ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (3)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (3)
  • Agu  (4)
  • Association for Environmental Archaeology - Maney  (1)
  • Annual Reviews
  • Blackwell Publishing Ltd
  • 2005-2009  (6)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: We report here on the real-time measurement of CO2 and SO2 concentrations in the near-vent volcanic gas plume of Mount Etna, acquired by the use of a field portable gas analyzer during a series of periodic field surveys on the volcano’s summit. During the investigated period (September 2004 to September 2005), the plume CO2/SO2 ratio ranged from 1.9 to 10.8, with contrasting composition for Northeast and Voragine crater plumes. Scaling the above CO2/SO2 ratios by UV spectroscopy determined SO2 emission rates, we estimate CO2 emission rates from the volcano in the range 0.9–67.5 kt d 1 (average, 9 kt d 1). About 2 kt of CO2 were emitted daily on average during quiescent passive degassing, whereas CO2 emission rates from Etna’s summit were 10–40 times larger during the 2004–2005 effusive event (with a cumulative CO2 release of 3800 kt during the 6 months of the eruption). Such a syneruptive increase, ascribed to the replenishment of the shallow (〈6 km) volcanic plumbing system by CO2-rich (0.25 wt %) more primitive magmas, supports the potential of CO2 output rates as key parameters for volcanic hazard assessment.
    Description: Published
    Description: B09207
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A new method using ammonia solutions in pre-evacuated quartz bottles has been experimented for volcanic gas sampling and analysing. Various tests (reproducibility, variability and comparison with known methods such as NaOH pre-evacuated bottles and acid condensates) have been performed to check for their efficiency. By using ammonia solutions, acid gases (St, HCl, HF), carbon dioxide, noncondensible gases (N2, Ar, …) and metallic trace elements (MTE) can be measured with standard methods (HPLC, GC, titrimetry, ICP-MS). Results showthat acid gases, CO2 and noncondensible gases are sampled and analysedwith similar efficiency inNH4OHbottles than by using the known and accurate NaOH method.Moreover, a key point is that NH4OH solutions, after undergoing adequate processing (oxidation and acidification) allow also precise MTE measurements by using standard ICP-MS methods. Such MTE measurements appear much more reliable than those performed on acid condensates. Pre-evacuated ammonia bottles appear therefore as an optimum tool to collect volcanic gases and to obtain their complete chemical composition.
    Description: Published
    Description: 244-256
    Description: JCR Journal
    Description: reserved
    Keywords: lcanic gas; sampling ; acid gases ; noncondensible gases ; metallic trace elements ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: New seismological and structural data from the central Adriatic-Gargano promontory area demonstrate that the current models of an aseismic and slightly deformed Adriatic block have to be revised. A seismically active deformational belt is mapped along two main fault systems, the Tremiti Islands and Mattinata faults. Moreover, geologic and geophysical evidence suggests that a more extensive lithospheric boundary may cut across the central Italian peninsula to the Tyrrhenian basin.
    Description: Published
    Description: 109-117
    Description: JCR Journal
    Description: open
    Keywords: Adriatic Sea ; Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the Greek and Roman periods, the fortified town of Tindari’s military and trading importance combined with its strategic location in north-east Sicily allowed it to control traffic on the Tyrrhenian Sea for many centuries. Historical sources (Polybius, Cicero, Livy and Appian) testify to the flourishing maritime activity of the ancient town, but do not supply any information on the location, size or configuration of its harbour. Because a town as important as Tindari must have had a landing place for ships, we examined new sources of information with the aim of identifying its location. Historiographical and archaeological surveys produced evidence of a well-organised harbour. Geomorphological investigations, performed along the Tindari Promontory, identified Holocene uplifted and submerged notches indicating past sea level changes. Furthermore, it was found that in the last four centuries the combined actions of marine and fluvial dynamics had produced a progressive filling of the Oliveri lowland and a progradation of the shoreline, which was responsible for the burial of ancient buildings. The palaeotopographic reconstruction of the Tindari Cape Promontory and Oliveri coastal plain in the 4th century BC shows a safe landing place south-east of the Tindari Cape that was suitably protected from prevailing winds.
    Description: Published
    Description: 37-49
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: geoarchaeology ; Tindari harbour ; marine notches ; paleotopographic reconstruction ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: We analyse P-wave traveltimes for the Mediterranean area, using both teleseismic and regional arrivals for shallow earthquakes reported in the Bulletins of the International Seismological Centre. We model delays between pairs of 0.5° × 0.5° cells, obtaining a detailed representation of the P traveltime heterogeneities. Examination of these anomalies shows the clear presence of geographically coherent patterns—consistent with known geological features—due to significant structure in the upper mantle. We present a scheme, based on an empirical heterogeneity correction (EHC) to P-wave traveltimes, to improve earthquake location. This method provides similar benefits to those of a location procedure based on ray tracing in a 3-D model, but it is simpler and computationally more efficient. The definition of the traveltime heterogeneity model, being based on a statistical procedure, bypasses most of the critical points and possible instabilities involved in model inversion. EHC relocation, applied to Mediterranean earthquakes, allows one to predict about 70 per cent of the estimated signal due to heterogeneity and produces epicentral and origin time-shifts of, respectively, 4.22 km and 0.35 s (rms). From a synthetic experiment, in which we use the proposed algorithm to retrieve known source locations, we estimate that the rms improvement achieved by the EHC relocation over a simpler, standard, 1-D location is more than 20 per cent for both epicentral mislocation and origin time-shifts.
    Description: Published
    Description: 232-254
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake location ; Mediterranean ; P waves ; traveltime ; upper mantle ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Finding the geometry of aquifers in an active volcano is important for evaluating the hazards associated with phreatomagmatic phenomena and incidentally to address the problem of water supply. A combination of electrical resistivity tomography (ERT), self-potential, CO2, and temperature measurements provides insights about the location and pattern of ground water flow at Stromboli volcano. The measurements were conducted along a NE-SW profile across the island from Scari to Ginostra, crossing the summit (Pizzo) area. ERT data (electrode spacing 20 m, depth of penetration of 200 m) shows the shallow architecture through the distribution of the resistivities. The hydrothermal system is characterized by low values of the resistivity (〈50 W m) while the surrounding rocks are resistive (〉2000 W m) except on the North-East flank of the volcano where a cold aquifer is detected at a depth of 80 m (resistivity in the range 70–300 W m). CO2 and temperature measurements corroborate the delineation of the hydrothermal body in the summit part of the volcano while a negative self-potential anomaly underlines the position of the cold aquifer.
    Description: Published
    Description: L17304
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeology ; Stromboli volcano ; CO2 ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...