ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atmosphere-ocean system  (1)
  • Indian Ocean  (1)
  • American Meteorological Society  (2)
  • American Physical Society (APS)
  • Springer Nature
  • 2005-2009  (2)
  • 1945-1949
  • 1
    Publication Date: 2017-04-04
    Description: The Indian Summer Monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between ISM and Tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean Dipole Mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the Coupled Manifold, is used to investigate the TIO SST variability and its relation with the Tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the Tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the Tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
    Description: Published
    Description: 3083-3105
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Indian Ocean ; monsoon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2021-05-19
    Description: Skill in ensemble-mean dynamical seasonal climate hindcasts with a coupled land-atmosphere model and specified observed sea surface temperature is compared to that for long multi-decade integrations of the same model where the initial conditions are far removed from the seasons of validation. The evaluations are performed for surface temperature and compared among all seasons. Skill is found to be higher in the seasonal simulations than the multi-decadal integrations except during boreal winter. The higher skill is prominent even beyond the first month when the direct influence of the atmospheric initial state elevates model skill. Skill is generally found to be lowest during the winter season for the dynamical seasonal forecasts, equal to that of the long integrations, which show some of the highest skill during winter. The reason for the differences in skill during the non-winter months is attributed to the severe climate drift in the long simulations, manifest through errors in downward fluxes of water and energy over land and evident in soil wetness. The drift presses the land surface to extreme dry or wet states over much of the globe, into a range where there is little sensitivity of evaporation to fluctuations in soil moisture. Thus, the land-atmosphere feedback is suppressed, which appears to lessen the model’s ability to respond correctly over land to remote ocean temperature anomalies.
    Description: Center for Ocean-Land-Atmosphere Studies
    Description: Published
    Keywords: Atmosphere-ocean system
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed , Article
    Format: 503454 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...