ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (25)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems  (18)
  • Elsevier  (38)
  • Agu  (5)
  • 2005-2009  (43)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: A remote sensing approach permits for the first time the derivation of a map of the carbon dioxide concentration in a volcanic plume. The airborne imaging remote sensing overcomes the typical difficulties associated with the ground measurements and permits rapid and large views of the volcanic processes together with the measurements of volatile components exolving from craters. Hyperspectral images in the infrared range (1900–2100 nm), where carbon dioxide absorption lines are present, have been used. These images were acquired during an airborne campaign by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Pu`u` O`o Vent situated at the Kilauea East Rift zone, Hawaii. Using a radiative transfer model to simulate the measured up-welling spectral radiance and by applying the newly developed mapping technique, the carbon dioxide concentration map of the Pu`u` O`o Vent plume were obtained. The carbon dioxide integrated flux rate were calculated and a mean value of 396±138 t d−1 was obtained. This result is in agreement, within the measurements errors, with those of the ground measurements taken during the airborne campaign.
    Description: Published
    Description: 3192–3199
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: Hyperspectral data ; Volcanic plume ; Carbon dioxide ; AVIRIS ; Kilauea ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The multi-parametric permanent system (tilt and GPS networks, robotized geodetic station) for monitoring ground deformation at Stromboli volcano was set up in the 1990s and later greatly improved during the effusive event of 2002–2003. Unlike other volcanoes, e.g. Mt. Etna, the magnitude of ground deformation signals of Stromboli is very small and through the entire period of operation of the monitoring system, only two major episodes of deformation, in 1994–1995 and 2000, which did not lead to an eruption but rather pure intrusion, were measured. Similarly to the 2002–2003 eruption, no important deformations were detected in the months before the 2007 eruption. However, unlike the 2002–2003 eruption, GPS and tilt stations recorded a continuous deflation during the entire 2007 eruption, which allowed us to infer a vertical elongated prolate ellipsoidal source, centered below the summit craters at depth of about 2.8 km b.s.l. Due to its geometry and position, this source simulates an elongated plumbing system connecting the deeper LP magma storage (depth from 5 to 10 km) with the HP shallower storage (0.8–3 km), both previously identified by petrologic and geochemical studies. This result represents the first contribution of geophysics to the definition of the plumbing system of Stromboli at intermediate depth. Finally, no deformation due to the plumbing system was measured for a long time after the end of the eruption. Meanwhile, the new terrestrial geodetic monitoring system installed within the Sciara del Fuoco, on the lava fan formed during the eruption, indicated that during the first months after the end of the eruption the ground velocity progressively decreased in time, suggesting that part of the deformation was due to the thermal contraction of the lava flow.
    Description: Published
    Description: 172-181
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground Deformation ; source modelling ; flank instability ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Dynamic accumulation chamber methods have been extensively used to estimate the total output of CO2 released from active volcanic area. In order to asses the performance and reliability of a closed dynamic system several tests were carried out with different soil permeabilities and soil CO2 fluxes. A special device was used to create a constant one-dimensional CO2 flux through a soil column with a known permeability. Three permeabilities were investigated, ranging between 3.6 × 10− 2 and 3.5 × 10 μm2, as were several CO2 fluxes (ranging between 1.1 × 10− 6 and 6.3 × 10− 5 kg m− 2 s− 1). The results highlight that the accuracy of soil CO2 flux measurements strictly depends on the soil gas permeability and the soil CO2 flux regimen. Generally chamber measurements underestimate CO2 fluxes at low soil permeability and low soil CO2 fluxes, whereas appreciable overestimations occur for high permeability soil, especially for high soil CO2 fluxes. Other tests carried out with different settings for the measurement device, such as the chamber volume and the flux of the pump used to recirculate air through the chamber and the gas analyzer (recirculation flux), revealed a strong dependence of the closed dynamic chamber measurements on the recirculation flux. Low recirculation fluxes (0.2–0.4 l min− 1) decreased the performance of the measurement system, causing underestimations of the actual soil CO2 flux, whereas higher values (0.6–1.0 l min− 1) resulted in overestimations, especially for elevated soil CO2 fluxes. An empirical equation was deduced to allow accumulation chamber fluxes to be calculated very accurately based on soil gas permeabilities measured in the field.
    Description: Published
    Description: 387-393
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux measuraments ; Closed dynamic chamber ; soil gas permeability ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (b20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of preexisting structures on hydrothermal fluid circulation at the scale of a volcanic edifice.
    Description: Published
    Description: 231-245
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: electrical resistivity ; self-potential ; soil CO2 degassing ; temperature ; fluid circulation ; hydrothermal system ; structural boundary ; Vulcano ; La Fossa cone ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Description: Geochimica et Cosmochimica Acta
    Description: Published
    Description: Davos, Switzerland
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: Nitrogen Isotopes ; Helium Isotopes ; Volcanic fluids ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-29
    Description: Two sets of cooling experiments were run at atmospheric conditions for two anhydrous starting latitic and trachytic melts: 1) five cooling rates (25, 12.5, 3, 0.5, and 0.125 °C/min) between 1300° and 800 °C, and 2) a 11 0.5 °C/min cooling rate from 1300 °C with quench temperatures at 1200°, 1100°, 1000° and 900 °C. Trachytic run-products are invariably glassy. Nucleation is also suppressed in the latitic run-products at the three highest 13 cooling rates. Conversely, in the 0.5 and 0.125 °C/min runs, latites have a crystal content of 90 vol.%. The 14 phases are: plagioclase, clinopyroxene, glass and iron-bearing oxide (in order of abundance). The variable 15 quench temperatures, investigated by coupling experiments with Pt-wire and Pt- capsule sample containers inset 2,again did not produce crystallization of trachyte, whereas latitic samples are characterized by 10 vol.% of oxides, pyroxenes and plagioclase (in order of appearance), at temperature b1000 °C. Effects of (preferential) heterogeneous nucleation on sample holders, of superheating degree, and chemical species loss during cooling are absent for both melt compositions. The difference of solidification paths between these two silicate melts can be ascribed only to their small chemical differences. In comparison with calculated equilibrium conditions all the experimental latitic and trachytic run-products revealed strong kinetic effects, interpretable in the light of the nucleation theory. The glass- forming ability (GFA) of trachyte is higher, whereas their critical cooling rate (Rc) is lower (b0.125 °C/min), in comparison to latitic melts (RcN0.5 °C/min). The experimental results carried out in this study can be applied to lava flows and domes; trachytic lavas are able to flow for longer period with respect to latitic ones in a metastable condition. Glass-rich terrestrial lavas, i.e. obsidians, can be the result of sluggish nucleation kinetics due to the relative high polymerisation of evolved silicate melts.
    Description: Published
    Description: 91-101
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: crystallization ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The Albano Lake is the deepest volcanic lake in Italy (−167 m) and fills the youngest maar of the quiescent Colli Albani volcano. The lake has undergone significant level changes and lahar generating overflows occurred about 5800 yrs B.P. and likely in 398 b.C., when Romans excavated a tunnel drain through the maar wall. Hazardous lake rollovers and CO2 release are still possible because the Albano volcano shows active ground deformation, gas emission and periodic seismic swarms. On November 2005, the first high resolution bathymetric survey of the Albano Lake was performed. Here we present the results provided by a Digital Elevation Model and 2-D and 3-D images of the crater lake floor, which is made by coalescent and partly overlapping craters and wide flat surfaces separated by some evident scarps. Submerged shorelines are identified at depths between −20 m and −41 m and indicate the occurrence of significant lake level changes, likely between 7.1 and 4.1 ka. The current lake volume is ~447.5×106 m3 and the total quantity of dissolved CO2 is 6850 t estimated by chemical analyses of samples collected on May 2006. A decrease of nearly one order of magnitude of the CO2 dissolved in the lake water below −120 m, observed from December 1997 to May 2006 (from 4190 to 465 t respectively), has been attributed to lake water overturn. The observed oscillations of the dissolved CO2 concentrations justify the efforts of monitoring the chemical and physical characteristics of the lake. At present the quantity of dissolved CO2 is very far from saturation and Nyostype events cannot presently occur.
    Description: DPC-INGV Project V3_1
    Description: Published
    Description: 258–268
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Albano maar ; lake bathymetry ; geochemistry ; crater lake hazard ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Three different methodologies were used to measure Radon (222Rn) in soil, based on both passive and active detection system. The first technique consisted of Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222Rn activity was measured together with soil Thoron (220Rn) and soil carbon dioxide (CO2) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO2 efflux. Time variations of 222Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations.. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Soil Radon and Thoron activity ; soil CO2 efflux ; Pernicana fault system ; Mount Etna ; volcano-tectonic monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Published
    Description: 393-416
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: hydrothermal fluids ; unrest ; modeling ; caldera ; monitoring ; volcanic hazard ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Direct measurement of present day CH4 diffuse degassing from the soil represents an effective tool to better estimate the degassing rate of individual sources and to calibrate global Earth degassing estimates. While many data exist on CH4 emissions from ecosystems, agricultural soils and landfills, few estimates of CH4 emissions from volcanic-geothermal areas have been performed. The authors report results and discuss applications of accumulation-chamber measurements of soil CH4 and CO2 flux from Solfatara of Pozzuoli (Naples), Vulcano Island and Poggio dell’Olivo (Viterbo) volcanic-geothermal areas, and the Palma Campania landfill (Naples). Volcanic-geothermal study areas are characterised by vent discharges of fluids with different CH4/CO2 ratios (from 4.7X1E-5 to 7.5X1E-5, 4.7X1E-4 and 2.5X1E-3 by weight, for Solfatara of Pozzuoli, Vulcano island, and Poggio dell’Olivo areas, respectively). Soil CH4 fluxes range from 0.003 to 48 g m-2 day-1 in the volcanic-geothermal areas and from 0.0021 to 936 g m-2 day-1 in the landfill, with high spatial variability observed in all areas. Using statistical methods different flux populations were distinguished (i.e. background soil gases and deeply derived gases) and the total gas emissions from study sites calculated. The results of this work show that CH4/CO2 ratios of deep fluids, fumarolic fluids in the case of the volcanicgeothermal environment and biogas in landfills, are roughly maintained in the gas phase diffusely degassed by the soil. Due to high spatial variability, a large number of flux measurements and appropriate statistical methods are needed to estimate total gas discharge from study areas. Furthermore, the simultaneous measurement of diffuse CH4 and CO2 fluxes represents a strong constraint for interpretative models of deep processes associated with soil degassing.
    Description: Published
    Description: 45-54
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: methane flux ; accumulation chamber ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: A new method combining measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux was developed in order to qualitatively and quantitatively characterise the CO2 source feeding the soil CO2 diffuse degassing. The method was tested in March 2007 at the Solfatara of Pozzuoli volcano degassing area (Naples, Italy) where more than 300 measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux were performed, surveying Solfatara crater and its surroundings. The wide range of CO2 flux and CO2 isotopic composition values (from 8.4 g m−2 d−1 to 28,834 g m−2 d−1, and from 0.73‰ to −33.54‰, respectively), together with their statistical distributions suggests the occurrence of multiple CO2 sources feeding soil degassing. The combined interpretation of flux and isotopic data allows us to identify and characterise two distinct gas sources: a hydrothermal and a biogenic source. The soil CO2 from the hydrothermal source is characterised by a mean δ13CCO2 of −2.3‰±0.9‰, hence close to the isotopic composition of the fumarolic CO2 (δ13CCO2=−1.48‰± 0.22‰) and by a mean CO2 flux of 2875 g m−2 d−1. The CO2 from the biogenic source is characterised by a mean δ13CCO2 of −19.4‰±2.1‰, and by a mean CO2 flux of 26 g m−2 d−1, which are both in the range of the typical values for biologic CO2 soil degassing. This reliable characterisation of the biogenic CO2 flux would not have been possible by solely applying a statistical analysis of the CO2 flux values, which is commonly applied in volcanological studies for the partitioning between background fluxes and anomalous CO2 fluxes. A map of the Solfatara diffuse degassing structure was derived from the estimated threshold for the biogenic CO2 flux, highlighting that soil degassing of hydrothermal CO2 mixed in different proportion with biogenic CO2 occurs over a large area (~0.8 km2), which extends over the inner part of the Solfatara crater as well as the eastern periphery, corresponding with a NW–SE fault system. The presented method and data analysis are important means of surveillance of the volcanic activity.
    Description: Published
    Description: 372–379
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 soil degassing ; CO2 flux ; carbon dioxide ; carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Lake Averno is situated in the homonymous crater in the northwestern sector of the Campi Flegrei active volcanic system in Campania region, Italy. In February 2005 a fish kill event was observed in the lake, prompting a geochemical survey to ascertain the possible cause. In February 2005 a geochemical survey revealed that the lake water was unstratified chemically and isotopically, presumably, as a result of lake overturn. This fish kill phenomenon was recorded at least two other times in the past. In contrast to the February 2005 results, data collected in October 2005, shows the Lake Averno to be stratified, with an oxic epilimnion (surface to 6 m) and an anoxic hypolimnion (6 m to lake bottom at about 33 m). Chemical and isotopic compositions of Lake Averno waters suggest an origin by mixing of shallow waters with a Na–Cl hydrothermal component coupled with an active evaporation process. The isotopic composition of Dissolved Inorganic Carbon, as well as the composition of the non-reactive dissolved gas species again supports the occurrence of this mixing process. Decreasing levels of SO4 and increasing levels of H2S and CH4 contents in lake water with depth, strongly suggests anaerobic bacterial processes are occurring through decomposition of organic matter under anoxic conditions in the sediment and in the water column. Sulfate reduction and methanogenesis processes coexist and play a pivotal role in the anaerobic environment of the Lake Averno. The sulfate reducing bacterial activity has been estimated in the range of 14–22 μmol m−2 day−1. Total gas pressure of dissolved gases ranges between 800 and 1400 mbar, well below the hydrostatic pressure throughout the water column, excluding the possibility, at least at the survey time, of a limnic eruption. Vertical changes in the density of lake waters indicate that overturn may be triggered by cooling of epilimnetic waters below 7 °C. This is a possible phenomenon in winter periods if atmospheric temperatures remain frosty for enough time, as occurred in February 2005. The bulk of these results strongly support the hypothesis that fish kill was caused by a series of events that began with the cooling of the epilimnetic waters with breaking of the thermal stratification, followed by lake overturn and the rise of toxic levels of H2S from the reduced waters near the lake bottom.
    Description: Published
    Description: 305–316
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: lake Averno ; dissolved gases ; stable isotopes ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: We investigated the existence of a fractal law (power law) distribution of size pyroclastic fragments erupted during the fallout phase of the 79 A.D. Plinian eruption at Mt. Vesuvius. In particular, we performed a particle size distribution analysis on 18 white and grey pumice samples collected in six sites distributed in the SW sector of Mt. Vesuvius. Our measurements show that the fragmentation of samples in the investigated range (from 32 mm to 850 μm) follows a power law, guaranteeing the scale invariance of the process. The relationship frequency-size distribution of the fragments is verified independently from the nature (i.e., pumices and lithics) and stratigraphic height of the considered samples in the pyroclastic deposit. Therefore, the fractal fragmentation theory can be indicated for evaluating the relationship between the intensity of fragmentation (fractal dimension D) and eruption energy. In this way the apparent chaotic distribution of the particles in the fallout deposits hides a self-organized complexity revealed by the retrieved power law distribution. We further remark that a key aspect of our analysis is the founded evidence that the fractal dimension of the lithics is systematically greater than that of the pumices.
    Description: Published
    Description: 288–299
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: fragmentation ; power law distribution ; fractal dimension ; scale invariant ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: Video surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.
    Description: Published
    Description: 85-91
    Description: reserved
    Keywords: Volcano monitoring ; Image processing ; Smart storing rate ; Eruption data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 483034 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: We have simulated the impact of the tsunami generated by the Late Bronze Age (LBA) volcanic eruption of Santorini on the Eastern Mediterranean. Two different tsunami triggering mechanisms were considered: a caldera collapse and pyroclastic flows/surges entering the sea. Simulations include the ‘‘worst’’ input conditions in order to evaluate the maximum possible impacts, but also ‘‘lighter’’ input conditions, compatible with the lack of any tsunami trace on the Northern coasts of Crete. In all the simulations, tsunami propagation is mainly confined to the Southern Aegean. Outside the Aegean, the tsunami impact was negligible and not responsible for the slide-slumping of fine-grained pelagic and/or hemipelagic sediments considered the sources of the sporadically located seadeposits in the Ionian Sea and of the widespread megaturbidite deposits localized in the Ionian and Sirte Abyssal Plains.
    Description: Published
    Description: L18607
    Description: JCR Journal
    Description: reserved
    Keywords: Minoan tsunami ; Santorini ; eastern Mediterranean ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: The FLOWGO thermo-rheological model links heat loss, core cooling, crystallization, rheology and flow dynamics for lava flowing in a channel. We fit this model to laser altimeter (LIDAR) derived channel width data, as well as effusion rate and flow velocity measurements, to produce a best-fit prediction of thermal and rheological conditions for lava flowing in a ~1.6 km long channel active on Mt. Etna (Italy) on 16th September 2004. Using, as a starting condition for the model, the mean channel width over the first 100 m (6 m) and a depth of 1 m we obtain an initial velocity and instantaneous effusion rate of 0.3-0.6 m/s and ~3 m3/s, respectively. This compares with field- and LIDAR-derived values of 0.4 m/s and 1-4 m3/s. The best-fit between model-output and LIDIR-measured channel widths comes from a hybrid run in which the proximal section of the channel is characterised by poorly insulated flow and the medial-distal section by well-insulated flow. This best-fit model implies that flow conditions evolve down-channel, where hot crusts on a free flowing channel maximise heat losses across the proximal section, whereas thick, stable, mature crusts of 'a'a clinker reduce heat losses across the medial-distal section. This results in core cooling per unit distance that decreases from ~0.02-0.015 °C m-1 across the proximal section, to ~0.005 °C m-1 across the medial-distal section. This produces an increase in core viscosity from ~3800 Pa s at the vent to ~8000 Pa s across the distal section.
    Description: In press
    Description: open
    Keywords: lava flow ; thermo-rheological ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l−1 and from 2.6 to 3800 μg·l−1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwatersbsteam-heated groundwatersbNaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water–rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite+pyrite+pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.
    Description: Published
    Description: 313–330
    Description: reserved
    Keywords: Arsenic geochemistry ; Hydrothermal systems ; Water–rock interaction ; Hydrogeochemistry ; Arsenopyrite ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1251413 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: An application of LiDAR (Light Detection and Ranging) intensity for the identification and mapping of different lava flows from the Mt. Etna (Italy) active volcano is described. In September 2004 an airborne LiDAR survey was flown over summit sectors of Mt. Etna. The information derived from LiDAR intensity values was used to compare the lava flows with respect to their age of emplacement. Analysed lava flows vary in age between those dating prior to AD 1610 and those active during the survey (2004-2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the LiDAR footprint scale, are the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: i) initially, from the time of emplacement, the LiDAR intensity of lava flow surfaces decreases; ii) about 6 years after emplacement the LiDAR intensity of lava surfaces starts to increase with the age of flows. LiDAR capability in terms of geometric (accuracy of ~ 1 m in plan position and less than 1 m in elevation) and spectral (LiDAR intensity depends on surface reflection at λ= 1.064 μm) information can thus be effectively used to map lava flows and define a relative chronology of lava emplacement.
    Description: Published
    Description: open
    Keywords: Lava flow ; LiDAR ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-03
    Description: Mount Etna has developed at the intersection of two regional tectonic lineaments, the NNW–SSE trending Hybleo–Maltese escarpment, which separates the thick inland continental crust of the African platform from the Ionian Mesozoic oceanic crust, and the NE–SW Messina–Fiumefreddo fault that marks a rift zone between south Calabria and north-eastern Sicily, extending as far as the Mt. Etna area. All tectonic features affect, with outstanding surface features, the eastern side of the volcano. The eastern flank of the volcano is affected by a long-term motion toward ESE. In 1997, in order to increase the detail of the ground deformation pattern on the lower eastern flank of Mt. Etna, a new GPS network, the “Ionica” network, was installed on this sector of the volcano. This GPS network consists of 24 stations and covers the lower eastern flank of the volcano from the town of Catania to Taormina and from the coastline up to an altitude of about 1300 m. All the new stations consist in self-centring benchmarks; this kind of benchmark allows all station set-up errors to be avoided. Before the merging of the Ionica network to the frame of the global GPS network of Mt. Etna (in June 2001), three surveys were carried out on this network: in September 1997, August 1998 and January 2001. From the ground deformation pattern, it is possible to distinguish two different sectors, showing different characteristics of deformation. The southern part of the network shows a more uniform distribution of the vertical motion with a mean SE-ward horizontal component while the northern one shows an heterogeneous vertical motion with a ESE-ward horizontal component. Furthermore, a higher velocity is detected between 1997 and 1998, due to the additional stress induced by a shallow intrusion on the NW flank of the volcano. The model resulting from data inversions defines a wide sliding plane beneath the entire eastern flank of the volcano with a low dip angle. The expected velocity vectors fit well the observed ones, even if the measured velocities are still quite higher than expected, at lowermost stations. The vertical inclination of the velocity vectors measured during the 1998–2001 period, gradually decreases from West to East suggesting a sort of rotational movement of the south-eastern flank, interrupted by some anomalous vectors on the lower part, that show higher vertical velocities. These anomalies, being located on a wedge defined by the intersection of the main NNW–SSE and NE–SW fault systems and near the Timpe faults, are probably due to the activity of the vertical faults cutting the lower eastern flank of Mt. Etna. Stations lying on the hanging wall and on the footwall of the Timpe fault system are affected by similar horizontal displacements, meaning that these structures are moving eastwards together with the sliding flank; this evidence suggests that the Timpe faults are probably second order structures, with respect to the detachment surface. These results depict a structural framework of the eastern flank of Mt. Etna in which the low angle dislocation can be considered as a first order approximation of an actual listric plane and the current active part of the Timpe fault system is confined above the detachment surface.
    Description: Published
    Description: 357-369
    Description: reserved
    Keywords: ground deformation ; flank dynamics ; volcano–tectonics ; Etna volcano ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 813929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: The first measurements of volcanic/hydrothermal water vapor and heat flux using eddy covariance (EC) were made at Solfatara crater, Italy, June 8–25, 2001. Deployment at six different locations within the crater allowed areas of focused gas venting to be variably included in the measured flux. Turbulent (EC) fluxes of water vapor varied between 680 and 11200g H2O m−2 d−1. Heat fluxes varied diurnally with the solar input, and the volcanic component of sensible heat ranged from ∼25 to 238W m−2. The highest measurements of both sensible and latent heat flux were made downwind of hot soil regions and degassing pools and during mid-day. The ratio of average volcanic heat (both latent and sensible) to CO2 flux resulted in an equivalent H2O/CO2 flux ratio of 2.2 by weight, which reflects the deep source H2O/CO2 gas ratio. The amount latent heat flux/evaporation was determined to be consistent both with what would be expected from the magnitude of CO2 fluxes and the fumarolic H2O/CO2 ratio, as well as with observed surface temperatures and wind speeds given a moist soil. This suggests that the water vapor that condenses in the shallow subsurface is remobilized at the soil–atmosphere interface through variable evaporation dependent on the deep heat flux and surface temperature. The results suggest that EC provides a quick and easy method to monitor average H2O/CO2 ratios continuously in volcanic regions, providing another important tool for volcanic hazards monitoring.
    Description: Published
    Description: 72–82
    Description: reserved
    Keywords: eddy covariance ; volcanic ; heat flux ; water vapor ; hydrothermal ; degassing ; flux ; emissions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 653195 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Glass fragments in tephra erupted at Mt. Etna from May to December 1995 have been analyzed by laser ablation ICPMS. The trace element compositional variability of ashes deposited during this interval reveals the presence of discrete magma batches with different crystallization degrees in the shallow plumbing system. From May to October a highly crystalline magma is predominant within the conduit with only minor sporadic input of fresh and more primitive magma batches. After October new and less evolved magma batches become more prevalent and become progressively homogenized within more evolved resident magma. In December ashes closely match the chemistry of the volcanics subsequently erupted till February 1996. This study demonstrates that the trace element characterization of ashes has important implications for volcanic monitoring and is a useful tool for the forecasting of paroxysmal events at Mt. Etna.
    Description: Published
    Description: L05304
    Description: JCR Journal
    Description: reserved
    Keywords: magma ; 1995 ; Mt Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-10-18
    Description: We studied the surface deformations affecting the southeastern sector of the Po Plain sedimentary basin, in particular the area of Bologna. To this aim an advanced DInSAR technique, referred to as DInSAR–SBAS (Small BAseline Subset), has been applied. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. In particular, we have processed a set of SAR data acquired by the European Remote Sensing Satellite (ERS) sensors and compared the achieved results with optical levelling measurements, assumed as reference. The surface displacements detected by DInSAR SBAS from 1992 to 2000 are between 10 mm/year in the historical part of Bologna town, and up to 59 mm/year in the NE industrial and agricultural areas. Former measurements from optical levelling referred to 1897 show 2–3 mm/year vertical movements. This trend of displacement increased in the second half of the 20th century and the subsidence rate reached 60 mm/year. We compared the more recent levelling campaigns (in 1992 and late 1999) and DInSAR results from 1992 to 1999. The standard deviation of the difference between levelling data, projected onto the satellite Line Of Sight, and DInSAR results is 2 mm/year. This highlights a good agreement between the measurements provided by two different techniques. The explanation of soil movements based on interferometric results, ground data and geological observations, allowed confirming the anthropogenic cause (surface effect due to the overexploitation of the aquifers) and highlights a natural, tectonic, subsidence.
    Description: Published
    Description: 304-316
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: InSAR ; surface deformation ; SAR interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-10-06
    Description: We report first data on chemical composition of the gas emitted by the geothermal system of Sousaki, Greece. Gas manifestations display typical geothermal gas composition with CO2 as the main component and CH4 and H2S as minor species. Soil gas composition derives from the mixing of two end-members (atmospheric air and geothermal gas). Soil CO2 fluxes range from〈2 to 33,400 g m 2 d 1. The estimated diffuse output of hydrothermal CO2, estimated for an area of 0.015 km2, is about 630 g s 1, while a tentative estimation of CH4 diffuse output gave a value of about 1.15 g s 1. Point sources accounted for lower flux values of 26 g s 1 of CO2, 0.1 g s 1 of CH4 and 0.02 g s 1 of H2S.
    Description: Published
    Description: L05307
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; methane emissions ; geothermal system, ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Hydrothermal fluids and sediments from subaerial and shallow submarine sites at Vulcano Island, Italy were investigated for relations between the thermophilic microbial communities, as analysed by fluorescence in situ hybridization, and their geochemical environment, as assessed by photometry, chromatography, and in situ microsensor measurements. Mixing between hydrothermal fluids and seawater in the sediment pore space was reflected in the chemical composition of the emitted fluids, in depth profiles of pore water oxygen and sulfide concentrations, and in the structure of the benthic microbial community. Organic compounds did not accumulate in the vent fluids (b10 AM fatty acids) or in the sediments (b0.1% Corg), suggesting that efficient utilization supported microbial populations on the order of 104 cells per ml fluid and 108 cells per cm3 sediment. Groups of thermophiles that typically gain metabolic energy from the fermentation of organic matter (Thermococcales, Thermotoga/Thermosipho spp., and Bacillus sp.)were detected in significant abundances at all study sites. Also abundant were thermophiles capable of oxidizing organic acids with oxygen, nitrate, or sulfate. Aerobic thermophiles (Aquificales and Thermus sp.) were more abundant at oxic sites than at anoxic sites. Increasingly oxygenated habitats were associated with decreasing abundance of anaerobic (hyper)thermophiles belonging to the order Archaeoglobales.
    Description: Published
    Description: 169– 182
    Description: partially_open
    Keywords: Biogeochemistry ; Hydrothermal system ; Marine sediment ; Microbial ecology ; Microsensor ; Thermophiles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 315050 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-01-08
    Description: For an improvement in the quality of conduit flow and dome-related explosive eruption models, knowledge of the preeruption or precollapse density of the rocks involved is necessary. As close investigation is impossible during eruption, the best substitute comes from quantitative investigation of the eruption deposits. The porosity of volcanic rocks is of primary importance for the eruptive behaviour and, accordingly, a key-parameter for realistic models of dome stability and conduit flow. Fortunately, this physical property may be accurately determined via density measurements. We developed a robust, battery-powered device for rapid and reliable density measurements of dry rock samples in the field. The density of the samples (sealed in plastic bags at 250 mbar) is determined using the Archimedean principle. We have tested the device on the deposits of the 1990–1995 eruption of Unzen volcano, Japan. Short setup and operation times allow up to 60 measurements per day under fieldwork conditions. The rapid accumulation of correspondingly large data sets has allowed us to acquire the first statistically significant data set of clast density distribution in block-and-ash flow deposits. More than 1100 samples with a total weight of 2.2 tons were measured. The data set demonstrates that the deposits of the last eruptive episode at Unzen display a bimodal density distribution, with peaks at 2.0F0.1 and 2.3F0.1 g/cm3, corresponding to open porosity values of 20 and 8 vol.%, respectively. We use this data set to link the results of laboratory-based fragmentation experiments to field studies at recently active lava domes.
    Description: Published
    Description: 65-75
    Description: partially_open
    Keywords: field-based density measurements ; dome ; Unzen volcano ; explosive eruption ; block-and-ash flow ; fragmentation behaviour ; volcanology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 710471 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-06-25
    Description: We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
    Description: -European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 963–981
    Description: partially_open
    Keywords: isotopes ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1032453 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: This work presents the results of hydrogeochemical studies carried out at Vesuvius during the period May 1998 - December 2001, mostly focusing on compositional time variations observed during this time. Based on their chemistry, groundwater samples are distinguished into two groups, 1 and 2, representative of water circulation in the southern and northern sectors of the volcano, respectively. Waters from group 1 are typically more acidic, warmer,and more saline than those of group 2. They also have higher CO2 and CH4 contents, attributed to enhanced input of deep-rising volatiles and prolonged water-rock interactions. Time-series highlight the fairly constant chemical composition of the entire aquifer. Groundwater temperature, pH, bicarbonate content and dissolved CO2 display quite stable values in the study period, particularly in deep wells (piezometric level more than 100 m deep). Shallower water bodies present more evident temporal variations, related to seasonal and anthropogenic effects. This paper also describes some important variations in water chemistry which had occurred by the time of the seismic event in early October 1999, particularly in the Olivella spring located on the northern flank of the volcano. At this site, a great decrease in water pH and redox potential, and increased dissolved CO2 contents and 3He/4He ratios were observed. These changes in chemical and isotope composition support the hypothesis of an input of magma-derived helium and carbon dioxide into the aquifer feeding the Olivella spring by the time of the earthquake.
    Description: Published
    Description: 81-104
    Description: partially_open
    Keywords: Vesuvius ; volcanic surveillance ; groundwater ; hydro-geochemistry ; oxygen-18 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1457387 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece,and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature. N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and 13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.
    Description: European community
    Description: Published
    Description: 2321–2334
    Description: partially_open
    Keywords: fumarolic gases ; hydrothermal systems ; chemical and isotopic equilibrium ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 829360 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: In order to improve the microscopic understanding of the water-magma interaction process during explosive volcanism,volcanic glasses representative of deposits with sedimentological characteristics suggesting different water/melt ratios were studied by a combination of the nuclear magnetic resonance (NMR) and TIMS methods. The glasses were separated from pumices of two surge layers and one fallout bed of the Cretaio Tephra (Ischia Island,Italy), which is the product of an explosive eruption that occurred at Ischia in the second century BC. The 29Si CP^MAS NMR experiments indicate the occurrence of 1H^29Si dipolar couplings in glasses from the phreatomagmatic activity, suggesting the presence of hydrogen atoms in proximity of silicon atoms. This feature is not detected in the glass from the deposit of the magmatic explosion. 1H MAS NMR spectra reveal different peaks attributed to different hydrous species characterized by different motional properties. These include ‘rigid’ H2O groups isolated in the glass structure, more mobile water species and possibly structural hydroxyl groups. 1H MAS NMR spectra recorded after deuteration experiments of the glass at a temperature up to 300‡C revealed that the exchange reactions of the D2O vapor with hydrogen were limited to the most mobile water species,possibly on vesicle surfaces or in channels. The hydrogen concentration linearly correlates with the 87Sr/86Sr isotope ratio in glasses,suggesting isotopic tracer exchanges between the Sr dissolved in the water vapor and the Sr in the silicon-oxygen network during hydration. It is proposed that the uprising melt interacted with a hydrothermal system of seawater-derived fluids,characterized by relatively high Sr isotopic composition.
    Description: Published
    Description: 311-320
    Description: partially_open
    Keywords: Ischia ; Cretaio Tephra ; Water-melt interaction ; Nuclear magnetic resonance ; Sr isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 352732 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: On July 18, 2001, two main eruptive vents opened on the southern flank of Mount Etna volcano (Italy) at ~2100 m and ~2550 m a.s.l., respectively. The former vent fed mild strombolian activity and lava flows, while the latter represented the main explosive vent, producing strong phreato-magmatic explosions. Explosions at this latter vent, however, shifted to a strombolian style in the following days, before switching back to phreato-magmatic activity towards the end of the eruption, which ended on August 9, 2001. On August 3, a small seismoacoustic array was deployed close to the eruptive vents. The array was composed of three stations, which recorded seismic and infrasonic waves coming from both of the eruptive vents. A further seismoacoustic station, equipped with a thermal-infrared sensor, was also installed several kilometers north of the first array. Seismic signals relating to the strombolian activity at the 2100-m vent were characterized by a strong decompression at the source. Analysis of the time delays between seismic, infrasonic and infrared event onsets also revealed that ejection velocities during explosions from both vents were subsonic. Time delays between the onset of explosive events apparent in the infrared and infrasound data indicated that the explosion source at the 2550-m vent was located 220–250 m below the crater rim. In comparison, the depth of the seismic source was estimated to be between 230 and 335 m below the rim. This converts to 120–150 and 130–235 m below the preexisting ground surface. In addition, time delays between seismic and infrasonic signals recorded for the lower (2100 m) vent also revealed a seismic source that was no more than a few tens of meters deeper than the fragmentation surface.
    Description: Published
    Description: 219-230
    Description: partially_open
    Keywords: Mt. Etna ; explosive eruptions ; arrays ; seismic ; infrasonic and thermal data ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 590708 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: This paper discusses the abundance, speciation and mobility of As in groundwater systems from active volcanic areas in Italy. Using literature data and new additional determinations, the main geochemical processes controlling the fate of As during gas–water–rock interaction in these systems are examined. Arsenic concentrations in the fluids range from 0.1 to 6940 mg/l, with wide differences observed among the different volcanoes and within each area. The dependence of As content on water temperature, pH, redox potential and major ions is investigated. Results demonstrate that As concentrations are highest where active hydrothermal circulation takes place at shallow levels, i.e. at Vulcano Island and the Phlegrean Fields. In both areas the dissolution of As-bearing sulphides is likely to be the main source of As. Mature Cl-rich groundwaters, representative of the discharge from the deep thermal reservoirs, are typically enriched in As with respect to SO4-rich ‘‘steam heated groundwaters’’. In the HCO3 groundwaters recovered at Vesuvius and Etna, aqueous As cycling is limited by the absence of high-temperature interactions and by high-Fe content of the host rocks, resulting in oxidative As adsorption. Thermodynamic modelling suggests that reducing H2S-rich groundwaters are in equilibrium with realgar, whereas in oxidising environments over-saturation with respect to Fe oxyhydroxides is indicated. Under these oxidising conditions, As solubility decreases controlled by As co-precipitation with, or adsorption on, Fe oxy-hydroxides. Consistent with thermodynamic considerations, As mobility in the studied areas is enhanced in intermediate redox environments, where both sulphides and Fe hydroxides are unstable.
    Description: Published
    Description: 1283–1296
    Description: partially_open
    Keywords: Hydrogeochemistry ; Arsenic ; volcanic groundwaters ; speciation ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 703456 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: We have undertaken detailed observations of the formation of the `Laghetto´ cinder cone, a new cone that formed during a 2-week period of intense activity in Piano del Lago, on the upper slopes of Mount Etna in summer 2001. We describe the events leading to the formation of a small graben, the formation of pit craters on the base of the graben, the onset of phreatomagmatic activity, a transition to intense Strombolian activity, and a return to phreatomagmatic activity as the eruption came to an end. We discuss the reasons for these transitions, and describe the morphological development of the cone during these events. Arcuate cracks on the southern part of the cone were related to withdrawal of magma at the end of the eruption. Other slope instabilities that developed during the eruption include the formation of small radial grain flows on the outer flanks of the cone and the collapse into the crater of part of the crater rim. Some of the failure planes we observed were first identified using a FLIR TM 695 thermal infrared camera. This is the first time that infrared thermography has been used to detect instability of volcanic structures. Results obtained during this test case demonstrate that thermal cameras are a very useful tool for studies of volcanic instability.
    Description: Published
    Description: 225-239
    Description: partially_open
    Keywords: Etna volcano ; cinder cone ; volcano instability ; thermal images ; phreatomagmatic activity ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 871290 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: This survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.
    Description: - Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).
    Description: Published
    Description: 283– 297
    Description: partially_open
    Keywords: caldera ; elliptic Fourier functions ; geomorphology ; self-potential ; Misti volcano ; Peru ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 756700 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Description: Published
    Description: 1^18
    Description: partially_open
    Keywords: Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: One of the seven potentially active andesite stratovolcanoes in southern Peru, Misti (5822 m), located 17 km northeast and 3.5 km above Arequipa, represents a major threat to the population (f900,000 inhabitants). Our recent geophysical and geochemical research comprises an extensive self-potential (SP) data set, an audioâ magnetotelluric (AMT) profile across the volcano and CO2 concentrations in the soil along a radial profile. The SP survey is the first of its kind in providing a complete mapping of a large andesitic stratovolcano 20 km in diameter. The SP mapping enables us to analyze the SP signature associated with a subduction-related active volcano. The general SP pattern of Misti is similar to that of most volcanoes with a hydrogeologic zone in the lower flanks and a hydrothermal zone in the upper central area. A quasi-systematic relationship exists between SP and elevation. Zones with constant SP/altitude gradients (Ce) are observed in both hydrogeologic (negative Ce) and hydrothermal (positive Ce) zones. Transition zones between the different Ce zones, which form a concentric pattern around the summit, have been interpreted in terms of lateral heterogeneities in the lithology. The highest amplitudes of SP anomalies seem to coincide with highly resistive zones. The hydrothermal system 6 km in diameter, which extends over an area much larger than the summit caldera, may be constrained by an older, concealed collapse caldera. A sealed zone has apparently developed through alteration in the hydrothermal system, blocking the migration of CO2 upward. Significant CO2 emanations are thus observed on the lower flanks but are absent above the hydrothermal zone.
    Description: - Institut de Recherche pour le Developpement (IRD) - Instituto Geofısico del Peru´ (IGP)
    Description: Published
    Description: 343-360
    Description: partially_open
    Keywords: Misti volcano ; self-potential ; audioâ magnetotelluric ; electrical resistivity ; structural discontinuity ; hydrothermal system ; Peru ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1573969 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: Here, a new technique for the determination of dissolved He isotope ratios in ground-waters is presented. This method is based on the extraction and subsequent equilibrium of dissolved gases in an added ‘‘host’’ gas phase. Ultra pure N2 is placed in glass flasks (250 cc), containing water samples, that were hermetically sealed after their collection. After shaking in an ultrasonic bath for 10 min, an aliquot of the separated gas phase was removed from the flask for MS analysis. 3He/4He ratios are measured by using a modified double collector mass spectrometer (VG 5400-TFT). Helium and Ne concentrations are calculated by comparing the partial pressures of masses 4 and 20 of the samples with those of the air-standard measured by a quadrupole mass spectrometer (QMS;VG Quartz). Using He and Ne equilibrium partitioning coefficients, it is possible to calculate the amount of gas originally dissolved in the water. The technique was tested on both air-saturated waters (ASW) and thermal waters from Stromboli (Aeolian Islands, South Italy), the results of which confirmed good reproducibility (ffi5%) and accuracy (ffi3%) of the data. The method was then applied to three thermal water samples collected from the same volcanic area and the results compared with those of a fumarolic and a soil gas. The isotope ratios for dissolved He gave values of 4.06–4.23 Ra, which are significantly higher than those previously reported in the literature (3.0, 3.5 and 2.9 Ra) and that measured at the fumarole (3.09 Ra), suggesting a newer and higher isotopic signature for the volcanic system. The proposed method appears to be a useful tool in the determination of 3He/4He ratios in ground-water systems, especially when free gases are not available or are dangerous to collect.
    Description: Published
    Description: 665–673
    Description: partially_open
    Keywords: dissolved helium isotopes ; gas water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 439948 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas–water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80–1008 C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO2 in the springs was also detected and associated with high CO2 degassing.
    Description: Published
    Description: 91– 108
    Description: partially_open
    Keywords: Popocatepetl volcano ; helium isotope composition ; carbon isotope composition ; dissolved gases ; gas–water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 899823 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...