ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (15)
  • 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy  (3)
  • African Humid Period
  • Springer-Verlag  (15)
  • Editrice Compositori  (2)
  • American Association for the Advancement of Science
  • 2005-2009  (18)
Collection
Years
Year
  • 1
    Publication Date: 2019-11-04
    Description: The results of an experiment carried out with the aim to investigate the role of surface irregularities on the intensity data provided by a terrestrial laser scanner (TLS) survey are reported here. Depending on surface roughness, the interaction between an electromagnetic wave and microscopic irregularities leads to a Lambertian-like diffusive light reflection, allowing the TLS to receive the backscattered component of the signal. The described experiment consists in a series of TLS-based acquisitions of a rotating artificial target specifically conceived in order to highlight the effects on the intensity data due to surface irregularity. This target is articulated in a flat plate and in an irregular surface, whose macro-roughness has a characteristic length with the same order of the spot size. Results point out the different behavior of the plates. The intensity of the signal backscattered by the planar element decreases if the incidence angle increases, whereas the intensity of the signal backscattered by the irregular surface is almost constant if the incidence angle varies. Since the typical surfaces acquired in a geological/geophysical survey are generally irregular, these results imply that the intensity data can be easily used in order to evaluate the reflectance of the material at the considered wavelength, e.g. for pattern recognition purposes.
    Description: Published
    Description: 839-848
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Terrestrial Laser Scanner ; Intensity ; Incidence Angle ; Irregular surfaces ; Data Acquisition and Processing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: A network of tiltmeters has been operational on Vulcano Island for numerous years. At present, the network comprises five functioning borehole stations, four of which are installed at 8-10 m and allow recording very stable, high precision signals with very low noise. We report observations over the last 12 years that illustrate impulsive variations linked to seismicity and long-term (several years) trends in the signals. We suggest a relationship between tilt changes correlated to the strongest regional seismic events and site acceleration; long-term tilt variations analyzed in combination with other ground deformation data seem to represent the evidence of a contraction of the La Fossa cone. We also analyzed how the tilt device has the capability to detect possible magma migrations; we considered previous studies that have imaged spatially well-defined levels of magma accumulation beneath La Fossa, and Vulcanello; we concluded that the Vulcano tilt network should be capable of detecting the upward migration of small magma volumes. Finally, we show that no evidence of changes are visible on tilt signals during anomalous degassing episodes (linked to a building up input of magmatic fluids) at the La Fossa thereby evidencing that no magma migration occurred during such events.
    Description: Published
    Description: 233-247
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: tilt monitoring ; magma migration ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997 - September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.
    Description: Consiglio Nazionale delle Ricerche of Italy (C.N.R.)Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 80-89
    Description: partially_open
    Keywords: Mt. Etna ; Soil CO2 emissions ; Plume SO2 flux ; COSPEC ; Continuous geochemical monitoring ; Eruptive activity ; Degassing model ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 1644622 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Measurements of CO2 flux from the ground were periodically carried out on the island of Vulcano (Aeolian Islands, Italy) between 1984 and 1994. Three high-flux areas were identified at the foot of the volcanic cone (La Fossa), either inside or very close to the main village. Effect of the choice of the sampling grid was evaluated. A different sampling grid resulted in similar distribution patterns, but with different CO2 fluxes. Therefore, the absolute estimate of the total flux from the investigated area includes a large degree of uncertainty, but repeated measurements with permanent sampling sites are accurate and can detect small changes. No correlation of the flux with atmospheric parameters was found at sites with high fluxes. Some periods characterized by high CO2 fluxes were observed, and a close correlation was found between the gas emissions from the ground and other geochemical and geophysical parameters such as temperature, chemical composition, steam, and SO2 flux from fumaroles, seismic energy release, and ground deformations. The results show that major temporal variations of diffuse CO2 flux are related to variations in volcanic activity.
    Description: Gruppo Nazionale per la Vulcanologia CNR Italy.
    Description: Published
    Description: 219–228
    Description: partially_open
    Keywords: CO2 ; Flux measurements ; Gas emissions ; Soil gas ; Volcanic activity ; Vulcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 368780 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Eruption forecasting and hazard assessments at the restless Campi Flegrei caldera, within the Neapolitan volcanic area, have been performed using stratigraphical, volcanological, structural and petrological data. On the basis of the reconstructed variation of eruption magnitude through time, we hypothesize that the most probable maximum expected event is a medium-magnitude explosive eruption, fed by trachytic magma. Such an eruption could likely occur in the north-eastern sector of the caldera floor that is under a tensile stress regime, when the ongoing deformation will generate mechanical failure of the rocks. A vent could open also in the western sector, at the intersection of two fault systems contemporaneously activated, as happened in the last eruption at Monte Nuovo. The eruption could likely be preceded by precursors apparent to the population, such as ground deformation, seismicity and increase in gas emissions. It will probably alternate between magmatic and phreatomagmatic phases with the generation of tephra fallout, and dilute and turbulent pyroclastic currents. During and/or after the eruption, the re-mobilization of ash by likely heavy rains, could probably generate mud flows. In order to perform a zoning of the territory in relation to the expected volcanic hazards, we have constructed a comprehensive hazard map. On this map are delimited (I) areas of variable probability of opening of a new vent, (II) areas which could be affected by variable load of fallout deposits, and (III) areas over which pyroclastic currents could flow. The areas in which a vent could likely open have been defined on the basis of the dynamics of the ongoing deformation of the caldera floor. To construct the fallout hazard map we have used the frequency of deposition of fallout beds thicker than 10 cm, the frequency of load on the ground by tephra fallout and the direction of dispersal axes of the deposits of the last 5 ka, and the limit load of collapse for the variable types of roof construction. The pyroclastic-current hazard map is based on the areal distribution and frequency of pyroclastic-current deposits of the last 5 ka.
    Description: Published
    Description: 514-530
    Description: partially_open
    Keywords: Volcanic hazard ; Campi Flegrei ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 478 bytes
    Format: 1260848 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002–January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (Q4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and shortand midterm eruption forecasting of explosive activity.
    Description: Published
    Description: 821-823
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727523 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Pomici di Mercato (PdM, 8,010±40 a), also known in the literature as Pomici Gemelle or Pomici di Ottaviano, is one of the oldest Plinian eruptions of Somma- Vesuvius. This eruption occurred after the longest (7 ka) quiescence period of the volcano and was followed by more than 4 ka of repose. The erupted magma is phonolitic in composition. All the products have very low phenocrysts content (less than 3%) and show evidence of mineralogical disequilibria. They contain K-feldspar ± clinopyroxene (salite and diopside) ± plagioclase ± garnet ± biotite ± amphibole ± apatite ± Fe-Ti oxides. Pumice fragments collected at different stratigraphic heights are slightly less evolved and more enriched in radiogenic Sr composition upsection. The glass composition is fairly homogeneous in single pumice fragment and among pumice fragments from different layers. Glass separated from pumice fragments collected at different stratigraphic heights is homogeneous in the Sr-isotope composition (around a value of 0.70717). Glass is in isotopic equilibrium with salite throughout the entire sequence and with diopside at the base of the sequence. Diopside becomes more radiogenic upsection, reaching a value of 0.707458±7, whereas feldspar is consistently slightly less radiogenic than glass. Nd-isotope composition is fairly uniform (ca. 0.51247) through the whole sequence. The isotopic disequilibria among glass, feldspar and diopside, together with the homogeneous isotopic composition of pumice glass in equilibrium with salite, and the mineralogical disequilibria between plagioclase and K-feldspar, imply that most of the diopside and plagioclase crystals are xenocrysts incorporated into the phonolitic magma during residence in a magma chamber and/or during ascent towards the surface. The PdM Tephra are compositionally and isotopically similar to the phonolitic, first-erupted products of the subsequent Pomici di Avellino Plinian eruption. On the basis of this similarity, we suggest that the magma feeding both eruptions resulted from the tapping of a unique magma chamber. Prior to the PdM eruption, this chamber was formed by a large and homogeneous phonolitic magma body. After the PdM eruption, as a consequence of new arrivals of more radiogenic in Sr, less-differentiated magma batches, the magma chamber progressively developed a slightly stratified phonolitic uppermost portion, capping a tephriphonolitic layer, both emitted during the subsequent Pomici di Avellino eruption.
    Description: Published
    Description: on line first
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; Pomici di Mercato eruption ; Magma chamber ; Radiogenic isotopes ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer-Verlag
    Publication Date: 2017-04-04
    Description: The July-August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3050 and 2100 m altitude, and two on the NE flank between 3080 and 2600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore one of the eccentric vents, at 2570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, both during the intial and closing stages of the eruption. For six days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25 x 106 m3 of lava and 5-10 x 106 m3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14-16 m3 s-1 while the average effusion rate at all fissures was about 11 m3 s-1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid 17th century.
    Description: Published
    Description: 461-476
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; 2001 eruption ; Lava flow-field evolution ; Central-lateral vs. eccentric activity ; Phreatomagmatism ; Eruption dynamics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (〈3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.
    Description: Published
    Description: 517-529
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Central volcanoes ; Summit and flank eruptions ; Dikes ; Tectonics ; Volcano load ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: High precision aerial photogrammetry has been used in addition to other geophysical techniques such as bathymetric surveys, geodetic measurements, microseismicity recording, etc., for monitoring slope deformations and the volcanic activity of Stromboli Island (Aeolian Arc, Italy), during the last effusive eruption, which started on December 28, 2002 and soon after the major landslide/ tsunami event of December 30. Qualitative and quantitative description of topographic and morphological changes of the Sciara del Fuoco were possible thanks to a recent preeruption photogrammetric survey performed in 2001; the comparisons of 12 multi-temporal digital terrain models carried out during the period January–June 2003 were used to evaluate the displaced mass by the landslide, the lava accumulation and the erosion processes of the Sciara del Fuoco. After the end of the eruption, four additional photogrammetric surveys were performed between July 2003 and October 2005 to monitor the evolution of the slope and detect potential instability phenomena. The slope appeared significantly modified and continued to evolve, showing marked erosion both on the lower part and toward the craters terrace. Over the same period, the new lava flows showed progressive contraction of the thicker part of the lava pile caused by its cooling and compaction and the possible sliding along the shear surface of the December 2002 deep-seated movement. The present morphology seems to be far from equilibrium and the deformation processes are still ongoing, justifying a continuous monitoring activity to understand the evolution of these instability phenomena.
    Description: Dipartimento della Protezione Civile (DPC) and Istituto Nazionale di Geofisica e Vulcanologia (INGV), Project V1_2
    Description: Published
    Description: 703–715
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Sciara del Fuoco ; Digital photogrammetry ; Digital terrain models ; Morphology ; Landslide ; Slope deformation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...