide unique insights into the dynamics of salt fingers. In particular, a striking linear correlation between the temperature and salinity of the layers may be interpreted as resulting from vertical salt finger flux divergences. Data from this record allow new interpretations of previous work on this topic by McDougall (1991).
    Description: This research was supported by the National Science Foundation under grants OCE-0081502 and OCE-0350743
    Keywords: Ocean temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1980
    Description: Observational evidence of seasonal variability below the main thermocline in the eastern North Atlantic is described, and a theoretical model of oceanic response to seasonally varying windstress forcing is constructed to assist in the interpretation of the observations. The observations are historical conductivity-temperature-depth data from the Bay of Biscay region (2° to 20°W, 42° to 52°N), a series of eleven cruises over the three years 1972 through 1974, spaced approximately three months apart. The analysis of the observations utilizes a new technique for identifying the adiabatically leveled density field corresponding to the observed density field. The distribution of salinity anomaly along the leveled surfaces is examined, as are the vertical displacements of observed density surfaces from the leveled reference surfaces, and the available potential energy. Seasonal variations in salinity anomaly and vertical displacement occur as westward propagating disturbances with zonal wavelength 390 (±50) km, phase 71 (±30) days from 1 January, and maximum amplitudes of ±30 ppm and ±20 db respectively. The leveled density field varies seasonally with an amplitude corresponding to a thermocline displacement of ±15 db. The observations are consistent with the predictions of a model in which an ocean of variable stratification with a surface mixed layer and an eastern boundary is forced by seasonal changes in a sinusoidal windstress pattern, when windstress parameters calculated from the observations of Bunker and Worthington (1976) are applied.
    Description: This work was supported by the Office of Naval Research under contract N00014~76-C-197, NR 083-400.
    Keywords: Oceanography ; Ocean-atmosphere interaction ; Ocean circulation ; Energy budget (Geophysics)
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2009
    Description: Mechanisms for the tidal component of salt flux in the Hudson River estuary are investigated using a 3D numerical model. Variations with river discharge, fortnightly tidal forcing, and along channel variability are explored. Four river discharge conditions were considered: 1200 m3 s-1, 600 m3 s-1, 300 m3 s-1, 150 m3 s-1. Tide-induced residual salt flux was found to be variable along the channel, with locations of counter-gradient flux during both neap and spring tide. The magnitude of tidal salt flux scales with the river flow and has no clear dependence on the spring-neap tidal forcing. The diffusive fraction, ν, has a value of -0.25 to 0.46 in the lower estuary, increasing to -0.23 to 1 near the head of salt. The phase lag between tidal salinity and velocity is analyzed at three cross-sections with: large positive, negative, and weak tidal salt flux. The composite Froude number, G2, is calculated along the channel and indicates nearly ubiquitous supercritical flow for maximum flood and ebb during both neap and spring tides. Subcritical flow occurs during slack water and at geographically locked locations during neap floods. Application of two-layer, frictional hydraulic theory reveals how variations in channel width and depth generate tidal asymmetries in cross-sectional salinity, the key ingredient of tidal salt flux.
    Keywords: Salinity ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1977
    Description: Millimeter scale fluctuations in refractive index recorded with a freely sinking shadowgraph system are correlated with finestructure profiles of temperature, salinity and density and compared to models of ocean turbulence. Images with vertically aligned periodic structure, called bands, are identified as salt fingers, while others with chaotic structure are turbulent. Images are found on interfaces that are 1-10m thick and have gradients at least several times the mean. From 6 profiles in the Mediterranean Outflow region of the eastern North Atlantic between 1.0 and 1.9 km depth, 398 interfaces have been identified and a significant fraction (about 1/3) of these have detectable images. High contrast images, including bands, are most often found below warm, saline intrusions and within stepped structure where there is a regular sequence of homogeneous mixed layers separated by interfaces. As the interfacial salinity gradient increases in the sense that allows salt finger convection, the fraction of interfaces with images increases. The horizontal spacing of bands (~5 mm) is consistent with calculated salt finger diameter. The calculated and observed length of ocean salt fingers (10-20 cm) is a small fraction of the interface thickness. High levels of small scale variability in the shadowgraphs is reflected in high levels of variance in the finestructure band of the temperature spectra. The temperature gradient spectra have a slope of -1, indicative of turbulence affected by buoyancy forces, and there is a relative peak at a wavelength near the observed salt finger length. The high contrast images are found at interfaces within the enhanced mean salinity gradient below saline intrusions. For very strong salinity gradients there is a solitary interface with intense images, but for weaker mean gradients the convection takes the form of stepped structure. The steps may evolve from the solitary interface as the salinity gradient is run down by salt finger convection. This study identifies parts of the ocean where salt finger convection is prevalent and includes the first comprehensive description of salt fingers in the ocean. Existing models of salt fingers are evaluated in light of ocean observations, and models of ocean turbulence are compared to measurements.
    Description: Support from ONR contract N00014-66-C0241 NR. 083-004 is also acknowledged.
    Keywords: Ocean temperature ; Oceanic mixing ; Salinity ; Turbulence ; Atlantis II (Ship : 1963-) Cruise AII76
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 133–145, doi:10.1175/2007JPO3782.1.
    Description: Five ice-tethered profilers (ITPs), deployed between 2004 and 2006, have provided detailed potential temperature θ and salinity S profiles from 21 anticyclonic eddy encounters in the central Canada Basin of the Arctic Ocean. The 12–35-m-thick eddies have center depths between 42 and 69 m in the Arctic halocline, and are shallower and less dense than the majority of eddies observed previously in the central Canada Basin. They are characterized by anomalously cold θ and low stratification, and have horizontal scales on the order of, or less than, the Rossby radius of deformation (about 10 km). Maximum azimuthal speeds estimated from dynamic heights (assuming cyclogeostrophic balance) are between 9 and 26 cm s−1, an order of magnitude larger than typical ambient flow speeds in the central basin. Eddy θ–S and potential vorticity properties, as well as horizontal and vertical scales, are consistent with their formation by instability of a surface front at about 80°N that appears in historical CTD and expendable CTD (XCTD) measurements. This would suggest eddy lifetimes longer than 6 months. While the baroclinic instability of boundary currents cannot be ruled out as a generation mechanism, it is less likely since deeper eddies that would originate from the deeper-reaching boundary flows are not observed in the survey region.
    Description: The engineering design work for the ITP was initiated by the Cecil H. and Ida M. Green Technology Innovation Program (an internal program at the Woods Hole Oceanographic Institution). Prototype development and construction were funded jointly by the U.S. National Science Foundation (NSF) Oceanographic Technology and Interdisciplinary Coordination Program and Office of Polar Programs (OPP) under Award OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Award ARC-0519899 and internal WHOI funding.
    Keywords: Arctic ; Eddies ; Profilers ; Stability ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 1117-1130, doi:10.1175/JTECH2016.1.
    Description: Sensor response corrections for two models of Sea-Bird Electronics, Inc., conductivity–temperature–depth (CTD) instruments (the SBE-41CP and SBE-41) designed for low-energy profiling applications were estimated and applied to oceanographic data. Three SBE-41CP CTDs mounted on prototype ice-tethered profilers deployed in the Arctic Ocean sampled diffusive thermohaline staircases and telemetered data to shore at their full 1-Hz resolution. Estimations of and corrections for finite thermistor time response, time shifts between when a parcel of water was sampled by the thermistor and when it was sampled by the conductivity cell, and the errors in salinity induced by the thermal inertia of the conductivity cell are developed with these data. In addition, thousands of profiles from Argo profiling floats equipped with SBE-41 CTDs were screened to select examples where thermally well-mixed surface layers overlaid strong thermoclines for which standard processing often yields spuriously fresh salinity estimates. Hundreds of profiles so identified are used to estimate and correct for the conductivity cell thermal mass error in SBE-41 CTDs.
    Description: The National Ocean Partnership Program and the National Oceanic and Atmospheric Administration (NOAA) Office of Oceanic and Atmospheric Research funded this analysis. The ITP data were acquired under National Science Foundation (NSF) Grant OCE0324233.
    Keywords: Instrumentation ; Profilers ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 6489–6502, doi:10.1175/JCLI-D-15-0143.1.
    Description: The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.
    Description: This research was supported by NASA Grant NNX12AF59GS03.
    Description: 2016-02-15
    Keywords: Climate change ; Climate prediction ; Hydrologic cycle ; Salinity ; Water budget ; Water vapor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: During the past four years a deliberate effort has been made at the Woods Hole Oceanographic Institution to devise methods of kinematic observation generally suited to the needs of oceanographers. One result of this work, the electromagnetic method, has been brought from the experimental stage to one of useful maturity. Many of the theoretical potentialities of the method are still to be explored and developed. Nevertheless it seems likely that this remaining work may be done more soundly if present developments of the theory and instrumentation are made available for use and evaluation by, others. These studies in methods of kinematic observation have been supported mainly under the provisions of Bureau of Ships Contract NObs-2083, and Office of Naval Research Contract N6onr-277-1. This support and the assistance of the Naval Ordnance Laboratory, the Hydrographic Office (Oceanographic Division), the United States Coast Guard, and the David Taylor Model Basin of the United States Navy is gratefully acknowledged.
    Keywords: Ocean circulation ; Ocean currents ; Tides ; Water current meters ; Oceanographic instruments ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 4668471 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2010): 85-102, doi:10.1175/2009JPO4168.1.
    Description: The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in the coming years, this study attempted to revisit the Saunders concept and to utilize presently available air–sea forcing datasets to analyze, understand, and interpret the effect of the salty skin and its implication for remote sensing of ocean salinity. Similar to surface cooling, the skin salinification would occur primarily at low and midlatitudes in regions that are characterized by low winds or high evaporation. On average, the skin is saltier than the interior water by 0.05–0.15 psu and cooler by 0.2°–0.5°C. The cooler and saltier skin at the top is always statically unstable, and the tendency to overturn is controlled by cooling. Once the skin layer overturns, the time to reestablish the full increase of skin salinity was reported to be on the order of 15 min, which is approximately 90 times slower than that for skin temperature. Because the radiation received from a footprint is averaged over an area to give a single pixel value, the slow recovery by the salt diffusion process might cause a slight reduction in area-averaged skin salinity and thus obscure the salty skin effect on radiometer retrievals. In the presence of many geophysical error sources in remote sensing of ocean salinity, the salt enrichment at the surface skin does not appear to be a concern.
    Keywords: Salinity ; Precipitation ; Evaporation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1231-1243, doi:10.1175/2008JPO4087.1.
    Description: As a driving parameter is slowly altered, thermohaline ocean circulation models show either a smooth evolution of a mode of flow or an abrupt transition of temperature and salinity fields from one mode to another. An abrupt transition might occur at one value or over a range of the driving parameter. The latter has hysteresis because the mode in this range depends on the history of the driving parameter. Although assorted ocean circulation models exhibit abrupt transitions, such transitions have not been directly observed in the ocean. Therefore, laboratory experiments have been conducted to seek and observe actual (physical) abrupt thermohaline transitions. An experiment closely duplicating Stommel’s box model possessed abrupt transitions in temperature and salinity with distinct hysteresis. Two subsequent experiments with more latitude for internal circulation in the containers possessed abrupt transitions over a much smaller range of hysteresis. Therefore, a new experiment with even more latitude for internal circulation was designed and conducted. A large tank of constantly renewed freshwater at room temperature had a smaller cavity in the bottom heated from below with saltwater steadily pumped in. The cavity had either a salt mode, consisting of the cavity filled with heated salty water with an interface at the cavity top, or a temperature mode, in which the heat and saltwater were removed from the cavity by convection. There was no measurable hysteresis between the two modes. Possible reasons for such small hysteresis are discussed.
    Description: Support is gratefully acknowledged from the Woods Hole Oceanographic Institution Climate Change Institute, the National Science Foundation, Physical Oceanography Section under Grant OCE-0081179, and the Paul M. Fye Chair of the Woods Hole Oceanographic Institution.
    Keywords: Thermohaline circulation ; Experimental design ; Ocean circulation ; Temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2016
    Description: Eddies in the ocean move westwards. Those shed by western boundary currents must then interact with continental shelf-slope topography at the western boundary. The presence of other eddies and mean lows complicates this simple picture, yet satellite images show that mesoscale eddies translating near the shelfbreak routinely affect the continental shelves of the Mid-Atlantic Bight, the Gulf of Mexico etc. The consequent cross-shelfbreak transports are currently of unknown importance to shelf budgets of heat, salt and volume. Thus motivated, this thesis uses idealized continuously stratified numerical experiments to explore eddy-slope interactions under four questions: 1. Can the continental slope prevent an eddy from reaching the shelfbreak? 2. What is the structure of the eddy-driven offshore low? 3. How is the continental shelf affected by an eddy at the shelfbreak? 4. Given surface observations, can one estimate the volume of water transported across the shelfbreak? The experiments show that the efficiency of Rossby wave radiation from the eddy controls whether it can cross isobaths: by radiating energy the eddy becomes shallow enough to move into shallower water. For wide continental slopes, relative to an eddy diameter, a slope can prevent an anticyclone from reaching the shelfbreak by shutting down such radiation. For narrow continental slopes, the interaction repeatedly produces dipoles, whose cyclonic halves contain shelf-slope water stacked over eddy water. The formation of such cyclones is explained. Then, the structure of shelf lows forced by the eddy are studied: their vertical structures are rationalized and scalings derived for their cross-isobath scales; for example, the extent to which the eddy influences the shelf. A recipe for estimating cross-isobath transports based on eddy surface properties is put forward. Finally, the findings are tested against observations in the Middle Atlantic Bight of the northeastern United States.
    Description: I acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. The research presented here was funded by National Science Foundation grants OCE-1059632 and OCE-1433953. Funding support from the Academic Programs Oice, WHOI is also gratefully acknowledged.
    Keywords: Eddies ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: The New York Bight consists of the waters lying between Cape May, New Jersey, and Montauk Point, Long Island. A portion of the general southwesterly current known as the Coastal Drift lies in the seaward part of the Bight. Inshore from the Coastal Drift is an area of complex hydrography where the combined outflows of the Hudson River and other rivers enter the sea. In the region where the New Jersey and Long Island coastlines converge, an area 25 nautical miles on each side has been studied at all seasons of the year. This area extends from Sandy Hook southward to a point off Seaside Heights, eastward to 73°15' W longitude, north to the Long Island shore, and westward to Rockaway Inlet. The depth of water in the area averages about 90 feet, except in the innermost part of the Hudson Canyon which runs roughly northwest-southeast across most of the survey area. In the Canyon, depths in excess of 240. feet are found within the limits of the area studied. The hydrographic conditions in the area are in essence similar to those off the mouths of other large rivers. The combined flows of the Hudson and other rivers entering the surveyed area discharge enough fresh water annually to replace about one-half of the total volume of water under the 600 square miles of sea surface extensively surveyed. The salinity within the area is nearly as high as that of adjacent coastal water, however, and the actual quantity of river water within the area at any time rarely exceeds one percent of the total volume of water. Quantitative evaluation of these factors has led to the conclusion that there is an active circulation within the area which rapidly disperses the introduced river effluent. Many surveys of coastal and estuarine waters have been made. Outstanding among these are the survey of the River Tees, (1931, 1935), of the Tamar Estuary, (Hartley and Spooner, 1938; Milne, 1938), and of Alberni Inlet, (Tully, 1949). The general principles of estuarine circulations may be summarized as follows: In order to remove the added river water there must be a non-tidal drift of mixed water in a net seaward direction. When river flow remains constant, a steady state distribution of fresh and salt water throughout the estuary is attained, and at such times the net transport of river water seaward through any complete cross section of the estuary exactly equals the contribution of fresh water from the river during the same interval of time. As the mixture containing the river water moves seaward it gets progressively more saline, as additional sea water is entrained. In order to provide this sea water there must be a counter drift having a net flow in a landward direction. Superimposed on these necessary parts of the circulation are tidal and wind currents. The velocities of the tidal currents are commonly much greater than the velocity of the non-tidal drift, making the latter difficult to measure directly. It can be inferred, however, from the distribution of river water, as derived from the salinity distribution. Using the river water in this way we have evaluated the exchanges of the waters within the New York Bight. Tully (1949) has analyzed the circulation in Alberni Inlet by similar methods. Tidal current measurements made by the Coast and Geodetic Survey at various locations in the northwestern corner of the surveyed area are summarized by Marmer (1935). At Scotland Lightship, which is the location of the stations at the western end of Section A in Figure 1, the total excursion which results from the flood or ebb tidal currents is less than two miles. The currents at Ambrose Lightship, about five miles to the eastward, produce displacements only about half as great. The tidal displacements throughout the rest of the area are presumed to be less than these. The pattern of distribution of properties will be displaced, therefore, a distance less than ±1 mile at various stages of the tide. This distance is small in comparison to the size of the area surveyed, especially when considering the fact that distances between stations ranged from 5 to 8 miles. It was unnecessary, therefore, to attempt to take comparable stations at similar stages of the tide. Other considerations, beside its interesting hydrography, have contributed to the choice of this area for study. Because it is adjacent to centers of dense population and heavy industrial concentration, the New York Bight serves the conflicting purposes of waste disposal and recreation. Sewer effluents and industrial wastes enter the area by way of the rivers. Sewage sludges are barged out and dumped within the region studied. During the period covered by our surveys, The National Lead Company commenced operations to barge and discharge at sea the waste from its titanium plant at Sayreville, New Jersey. Since iron was a major constituent of this waste, analyses for iron in the water were made at each station, and the results have been valuable in checking the rate of the circulation which was computed from the distribution of river effluent. The New York Bight is also used extensively for recreational purposes. Because the area is readily and cheaply accessible by public transportation it must serve the recreational demands of a large part of the population of metropolitan New York. Sport fishing, bathing and boating are the principal recreational activities. Small but valuable commercial fisheries for shellfish and fin-fish also exist. The purpose of this study was to investigate the hydrographic processes in the New York Bight since they have an important bearing on the general problems of coastal oceanography and a knowledge of them should lead to a more successful evaluation and utilization of the area for the diverse purposes it must serve.
    Keywords: Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 2479559 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2003
    Description: This thesis utilizes field data from the Fraser River Estuary, a highly stratified system located in southwestern British Columbia, Canada, to investigate the nature of mixing processes in a highly stratified environment, and to extend two-dimensional hydraulic theory to a three dimensional environment. During the late ebb, a stationary front exists at the Fraser mouth. Although densimetric Froude numbers in the vicinity of the front are supercritical in a frame of reference parallel to the local streamlines, the front itself is oriented such that the value of the Froude number is equal to the critical value of unity when taken in a frame of reference perpendicular to the front. This observation presents a robust extension of established two-dimensional, two-layer hydraulic theory to thee dimensions, and implies similarity with trans-sonic flows, in that a Froude angle can be used to identify critical conditions in a manner similar to the Mach angle. Mixing processes were evaluated at the mouth during the late ebb using a control volume approach to isolate mean vertical entrainment processes from turbulent processes, and quantify the vertical turbulent salt and momentum fluxes. Observed turbulent dissipation rates are high, on the order of 10-3 m2s.3, with vertical entrainment velocities on the order of 2x10-3 m's'l. Mixing efficiencies, expressed as flux Richardson numbers, are confined within a range from 0.15 to 0.2, at gradient Richardson number values between 0.2 and 0.25. These results are consistent with previous laboratory studies, but represent energetic conditions that are several orders of magnitude higher. In the estuarine channel, the variability of mixing processes was investigated through the tidal cycle using control volume and overturn scale methods. Spatially, mixing was observed to be more intense near a width constriction on the order of25%. Temporally, more dominant mixing was observed during ebbs, due to increases in both vertical shear and stratification. Mixing is active and important throughout the tidal cycle, and was found to be the dominant process responsible for removing salt from the estuarine channel during the ebb.
    Description: This research was funded by Office of Naval Research grants N000-14-97-10134 and N000-14-97-10566, National Science Foundation grant OCE-9906787, a National Science Foundation graduate fellowship, and the WHOI Academic Programs Office.
    Keywords: Tidal currents ; Salinity ; Hydrodynamics ; Clifford A. Barnes (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009.
    Description: This thesis examines the nature of eddy-mean flow interactions in western boundary current jets and recirculation gyre dynamics from both theoretical and observational perspectives. It includes theoretical studies of eddy-mean flow interactions in idealized configurations relevant to western boundary current jet systems, namely (i) a study of the mechanism by which eddies generated from a localized forcing drive mean recirculation gyres through the process of nonlinear rectification; and (ii) a study of the role of eddies in the downstream evolution of a baroclinic jet subject to mixed instabilities. It also includes an observational analysis to characterize eddy-mean flow interactions in the Kuroshio Extension using data from the downstream location of maximum eddy kinetic energy in the jet. New insights are presented into a rectification mechanism by which eddies drive the recirculation gyres observed in western boundary current systems. Via this mechanism, eddies drive the recirculations by an up-gradient eddy potential vorticity flux inside a localized region of eddy activity. The effectiveness of the process depends on the properties of the energy radiation from the region, which in turn depends on the population of waves excited. In the zonally-evolving western boundary current jet, eddies also act to stabilize the unstable jet through down-gradient potential vorticity fluxes. In this configuration, the role of eddies depends critically on their downstream location relative to where the unstable time-mean jet first becomes stabilized by the eddy activity. The zonal advection of eddy activity from upstream of this location is fundamental to the mechanism permitting the eddies to drive the mean flows. Observational results are presented that provide the first clear evidence of a northern recirculation gyre in the Kuroshio Extension, as well as support for the hypothesis that the recirculations are, at least partially, eddy-driven. Support for the idealized studies’ relevance to the oceanic regime is provided both by indications that various model simplifications are appropriate to the observed system, as well as by demonstrated consistencies between model predictions and observational results in the downstream development of time-mean and eddy properties.
    Description: Funding was for this research and my education was provided by the MIT Presidential Fellowship and NSF grants OCE-0220161 and OCE-0825550. The financial assistance of the Houghton Fund, the MIT Student Assistance Fund, and WHOI Academic Programs is also gratefully acknowledged.
    Keywords: Ocean currents ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 753-770, doi:10.1175/2007JPO3808.1.
    Description: A tidally and cross-sectionally averaged model based on the temporal evolution of the quasi-steady Hansen and Rattray equations is applied to simulate the salinity distribution and vertical exchange flow along the Hudson River estuary. The model achieves high skill at hindcasting salinity and residual velocity variation during a 110-day period in 2004 covering a wide range of river discharges and tidal forcing. The approach is based on an existing model framework that has been modified to improve model skill relative to observations. The external forcing has been modified to capture meteorological time-scale variability in salinity, stratification, and residual velocity due to sea level fluctuations at the open boundary and along-estuary wind stress. To reflect changes in vertical mixing due to stratification, the vertical mixing coefficients have been modified to use the bottom boundary layer height rather than the water depth as an effective mixing length scale. The boundary layer parameterization depends on the tidal amplitude and the local baroclinic pressure gradient through the longitudinal Richardson number, and improves the model response to spring–neap variability in tidal amplitude during periods of high river discharge. Finally, steady-state model solutions are evaluated for both the Hudson River and northern San Francisco Bay over a range of forcing conditions. Agreement between the model and scaling of equilibrium salinity intrusions lends confidence that the approach is transferable to other estuaries, despite significant differences in bathymetry. Discrepancies between the model results and observations at high river discharge are indicative of limits at which the formulation begins to fail, and where an alternative approach that captures two-layer dynamics would be more appropriate.
    Description: This research was supported by the Hudson River Foundation Grant 005/03A, NSF Grant OCE-0452054, and by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the J. Seward Johnson Fund.
    Keywords: Estuaries ; Salinity ; Rivers ; Tides ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2680-2682, doi:10.1175/2009JPO4069.1.
    Description: Some (not all) of the oceanographic literature slightly miscalculates the vertical velocity (w) and diffusive salt flux induced by evaporation (E) and precipitation (P) at the sea surface. Short, simple, physical derivations are presented to show that, for a sea surface h = h(x, y, t) varying in space and time, 1) w = VH · h + ∂h/∂t + ρF(E − P)/ρ, where VH is the horizontal component of the aggregate parcel velocity, and ρF and ρ are the densities of freshwater and surface seawater, respectively; and 2) the vertical diffusive salt flux at the sea surface (whether molecular or turbulent) is −ρFS(E − P), where S is the surface salinity.
    Keywords: Evaporation ; Precipitation ; Salinity ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1988
    Description: A portion of the northeast Pacific ocean was chosen within which to evaluate and use altimetric data from the U.S. Navy Geodetic Satellite GEOSAT. The zero-order accuracy of the major GEOSAT geophysical data record (GDR) channels was verified, and occasional gaps in the altimeter coverage were noted. GEOSAT'S 17-day repeat orbit allowed use of collinear-track processing to create profiles of the difference between the sea surface height along a given satellite repeat, and the mean sea surface height along that repeat's groundtrack. Detrending of sea surface bias and tilt on each repeat reduced orbit and other long wavelength errors in the difference profiles. The corrections provided on the GEOSAT GDR were examined for their effects on the difference profiles of three test arcs. It was found that only the ocean tide, electromagnetic bias, and inverted barometer corrections varied enough over the arc lengths (~4400 km) to have any noticeable effect on the difference profiles. Only the ocean tide correction was accurate enough to warrant using it to adjust the sea surface heights. The recommended processing of GEOSAT data for the area included making the ocean tide correction, three-point block averaging successive sea surface heights, and forming the mean height profiles from 18 repeat cycles (to reduce aliasing of the M2 tidal component). A set of difference proftles for one GEOSAT arc indicated that a reasonable estimate of GEOSAT's system precision was -4.5 cm (RMS). The mid wavelength range (100-500 km) of these profiles was found to be the only range in which oceanic mesoscale features could be separated from altimeter errors. Mean alongtrack wavenumber spectra of oceanic variability for two GEOSAT arcs were compared with a SEASAT-derived regional spectrum of Fu (1983). Agreement was good, with GEOSAT showing less system noise at short wavelengths, and greater oceanic variability at long wavelengths. The GEOSAT spectra were fit well by a k-1.5 slope at wavelengths from 100 to 1000 km. Sea surface temporal variability as a function of location was compared with the SEASAT results of Cheney et al. (1983). Qualitative agreement was excellent and quantitative differences were largely accounted for. GEOSAT picked up the variability of the major current systems of the northeast Pacific, including the Alaskan, Californian, and North Equatorial currents. Error bounds on GEOSAT-derived oceanic variability showed that the effects of uncorrected electromagnetic bias, inverted barometer, and wet troposphere were significant. Further work in the areas of error modelling, orbit determination, and geoid calculation were called for.
    Keywords: Geodetic satellites ; Scientific satellites ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: The present paper forms a sequel to the account of the temperature of the same region (Bigelow, 1933)... the continental shelf between the offings of Cape Cod (longitude about 70°) and Chesapeake Bay;-extended southward, for occasional months, to the offing of Cape Hatteras; and with such discussion of conditions along the continental slope as is justified by occasional profiles.
    Keywords: Ocean temperature ; Salinity ; Plankton ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 5286358 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: The sinking flux of particles is an important removal mechanism of carbon from the surface ocean as part of the biological pump and can play a role in cycling of other chemical species. This work dealt with improving methods of measuring particle export and measuring export on different scales to assess its spatial variability. First, the assumption of 238U linearity with salinity, used in the 238U–234Th method, was reevaluated using a large sample set over a wide salinity range. Next, neutrally buoyant and surface-tethered sediment traps were compared during a three-year time series in the subtropical Atlantic. This study suggested that previously observed imbalances between carbon stocks and fluxes in this region are not due to undersampling by traps. To assess regional variability of particle export, surface and water-column measurements of 234Th were combined for the first time to measure fluxes on ~20 km scales. Attempts to relate surface properties to particle export were complicated by the temporal decoupling of production and export. Finally, particle export from 234Th was measured on transects of the Atlantic Ocean to evaluate basin-scale export variability. High-resolution sampling through the water-column allowed for the identification of unique 234Th features in the intermediate water column.
    Description: I was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant NNX10AO72H). Specific projects were funded by grants from the National Science Foundation, including Carbon Flux Through the Twilight Zone – New Tools to Measure Change (OCE-0628416), WAPflux – New Tools to Study the Fates of Phytoplankton Production in the West Antarctic Peninsula (ANT-0838866), and GEOTRACES Atlantic Section: Trace Element Sources and Sinks Elucidated by Short- Lived Radium and Thorium Isotopes (OCE-0925158).
    Keywords: Salinity ; Sediment transport ; Laurence M. Gould (Ship) Cruise ; Nathaniel B. Palmer (Ship) Cruise ; Knorr (Ship : 1970-) Cruise KN199-4
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: Dispersion in estuaries sets the length of salinity intrusion and the horizontal mixing rate of waterborne constituents, including larvae, nutrients, sediments, and contaminants. While bulk calculations of dispersion are readily estimated using traditional field measurements, the mechanisms contributing to the total dispersion are difficult to identify because they require high temporal and spatial resolution to measure. Recent advances in field techniques and numerical modeling have enabled the isolated study of various mechanisms contributing to dispersion, many of which vary on tidal time-scales and over small spatial scales. The objective of this thesis is to use a combination of high-resolution field measurements and numerical modeling to determine the mechanisms of dispersion that maintain the salt balance in the North River (Marshfield, MA), a tidally-dominated salt marsh estuary with complex topography. First, a field campaign was conducted to determine the dispersion associated with the out-of-phase exchange between tributary creeks and the main channel. Then, numerical simulations of an idealized estuary were conducted and a novel quasi-Lagrangian approach was applied to analyze the sources of dispersive salt fluxes throughout the estuary. A second field campaign was conducted to evaluate the spatial variability of shear dispersion, particularly near regions of abrupt topographic variations. The key result from this thesis is obtained through the first application of the theoretical moving plane framework of Dronkers & van de Kreeke (1986), which confirms quantitatively that all landward salt flux at a fixed location must result from spatial correlations in velocity and salinity within a tidal excursion of the fixed location. Based on this result, the sources of the landward salt flux can be directly identified based on the spatial and tidal variations of shear dispersion, which can vary strongly due to its dependence on the local tidal currents, along-channel salinity gradient, and bathymetry. This thesis identifies and quantifies various mechanisms of topographically-induced tidal dispersion and thus highlights the dominant role of topography in controlling the processes that contribute to mixing and transport in short, tidally-energetic estuaries.
    Description: The work presented in this thesis was funded largely by the National Science Foundation through a Graduate Student Research Fellowship (No. 1122374) in addition to NSF Grants OCE-1634490 and OCE-2123002. Additional funding was also provided from WHOI through the Michael J. Kowalski Fellowship for Ocean Science & Engineering and from MIT through an OGE Diversity Fellowship.
    Keywords: Estuary ; Salinity ; Dispersion
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-01-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1705-1730, https://doi.org/10.1175/jpo-d-21-0243.1.
    Description: Formation and evolution of barrier layers (BLs) and associated temperature inversions (TIs) were investigated using a 1-yr time series of oceanic and air–sea surface observations from three moorings deployed in the eastern Pacific fresh pool. BL thickness and TI amplitude showed a seasonality with maxima in boreal summer and autumn when BLs were persistently present. Mixed layer salinity (MLS) and mixed layer temperature (MLT) budgets were constructed to investigate the formation mechanism of BLs and TIs. The MLS budget showed that BLs were initially formed in response to horizontal advection of freshwater in boreal summer and then primarily maintained by precipitation. The MLT budget revealed that penetration of shortwave radiation through the mixed layer base is the dominant contributor to TI formation through subsurface warming. Geostrophic advection is a secondary contributor to TI formation through surface cooling. When the BL exists, the cooling effect from entrainment and the warming effect from detrainment are both significantly reduced. In addition, when the BL is associated with the presence of a TI, entrainment works to warm the mixed layer. The presence of BLs makes the shallower mixed layer more sensitive to surface heat and freshwater fluxes, acting to enhance the formation of TIs that increase the subsurface warming via shortwave penetration.
    Description: SK is supported by JSPS Overseas Research Fellowships. JS and SK are supported by NASA Grant 80NSSC18K1500. JTF and the mooring deployment were funded by NASA Grants NNX15AG20G and 80NSSC18K1494. DZ is supported by NASA Grant 80NSSC18K1499. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution 2021-1152. This is PMEL Contribution 5268.
    Description: 2023-01-27
    Keywords: Ocean ; North Pacific Ocean ; Tropics ; Entrainment ; Oceanic mixed layer ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 789-806, doi:10.1175/JTECH-D-18-0244.1.
    Description: Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.
    Description: This study has been conducted using EU Copernicus Marine Service Information and was supported by the European Union within the EU Copernicus Marine Service In Situ phase-I and phase-II contracts led by Ifremer. The publication was also supported by SOERE CTDO2 in France. The Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (see http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). The marine mammal data were collected and made freely available by the International MEOP Consortium and the national programs that contribute to it (see http://www.meop.net; https://doi.org/10.17882/45461). Aleix Gelabert and Dídac Costa were the skippers of the OPOO, sponsored by the Intergovernmental Oceanographic Commission (UNESCO) and Pharmaton. The BWR is a periodic oceanic race organized by the Fundació Navegació Oceànica de Barcelona (FNOB). Reviewer D. Briand provided some useful comments on the final version of the draft paper before submission.
    Description: 2020-11-04
    Keywords: Ocean ; Climatology ; Salinity ; Temperature ; Data quality control ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: This paper is a discussion of possible discrepancies in computations of ocean currents (based on horizontal variations of dynamic topography calculated from arbitrary deep lying reference surfaces), because of time variations of temperature and salinity at fixed depths in the sea (illustrated for a 24-hour period at "Atlantis" Station 2639). The results contained herein, while based chiefly on information from the western North Atlantic, are of general applicability, since time variations of the same order of magnitude have been observed over extensive areas of the Atlantic ocean. In selecting material for analysis of dynamic situations in the region concerned, consideration has been given only to those favorably located stations from which the structural features could most conveniently be obtained for illustrating the points in question.
    Keywords: Ocean currents ; Oceanography ; Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 1914329 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2000
    Description: The variability of salt transport determines the variation of the length of the salinity intrusion and the large-scale density gradient in an estuary. This thesis contains three studies that address salt transport and the salt balance. The variation of salt transport with the depth, the along-channel salinity gradient, and the amplitude of the tidal velocity is investigated with analytic and numerical models. The results indicate that salt transport increases dramatically during stratified periods when vertical mixing is weak. Analysis of salt transport from observations in the Hudson Estuary show that stratified periods with elevated estuarine salt transport occur in five-day intervals once a month during apogean neap tides. Oscillatory salt transport, which is hypothesized to be primarily caused by lateral exchange and mixing of salt, appears to play a more minor role in the salt balance of the estuary. The salt balance of the estuary adjusts very little to the spring-neap modulation of salt transport but adjusts rapidly to pulses of freshwater flow. A simple model is used to investigate the process and time scales of adjustment of the salt balance by connecting variations of salt transport to the variations of freshwater flow and vertical mixing. The results show the length of the salinity intrusion adjust via advection to rapid and large increases in freshwater flow. The salinity intrusion adjusts more rapidly to the spring-neap cycle of tidal mixing the higher the freshwater flow.
    Description: The National Science Foundation provided support through a National Science Foundation Graduate Fellowship and NSF Grant OCE94-15617. Grants from the Hudson River Foundation (HRF Grant 006j96A) and the Office of Naval Research (Grant Number N00014-97-1-0134) have also contributed towards the work in this thesis. This work is also partially the result of research sponsored by NOAA National Sea Grant College Program Office, Department of Commerce, under Grant No. NA46RG0470, Woods Hole Oceanographic Institution (WHOI) Sea Grant project no. R/O-30.
    Keywords: Saltwater encroachment ; Salinity ; Measurement ; Mathematical models
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-06-16
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(11), (2022): 3445-3457, https://doi.org/10.1175/jcli-d-21-0656.1.
    Description: Unlike greenhouse gases (GHGs), anthropogenic aerosol (AA) concentrations have increased and then decreased over the past century or so, with the timing of the peak concentration varying in different regions. To date, it has been challenging to separate the climate impact of AAs from that due to GHGs and background internal variability. We use a pattern recognition method, taking advantage of spatiotemporal covariance information, to isolate the forced patterns for the surface ocean and associated atmospheric variables from the all-but-one forcing Community Earth System Model ensembles. We find that the aerosol-forced responses are dominated by two leading modes, with one associated with the historical increase and future decrease of global mean aerosol concentrations (dominated by the Northern Hemisphere sources) and the other due to the transition of the primary sources of AA from the west to the east and also from Northern Hemisphere extratropical regions to tropical regions. In particular, the aerosol transition effect, to some extent compensating the global mean effect, exhibits a zonal asymmetry in the surface temperature and salinity responses. We also show that this transition effect dominates the total AA effect during recent decades, e.g., 1967–2007.
    Description: All three authors are supported by U.S. National Science Foundation (OCE-2048336). The Community Earth System Model project is supported primarily by the National Science Foundation (https://www.cesm.ucar.edu/projects/community-projects/LENS/data-sets.html and https://www.cesm.ucar.edu/working_groups/CVC/simulations/cesm1-single_forcing_le.html).
    Keywords: Aerosol radiative effect ; Climate Change ; Climate variability ; Sea surface temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.
    Description: This thesis addresses the dynamics of estuarine networks, based on hydrographic observations in Newark Bay, a sub-estuarine network connected to the Hudson River estuary through New York Harbor. Estuarine networks differ from simple estuaries in that they may have multiple connections to the ocean, multiple freshwater sources, and often contain complex junctions between estuarine segments. The Newark Bay estuarine network is connected to the sea through two tidal straits, and is fed by multiple internal and external sources of fresh water. The estuarine network is also naturally divided into a series of reaches, each of which is characterized by a different cross-sectional geometry. This thesis focuses on the hydrographic variability and varying exchange flow within the Newark Bay estuarine network. Shipboard hydrographic measurements reveal the time-dependent formation of salinity fronts between reaches of the estuary. Each front is generated by a different mechanism; however, all are generated by tidal flow through channel junctions during ebb tide, and are advected landward during flood tide. Mooring-based measurements confirm that these fronts form during nearly every tidal cycle, and that the fronts are associated with substantial changes in local salinity on tidal timescales. The effect of tidal processes, such as frontal advection, on the exchange flow is investigated by applying the isohaline total exchange flow (TEF) framework to mooring-based observations in multiple reaches of the estuarine network. This reveals that over half of the exchange flow is driven by tidal processes at all sites within the estuary. Both the TEF-based salt balance and the standard Eulerian salt balance indicate that tidal processes are also responsible for at least half of the landward salt flux at most sites within the estuary; TEF and Eulerian salt balances are nearly identical. Tidal processes within the estuary are in large part associated with fronts. The large influence of tidal processes on the exchange flow in Newark Bay is thus likely due to the prevalence of channel junctions within the estuarine network.
    Description: The studies contained in this thesis were largely funded as part of a National Science Foundation Coastal SEES project (Grant OCE-1325136), which was developed to investigate the effects of anthropogenic modifications on the physical processes in estuaries. Additional funding was provided by the J. Seward Johnson Fund at Woods Hole Oceanographic Institution, and by Hudson River Foundation Graduate Fellowship GF/01/17.
    Keywords: Dissertations, Academic ; Oceanography ; Marine sciences
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography/Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2019.
    Description: Submesoscale ocean dynamics and instabilities, with characteristic scales 0.1–10 km, can play a critical role in setting the ocean’s surface boundary layer thickness and associated density stratification. Submesoscale instabilities contribute to lateral stirring and tracer dispersal. These dynamics are investigated in the Bay of Bengal, motivated by the upper ocean’s potentially coupled interactions with Monsoon winds and convection. The region’s excess precipitation and runoff generates strong salinity gradients that typically set density fronts and stratification in the upper 50 m. Since we cannot synoptically measure currents containing fast-evolving and oscillating components across the submesoscale range, we instead analyze passive tracer distributions (spice ⌘ density-compensated temperature (T) and salinity (S) anomalies), identifying signatures of flows and testing dynamical theories. The analysis is based on over 9000 vertical profiles of T and S measured along ⇠4800 km of ship tracks in the Bay of Bengal during ASIRI and MISO-BOB expeditions in 2013, 2015, and 2018. Observations in the surface mixed layer reveal ⇠1 km scale-selective correlation of surface T and S, with compensation reducing cross-front density gradients by ⇠50%. Using a process study ocean model, we show this is caused by submesoscale instabilities slumping fronts, plus surface cooling over the resultant enhanced salinity stratification, potentially thwarting the forward cascade of energy. In the stratified interior, we present a spectral analysis of horizontal spice variance statistics from wavenumber k ⇠0.01 cpkm to ⇠1 cpkm. At scales 〈10 km, stratified layers that are closer to the surface exhibit redder passive tracer spectra (power spectra k−3, gradient spectra k−1) than predicted by quasi-geostrophic or frontogenetic theories. Complimentary observations reveal spice patterns with multiple, parallel, ⇠10 m thin layers, crossing isopycnals with O(10−4) slopes, coherent over at least 30–80 km, with coincident layers of stratification anomalies. Comparison with shear measurements, and a numerical process study, suggest that both submesoscale sheared eddies, and thin near-inertial waves, form such layers. Fast formation timescales and large aspect ratios suggest they enhance horizontal mixing by shear dispersion, reducing variance at ⇠1–10 km scales.
    Keywords: Oceanography ; Winds ; Salinity ; Oceanic mixing ; Bengal, Bay of ; Indian Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2019.
    Description: Global patterns of ocean salinity arise from the exchange of freshwater between the sea surface and the atmosphere. For a quasi-steady state system, these surface fluxes are balanced by compensating transports of salt in the ocean interior. In a warming climate, the atmosphere holds additional water vapor which acts to intensify the global water cycle. Amplified freshwater fluxes are then absorbed at the surface and propagate along ocean circulation pathways. Here, we use coupled model results from the CMIP5 experiment to identify coherent responses in the atmospheric water cycle and in ocean salinity patterns. Some aspects of the response are consistent across models, while other regions show large inter-model spread. In particular, the salinity response in the North Atlantic subpolar gyre, where the mean salinity plays a role in maintaining high surface density for deep-water formation, has low confidence in CMIP5 models. To understand how differences in ocean circulation may affect this response, we use two techniques to diagnose the role of salt transports in the present-day climate. The first is a salt budget within the surface mixed layer, which identifies major transport processes. The second is a Lagrangian particle tracking tool, used to understand the regional connectivity of water masses. From this analysis, we find that anomalous freshwater signals become well mixed within the ocean gyres, but can be isolated on larger scales. The subpolar Atlantic salinity response generally shows freshening at the surface, but is sensitive to the transport of anomalously salty water from the subtropics, a largely eddy-driven process. As CMIP5 models use a range of eddy parameterizations, this is likely a source of uncertainty in the salinity response. Finally, we investigate the effect of salinity changes on the deep overturning cells and other circulations, and find a complex influence that also depends on the details of advective pathways. In a warming scenario, water cycle amplification actually works to strengthen the Atlantic meridional overturning circulation due to the influence of enhanced subtropical evaporation.
    Description: Funding for this thesis was provided by NASA grant NNX12AF59GS03, a NASA Earth and Space Science Fellowship award 80NSSC17K0372, and the WHOI Academic Programs Office.
    Keywords: Salinity ; Climatic changes ; Ocean ; Dissertations, Academic ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3143-3159, doi:10.1175/JCLI-D-15-0520.1.
    Description: Moisture originating from the subtropical North Atlantic feeds precipitation throughout the Western Hemisphere. This ocean-to-land moisture transport leaves its imprint on sea surface salinity (SSS), enabling SSS over the subtropical oceans to be used as an indicator of terrestrial precipitation. This study demonstrates that springtime SSS over the northwestern portion of the subtropical North Atlantic significantly correlates with summertime precipitation over the U.S. Midwest. The linkage between springtime SSS and the Midwest summer precipitation is established through ocean-to-land moisture transport followed by a soil moisture feedback over the southern United States. In the spring, high SSS over the northwestern subtropical Atlantic coincides with a local increase in moisture flux divergence. The moisture flux is then directed toward and converges over the southern United States, which experiences increased precipitation and soil moisture. The increased soil moisture influences the regional water cycle both thermodynamically and dynamically, leading to excessive summer precipitation in the Midwest. Thermodynamically, the increased soil moisture tends to moisten the lower troposphere and enhances the meridional humidity gradient north of 36°N. Thus, more moisture will be transported and converged into the Midwest by the climatological low-level wind. Dynamically, the increases in soil moisture over the southern United States enhance the west–east soil moisture gradient eastward of the Rocky Mountains, which can help to intensify the Great Plains low-level jet in the summer, converging more moisture into the Midwest. Owing to these robust physical linkages, the springtime SSS outweighs the leading SST modes in predicting the Midwest summer precipitation and significantly improves rainfall prediction in this region.
    Description: L. L. is supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Ocean and Climate Change Institute (OCCI). R. W. S. is supported by NASA Grant NNX12AF59G S03 and NSF Grant OCE-1129646. C. C. U. is supported by NSF Grant AGS-1355339. K. B. K. is supported by the Alfred P. Sloan Foundation and the James E. and Barbara V. Moltz Fellowship administered by the WHOI OCCI.
    Description: 2016-10-19
    Keywords: Circulation/ Dynamics ; Hydrologic cycle ; Physical Meteorology and Climatology ; Moisture/moisture budget ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Nezlin, N. P., Dever, M., Halverson, M., Leconte, J., Maze, G., Richards, C., Shkvorets, I., Zhang, R., & Johnson, G. Accuracy and long-term stability assessment of inductive conductivity cell measurements on Argo Floats. Journal of Atmospheric and Oceanic Technology, 37(12), (2020): 2209-2223, https://doi.org/10.1175/JTECH-D-20-0058.1.
    Description: This study demonstrates the long-term stability of salinity measurements from Argo floats equipped with inductive conductivity cells, which have extended float lifetimes as compared to electrode-type cells. New Argo float sensor payloads must meet the demands of the Argo governance committees before they are implemented globally. Currently, the use of CTDs with inductive cells designed and manufactured by RBR, Ltd., has been approved as a Global Argo Pilot. One requirement for new sensors is to demonstrate stable measurements over the lifetime of a float. To demonstrate this, data from four Argo floats in the western Pacific Ocean equipped with the RBRargo CTD sensor package are analyzed using the same Owens–Wong–Cabanes (OWC) method and reference datasets as the Argo delayed-mode quality control (DMQC) operators. When run with default settings against the standard DMQC Argo and CTD databases, the OWC analysis reveals no drift in any of the four RBRargo datasets and, in one case, an offset exceeding the Argo target salinity limits. Being a statistical tool, the OWC method cannot strictly determine whether deviations in salinity measurements with respect to a reference hydrographic product (e.g., climatologies) are caused by oceanographic variability or sensor problems. So, this study furthermore investigates anomalous salinity measurements observed when compared with a reference product and demonstrates that anomalous values tend to occur in regions with a high degree of variability and can be better explained by imperfect reference data rather than sensor drift. This study concludes that the RBR inductive cell is a viable option for salinity measurements as part of the Argo program.
    Description: Author Dr. G. Maze was supported by the EARISE project, a European Union’s Horizon 2020 research and innovation program under Grant Agreement 824131, Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures. We acknowledge Susan Wijffels, who provided advice on reference climatologies, coordinated access to the data from Argo Australia float 5904925, and provided ship CTD data to evaluate the initial accuracy of the float. Toshio Suga and Shigeki Hosoda provided ship CTD data for assessing the initial accuracy of Japan Argo floats 2903005 and 2903327. We thank Zenghong Liu for coordinating access to ship CTD data and continued discussion regarding RBRargo CTD accuracy and stability. We thank IFREMER for providing us access to ADMT-CTD and ADMT-Argo reference datasets.
    Keywords: Pacific Ocean ; Salinity ; Instrumentation/sensors ; Profilers, oceanic ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(7), (2021): 2473-2490, https://doi.org/10.1175/JCLI-D-20-0625.1.
    Description: This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer [December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E–165°W and 10°S–10°N) and SSSI (50°–95°E and 10°S–10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle.
    Description: This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. Author Ummenhofer acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. Author Feng was supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales, and the University of Tasmania. The authors also acknowledge Dr. Manali Pal for technical discussion on machine learning.
    Description: 2021-09-01
    Keywords: ENSO ; Flood events ; Hydrologic cycle ; Machine learning ; Rainfall ; Salinity ; Seasonal forecasting ; Soil moisture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3219–3234, https://doi.org/10.1175/JPO-D-19-0277.1.
    Description: Preexisting, oceanic barrier layers have been shown to limit turbulent mixing and suppress mixed layer cooling during the forced stage of a tropical cyclone (TC). Furthermore, an understanding of barrier layer evolution during TC passage is mostly unexplored. High precipitation rates within TCs provide a large freshwater flux to the surface that alters upper-ocean stratification and can act as a potential mechanism to strengthen the barrier layer. Ocean glider observations from the Bermuda Institute of Ocean Sciences (BIOS) indicate that a strong barrier layer developed during the approach and passage of Hurricane Gonzalo (2014), primarily as a result of freshening within the upper 30 m of the ocean. Therefore, an ocean model case study of Hurricane Gonzalo has been designed to investigate how precipitation affects upper-ocean stratification and sea surface temperature (SST) cooling during TC passage. Ocean model hindcasts of Hurricane Gonzalo characterize the upper-ocean response to TC precipitation forcing. Three different vertical mixing parameterizations are tested to determine their sensitivity to precipitation forcing. For all turbulent mixing schemes, TC precipitation produces near-surface freshening of about 0.3 psu, which is consistent with previous studies and in situ ocean observations. The influence of precipitation-induced changes to the SST response is more complicated, but generally modifies SSTs by ±0.3°C. Precipitation forcing creates a dynamical coupling between upper-ocean stratification and current shear that is largely responsible for the heterogeneous response in modeled SSTs.
    Description: This work was supported by the National Aeronautics and Space Administration (NASA; Grant NNX15AD45G) and the National Oceanic and Atmospheric Administration (NOAA; Grant NA11OAR4320199).
    Keywords: Air-sea interaction ; Hurricanes/typhoons ; Salinity ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(15), (2020): 6707-6730, https://doi.org/10.1175/JCLI-D-19-0579.1.
    Description: The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.
    Description: This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. CCU acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. MF was supported by the by Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania. The authors wish to acknowledge PyFerret (https://ferret.pmel.noaa.gov/Ferret/) and the Cimate Data Operators (https://code.mpimet.mpg.de/projects/cdo/) for the data analysis and graphical representations in this paper.
    Keywords: Atmosphere-ocean interaction ; El Nino ; Extreme events ; La Nina ; Precipitation ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.
    Description: The Galápagos Cold Pool (GCP) is a region of anomalously cold sea surface temperature (SST) just west of the Galápagos Archipelago. Modeling studies have shown that the GCP is maintained by wind- and current-driven upwelling. The Galápagos Archipelago lies on the equator, in the path of the Pacific Equatorial Undercurrent (EUC) as it flows eastward across the Pacific at the depth of the thermocline. It is hypothesized that the EUC upwells into the GCP as it reaches the topographical barrier of the Galápagos Archipelago. The path of the EUC in the vicinity of the archipelago is not well understood. The ‘Repeat Observations by Gliders in the Equatorial Region’ (ROGER) program deployed a fleet of Spray autonomous underwater gliders in the region just west of the Galápagos Archipelago from 2013 – 2016 with the goal of continuously occupying three transects that form a closed area, with the archipelago as the eastern boundary. Gliders obtained subsurface measurements of temperature, salinity, and velocity with unprecedented temporal and spatial resolution. These measurements are used to observe the path of the EUC as it bifurcates into a north and south branch around the Galápagos Archipelago. Net horizontal transport into the volume defined by the closed area formed by the glider transects is used to estimate an average vertical velocity profile in the region of the GCP, indicating upwelling in the upper 300 m. The bifurcation latitude of the EUC, estimated to be approximately 0.4∘S from volume transport as a function of salinity, is coincident with the meridional center of the archipelago, suggesting the bifurcation latitude is topographically controlled. Ertel potential vorticity and a Bernoulli function are qualitatively conserved, supporting an inertial model of the EUC. Average spectral variance from Argo profiling float observations is used to show that tropical instability waves propagate with frequency and wavelength consistent with linearized, equatorial 𝛽-plane model results and may impact the GCP, according to their vertical structure.
    Description: Funding for my thesis research was provided by the National Science Foundation (grants OCE-1232971 and OCE-1233282), the NASA Earth and Space Science Fellowship Program (grant 80NSSC17K0443), the J. Seward Johnson Fund, and the Karen L. Von Damm Fellowship.
    Keywords: Ocean temperature ; Galapagos ; Hydrography ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...