ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data  (9)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (7)
  • American Geophysical Union  (14)
  • GRAFIMA Publ., Thessaloniki, Greece  (2)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Wiley
  • 2005-2009  (16)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-06
    Description: Fumarolic alteration crusts and efflorescences have been sampled at the Sousaki solfataric field. Samples have been analysed for mineralogical (XRD) and chemical composition (HNO3 digestion and leaching with distilled water). Results show that mineralogical and chemical compositions (major, minor and trace metals) are controlled by microenvironmental conditions. The sample collected in the anoxic part of a cave is composed almost exclusively by native sulfur. The samples collected in the oxidizing part of the cave and outside in relatively sheltered position are mainly composed by very soluble sulfates. Chemical composition evidence strong enrichments in Al, Ca, Cr, Fe, Mg and Ni which are present in highly soluble form and derive from the fumarolic alteration of the outcropping rocks (Marls and peridotites). One sample collected outside the cave, well exposed to atmospheric agents, is composed almost exclusively of gypsum and the chemical composition reveals, with respect to the previous samples, a relative enrichment of elements (Ba, Ca, K, Pb and Sr) forming less soluble sulfates. The presence of toxic metals like Al, Cr and Ni in high concentrations and highly soluble form evidences the potential impact of the fumarolic activity on the local environment.
    Description: Published
    Description: Myconos, Greece
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Hydrothermal alteration products ; sulfates ; toxic metals ; elements’ mobility ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-06
    Description: Sousaki (Corinthia, Greece), is a presently inactive volcanic area hosting a geothermal reservoir. Geothermal activity, still recognizable by a series of low temperature gas manifestation, is responsible of the widespread alteration of the outcropping rocks in the area. The main manifestations are hosted within caves whose walls are covered by alteration products in the form of crusts and efflorescences. This study presents the results of mineralogical and chemical analyses of the alteration products collected in the area. Leaching experiments with distilled water were also performed to get insights on the mobility of the elements incorporated in the alteration products. X-ray diffractometry allowed us to recognize a series of secondary minerals deriving from the alteration of the ophiolithic host rocks (altered peridotites to serpentinites) and whose composition depends mainly on the microenvironmental conditions in which they were formed. Elemental sulphur is the main mineral phase at the bottom of the caves where the atmosphere is anoxic. In the upper part of the caves, where oxygen is readily available, efflorescences are composed of many highly soluble acid sulphate minerals. In the oxidised part of the cave the stability of the mineral phases is mainly controlled by the relative humidity. The most hydrous mineral phases occur in the lower part of the cave, which is characterised by higher humidity values. Outside the caves highly soluble sulphates have been found in two samples collected in relatively sheltered position while a further sample collected outside the caves, but exposed to atmospheric agents, is composed almost exclusively by gypsum. Chemical analyses (ICP-MS after digestion with HNO3) revealed high contents of Al (up to 55,000 µg/g), Co (up to 655 µg/g), Cr (up to 7400 µg/g), Fe (up to 105,000 µg/g), Mg (up to 147,000 µg/g), Mn (up to 3700 µg/g) and Ni (up to 8800 µg/g) in the sample collected in the oxidised part of the caves. These strong enrichments confirm that the alteration products derive from the ophiolithic rocks. Leaching experiments evidenced the high mobility of these elements. Due to the extreme solubility of the mineral phases, on average between 70 and 94% of Al, Ca, Co, Cr, Cs, Cu, Fe, Li, Mg, Mn, Ni, Rb, Sr, U and Zn is in water soluble form. On the contrary, As, B, Ba, K, Mo, Na, Pb and V display lower solubilities (4 – 56%). Toxic elements’ mobility, favoured by the strongly acidic environment of the fumarolic area, may have severe environmental consequences.
    Description: Published
    Description: Myconos, Greece
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Hydrothermal alteration products ; sulfates ; toxic metals ; elements’ mobility ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: Measurements of 220Rn and 222Rn activity and of CO2 flux in soil and fumaroles were carried out on Mount Etna volcano in 2005–2006, both in its summit area and along active faults on its flanks. We observe an empirical relationship between (220Rn/222Rn) and CO2 efflux. The higher the flux of CO2, the lower the ratio between 220Rn and 222Rn. Deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. Excess 220Rn highlights sites of ongoing shallow rock fracturing that could be affected by collapse, as in the case of the rim of an active vent. Depletion both in 220Rn and in CO2 seems to be representative of residual degassing along recently active eruptive vents.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia (S.G., M.N.) and by the Dipartimento per la Protezione Civile (Italy), projects V3_6/28-Etna (M.N.) and V5/08-Diffuse degassing in Italy (S.G.), and NSF EAR 063824101 (K.W.W.S.).
    Description: Published
    Description: Q10001
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: radon ; thoron ; carbon dioxide ; rock stress ; gas transport ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Soil temperature and total dissolved gas pressure(TDGP) data were recorded by two continuous monitoring stations on the volcano of Stromboli (Italy) between March and October 2006. During this period several TDGP and soil temperature anomalies, unrelated to external causes and characterized by a similar shape and occurrence time, were recorded. These anomalies were interpreted as transients due to changes in the degassing regime of the volcano,which was in turn related to changes in the partition ratio of the volcanic fluidsbetweenthe conduitandthe soil. In thesame period Stromboli experienced an anomalous phase of volcanic and tectonic activity. The close correlation found between volcano-tectonic activity and variations in anomalousmonitored parameters suggests that their continuous monitoring may be a useful tool for the surveillance of volcanic activity on the island.
    Description: Published
    Description: L08301
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Dissolved gases ; Soil temperature ; Total dissolved gas pressure ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We study the coseismic and postseismic displacements related with the 1997 Umbria-Marche earthquake sequence by means of leveling lines along a deformed aqueduct located in the epicentral area. Comparing the 1960 and 10/1997 measurements we obtain 0.49 0.10 m of coseismic displacement distributed along 3 km across the normal fault zone. Modeling of the coseismic surface dislocation is obtained from a combination of low angle (38°) faults at depth and high angle (80°) upper fault branches. The best fit model indicates that the upper branches stop at 0.4 km below the ground surface and have 60% of slip with respect to the lower faults. The postseismic displacement measured during 1998 is 0.18 m and represents 36% of the apparent coseismic deformation. Moderate earthquakes in the Apennines and related surface deformation may thus result from curved faults that reflect the brittle-elastic properties of the uppermost crustal structures.
    Description: Data collection was made while both authors were at Istituto di Ricerca per la Tettonica Recente – CNR (GNDT Project), Roma, Italy. M. Copparoni (ASM, Foligno) and M. Raponi and S. Pacico (Studio Topografico s.n.c., Foligno) provided data about aqueduct and leveling lines. Analysis of data and modeling were done while RB was visiting EOST-IPG, Strasbourg, France. Preparation of the paper benefited from discussion with R. Armijo, S. Barba, P. Gomez and G. Valensise. A. Amato and an anonymous reviewer are thanked for their constructive remarks.
    Description: Published
    Description: 2695–2698
    Description: JCR Journal
    Description: open
    Keywords: Coseismic displacement ; postseismic displacement ; earthquake fault ; Colfiorito, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C1/(C2 + C3))and the methane isotope ratios (d13C1), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration.
    Description: Published
    Description: L06607
    Description: partially_open
    Keywords: Isotopic composition/chemistry ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 1041380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVVarea a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.
    Description: Published
    Description: 1-25
    Description: partially_open
    Keywords: Volcanic styles ; Tectonic setting ; Neapolitan volcanic region ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 428 bytes
    Format: 1655376 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Marked increases of CO2, H2 and He dissolved in thermal waters and changes in the dissolved carbon isotopic composition, were observed at Stromboli before the 28 December 2002 eruption and before a violent explosive paroxysm occurred on 5 April 2003. High anomalous CO2 flux values were recorded at the crater rim since a week before the eruption onset. The first anomalies in the thermal waters (dissolved CO2 amount) appeared some months before the eruption, when magma column rose at a very high level in the conduit. High peaks of dissolved H2 and He were recorded a few days before the paroxysm. Carbon isotopic composition indicates a magmatic origin of the dissolved CO2 whose increase, together with those of H2 and He, is attributed to an increasing output of deep gases likely produced by depressurization of a rising batch of a deep gas-rich magma, whose fragments have been emitted during the explosion.
    Description: Italian Civil Protection
    Description: Published
    Description: L07620
    Description: partially_open
    Keywords: Stromboli ; geochemical precursors ; CO2 flux ; pH ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 190819 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The Jalisco Block (JB) is a geologically and tectonically complex part of northwestern Mexico characterized by active subduction-type volcanism, rifting, and old stable structures. Thermal springs and groups of springs are widely distributed over JB. Bubbling gas from seven thermal springs located within different tectonic environments of the JB was analyzed for He, 20Ne, and N2 concentrations and d15N ratios. All gases are N2-dominant (〉84%) with the exception of one sample (Rio´ Purificacio´n), which has a significant CH4 content (about 50%). All collected gas samples are relatively high in He, up to 1500 ppm vol and with 3He/4He values ranging from 0.6 to 4.5 Ra. All measured nitrogen isotope ratios are heavier than air with d15N values ranging from 0.5 to 5.0%. The relative N2 excess with respect to air-saturated water computed on the basis of N2 and 20Ne contents indicates the contribution of a nonatmospheric N2 source. All the samples show a good correlation between d15N and the relative excess of N2 with d15N +5.3% for the maximum N2 excess of 100%. Due to a presumed lack of seafloor sediment involved in the subduction process, such a d15N positive value seems to reflect the addition to the fluids of a heavy nitrogen originating from metamorphism processes of rocks occurring within the overlying continental crust.
    Description: Published
    Description: 1-9
    Description: partially_open
    Keywords: bubbling gases ; forearc region ; Jalisco Block-Mexico ; nitrogen isotopes ; subduction-related volcanism ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 532399 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In this paper we present the first geochemical data set regarding long-term monitoring of dissolved gases in thermal waters from a seismic area. Three sites in Umbria (Central Apennines, Italy) were studied both for the chemical and for the helium isotopic composition of the dissolved gases. Data were collected during and after the seismic crisis that struck the region in 1997â 1998. The chemical composition of the dissolved gases revealed that a CO2-rich gas phase was always mixed with an atmospheric-derived component dominated by N2. A normal faulting marked the beginning of the seismic activity enhancing the release of CO2 on a regional scale. Variations in both the chemical and isotopic compositions of the dissolved gases were also observed as preseismic, synseismic, and postseismic phenomena related to the seismic shock of March 1998. Those geochemical modifications were interpreted as being the consequence of a drop in the CO2 degassing rate, in good agreement with the compressive focal mechanism of that seismic event. Furthermore, this interpretation was also consistent with the geologic and tectonic setting of the study area and induced us to postulate that changes in the local rock permeability, due to crustal deformations (i.e., coseismic deformation and postseismic release), were responsible for the geochemical modifications observed. On the basis of the foregoing, we have concluded that the geochemistry of dissolved gases in groundwaters represents a useful tool for the investigation of the relationships between circulating fluids and seismic activity.
    Description: Published
    Description: partially_open
    Keywords: dissolved gases ; geochemistry ; seismic areas ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337669 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: On 2nd/3rd November 2002, a huge amount of gas, mainly composed of CO2, was suddenly released from the sea bottom off the coast of Panarea, producing a ‘‘crater’’20 by 10 meters wide and 7 meters deep. The gas output was estimated to be 109 l/d, two orders of magnitude higher than that measured in the 1980s. The anomalous degassing rate lasted for some weeks, slowly decreasing to an almost constant rate of about 4 x 107 l/d after two months. The geothermo- barometric estimations revealed an increase of both the temperature and pressure in the geothermal system feeding the sampled vents. The 3He/4He ratios were similar to those measured in nearby Stromboli. We have monitored the area for the last two decades, and based on our intensive and extensive geochemical measurements, have ascertained that the geothermal reservoir has lost its steady state. We maintain that a new magmatic input caused these phenomena.
    Description: - Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy. - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy. - Dipartimento Chimica e Fisica della Terra ed Applicazioni, Palermo, Italy.
    Description: Published
    Description: L07619
    Description: partially_open
    Keywords: Submarine degassing ; magmatic fluids ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3123251 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2–3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.
    Description: Published
    Description: L04312
    Description: partially_open
    Keywords: helium isotopes ; heat production ; tectonics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 134391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...