ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data
  • Other Sources  (1,481)
  • Space Sciences (General)  (741)
  • Fluid Mechanics and Thermodynamics  (740)
  • 2005-2009  (1,451)
  • 1950-1954  (30)
  • 1
    Publication Date: 2018-06-06
    Description: The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H2CO3) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. Results are compared to literature values. We report, for the first time, measurements of carbonic acid's vapor pressure and its heat of sublimation. We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-27
    Description: Aircraft induced contrails have been found to have a net warming influence on the climate system, with strong regional dependence. Persistent linear contrails are detectable in 1 Km thermal imagery and, using an automated Contrail Detection Algorithm (CDA), can be identified on the basis of their different properties at the 11 and 12 m w av.el enTgthshe algorithm s ability to distinguish contrails from other linear features depends on the sensitivity of its tuning parameters. In order to keep the number of false identifications low, the algorithm imposes strict limits on contrail size, linearity and intensity. This paper investigates whether including additional information (i.e. meteorological data) within the CDA may allow for these criteria to be less rigorous, thus increasing the contrail-detection rate, without increasing the false alarm rate.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-8777 , RSPSoc Annual Conference; 8-11 Sept. 2009; Leicester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center.
    Keywords: Space Sciences (General)
    Type: 2009 AGU Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-934 , International Forum on Aeroelasticity and Structural Dynamics (IFASD) 2009; Jun 21, 2009 - Jun 25, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience gained from the earlier test bed. The surface area of both aluminum and nickel in the test bed were designed to be similar to that of the Orion fluid loop, since the Orion fluid loop was expected to have high concentrations of both metals in the system. Also, additional sample materials were added to the test bed to match recent updates to materials selections for Orion. At the time of this paper publication, approximately five months of testing will have been completed. This paper gives a status of the testing completed to date.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19237 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19174 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: NASA s Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids. The current paper will provide an update to a similar overview paper published at last year s International Conference on Environmental Systems (ICES).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19168 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Furthermore, the Integrated Sublimator Driven Coldplate (ISDC) concept couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases. The previously developed SDC technology cannot be used for long mission phases due to the fact that it requires a consumable feedwater for heat rejection. Adding a coolant loop also provides for dissimilar redundancy on the Altair Lander ascent module thermal control system, which is the target application for this technology. Tests were performed on an Engineering Development Unit at NASA s Johnson Space Center to quantify and assess the performance of the SDC. Correlated thermal math models were developed to help explain the test data. The paper also outlines the preliminary results of an ISDC concept being developed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19171 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: NASA s Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19066 , Lunar Exploration Analysis Group Annual Meeting; Nov 16, 2009 - Nov 19, 2009; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19019 , American Astronomical Society Meeting; Jan 03, 2010 - Jan 07, 2010; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: An assessment of APNASA was conducted at NASA Glenn Research Center under the Fundamental Aeronautics Program to determine their predictive capabilities. The geometry selected for this study was Stage 35 which is a single stage transonic compressor. A speedline at 100% speed was generated and compared to experimental data at 100% speed for two turbulence models. Performance of the stage at 100% speed and profiles of several key aerodynamic parameters are compared to the survey data downstream of the stator in this report. In addition, hub leakage was modeled and compared to solutions without leakage and the available experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18238 , AIAA 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
    Keywords: Space Sciences (General)
    Type: AIAA Paper 2009-0957 , E-18314 , 47th Aerospace Science Meeting; Jan 05, 2012 - Jan 08, 2012; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18249 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.
    Keywords: Space Sciences (General)
    Type: American Geophysical Union (AGU) 2009 Joint Assembly; May 25, 2009 - May 28, 2009; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of 3He, 4He, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of 3He and 4He. Published data is used to extend the analysis to mixtures of 3He and 4He. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the ha-fluid properties of dilute 3He in superfluid 4He appear to have no limit.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN505 , Cryogenic Engineering Conference; Jun 28, 2009 - Jul 02, 2009; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: Resonant effects and energy dissipation due to sloshing fuel inside propellant tanks are problems that arise in the initial design of any spacecraft or launch vehicle. A faster and more reliable method for calculating these effects during the design stages is needed. Using Computational Fluid Dynamics (CFD) techniques, a model of these fuel tanks can be created and used to predict important parameters such as resonant slosh frequency and damping rate. This initial study addresses the case of free surface slosh. Future studies will focus on creating models for tanks fitted with propellant management devices (PMD) such as diaphragms and baffles.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2009-029 , 50th AIAA/ASME/ASC/AHS/ASC Structures, Structural Dynamics and Materials Conference; May 04, 2009 - May 07, 2009; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)
    Keywords: Space Sciences (General)
    Type: KSC-2009-209 , 25th Aerospace Testing Seminar; Oct 12, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-2009-128 , Cryogenic Engineering Conference; Jun 28, 2009 - Jul 02, 2009; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses. Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss. Turbulence modeling choices, the relative importance of viscous and pressure torques with gear speed and the physics of the complex 3-D unsteady flow field in the vicinity of the gear teeth are studied.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: American Helicopter Society 64th Anllual Forum; Apr 29, 2008 - May 01, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: KSC-2009-273 , 4th Annual UK Space Biomedicine Conference 2009; Nov 07, 2009; Cambridge; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two years). The lab has also actively collaborated with the US Army Institute for Surgical Research, the USAF School of Aerospace Medicine, and the USN Naval Experimental Diving Unit. Because the lab often evaluates various forms of commercial-off-the-shelf life support equipment, the laboratory works closely with private companies, both domestic and foreign. The European companies seem to be more proactive and participatory with the advancement of personal protective equipment. Because these companies have viewed the space program's unique need for advanced forms of personal protective equipment, some have responded with new designs based on the prediction that these advances will soon find markets in the commercial sector. Using much of the same skills and equipment, the laboratory also addresses physiological testing of humans by supporting flight experiments and personnel involved with ground processing. While Johnson Space Center is primarily responsible for flight experiments, the Kennedy's Biomedical Lab provides the local support. However, as stated above, there are many challenges facing KSC workers that gain the attention of this lab in the measurement of the problem and the selection and testing of countermeasures. These include respiratory protection, whole body suits, hearing protection and heat stress, among many others.
    Keywords: Space Sciences (General)
    Type: KSC-2009-200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.
    Keywords: Space Sciences (General)
    Type: KSC-2009-193
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: Life as we know it requires water with a chemical activity (alpha) 〉or approx.0.6 and sources of nutrients and useful energy. Some biota can survive even if favorable conditions occur only intermittently, but the minimum required frequency of occurrences is poorly understood. Recent discoveries have vindicated the Mars exploration strategy to follow the water. Mars Global Surveyor s Thermal Emission Spectrometer (TES) found coarse-grained hematite at Meridiani Planum. Opportunity rover confirmed this and also found evidence of ancient sulfate-rich playa lakes and near-surface groundwater. Elsewhere, TES found evidence of evaporitic halides in topographic depressions. But alpha might not have approached 0.6 in these evaporitic sulfate- and halide-bearing waters. Mars Express (MEX) and Mars Reconnaissance Orbiter (MRO) found extensive sulfate evaporites in Meridiani and Valles Marineris. MEX found phyllosilicates at several sites, most notably Mawrth Valles and Nili Fossae. MRO's CRISM near-IR mapper extended the known diversity and geographic distribution of phyllosilicates to include numerous Noachian craters. Phyllosilicates typically occur at the base of exposed ancient rock sections or in sediments in early Hesperian craters. It is uncertain whether the phyllosilicates developed in surface or subsurface aqueous environments and how long aqueous conditions persisted. Spirit rover found remarkably pure ferric sulfate, indicating oxidation and transport of Fe and S, perhaps in fumaroles or hot springs. Spirit also found opaline silica, consistent with hydrothermal activity. CRISM mapped extensive silica deposits in the Valles Marineris region, consistent with aqueous weathering and deposition. CRISM also found ultramafic rocks and magnesite at Nili Fossae, consistent with serpentinization, a process that can sustain habitable environments on Earth. The report of atmospheric methane implies subsurface aqueous conditions. A working hypothesis is that aqueous environments persisted in the near-subsurface for hundreds of millions of years and might exist even today. Studies of Mars-analog environments must better understand subsurface nonphotosynthetic ecosystems and their biosignatures in mafic and ultramafic terranes. Studies must determine minimum needs for water activity and energy and also establish survival limits when conditions that support active metabolism and propagation become progressively less frequent over time.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN632 , Goldschmidt Conference; Jun 21, 2009; Davos; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: More than 140 gas-phase molecules have been detected in the interstellar (IS) medium or in circumstellar environments including inorganics, organics, ions, and radicals. The significant abundance of large, complex organic molecules, and families of isomers in these regions makes the origin and formation history of these species the subject of debate. Observationally determined condensed-phase species are H2O, CO, CO2, NH3 and CH30H, with CH4, HCOOH, OCS, OCN-, H2CO and NH4(+) present at trace levels. These ices can undergo energetic processing with cosmic rays or far-UV photons to form larger complex organics with abundance levels that make them undetectable in icy mantles. Once warmed, however, it is likely that these complex species would enter the gas-phase where they might be detected by Herschel or Alma. Understanding the role of radiation chemistry and thermal processing of ices and identifying new products are the goals of our laboratory research. In the Cosmic lee Laboratory at NASA Goddard Space Plight Center, we can study both the photo-and radiation chemistries of ices from 8 -- 300 K. Using dear- and mid-IR spectroscopy we can follow the destruction of primary molecules and the formation of radicals and secondary products as a function of energetic processing. During warming we can monitor the trapping of species and the results of any thermal chemistry. An overview of recent and past work will focus on complex secondary radiation products from small condensed-phase IS species. Likely reactions include dimerization, isomerization, H-addition and H-elimination. Another focus of our work is the development of reaction schemes for the formation of complex molecules and the use of such schemes to predict new molecules awaiting detection by Herschel and Alma.
    Keywords: Space Sciences (General)
    Type: American Astronomical Society (AAS); Jun 07, 2009 - Jun 11, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18546 , American Society for Gravitational and Space Biology Annual Meeting; Nov 05, 2009 - Nov 09, 2009; Raleigh, NC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated and real human metabolic loads in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18994 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be off-gassed by the amine-based sorbent. In the first half of 2009, tests were performed with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection and scrubbing by both the test article and dedicated trace contaminant filters, and with injection and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18995 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Sub-orbital programs can push science to new limits by deploying the very latest in instrument concepts and technologies. Many space missions have sprung from sub-orbital programs, scientifically, technologically, and personally. I will illustrate the sub-orbital potential with examples from cosmology, interferometry, high-energy astrophysics, and others foreseen in NASA roadmaps.
    Keywords: Space Sciences (General)
    Type: American Astronomical Society (AAS)Meeting; Jan 04, 2009 - Jan 08, 2009; Long Beach, Ca; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Computations are performed to investigate the effect of rocket control motors on flush air-data sensor systems. Such sensors are critical for the control of space vehicles during launch and re-entry, but are prone to interference from rocket motors, hypersonic-flow effects, etc. Computational analyses provide a means for studying these interference effects and exploring opportunities for mitigating them, either through design techniques or through appropriate processing of the sensor outputs. In the present work, the influence of rocket control motors on the nosecone flush air-data sensors of a launch-abort vehicle is studied. Particular attention is paid to the differential effect of various control-jet combinations on surface pressures. The relative effectiveness of inviscid, viscous, turbulent and two-phase-flow approximations in addressing this problem is also investigated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-929 , 39th AIAA Fluid Dynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, Tx; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M09-0241 , Satellite Thermal Control Workshop; Mar 10, 2009 - Mar 12, 2009; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19331 , International Conference on Environmental Systems; Jul 12, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: A community modeling program, which provides a forum for exchange and integration between modelers, has excellent potential for furthering our Space Weather modeling and forecasting capabilities. The design of such a program is of great importance to its success. In this presentation, we will argue that the most effective community modeling program should be focused on Space Weather-related objectives, and that it should be open and inclusive. The tremendous successes of prior community research activities further suggest that the most effective implementation of a new community modeling program should be based on community leadership, rather than on domination by individual institutions or centers. This presentation will provide an experience-based justification for these conclusions.
    Keywords: Space Sciences (General)
    Type: American Meteorological Society meeting/Space Weather Workshop; Jan 12, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19234 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (~5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19034 , 40th International Conference on Environmental Systems; Jul 11, 2009 - Jul 15, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-19217 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19211 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.
    Keywords: Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-27
    Description: Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.
    Keywords: Space Sciences (General)
    Type: AIAA SPACE 2009 Conference & Exposition; 14-17 Sept. 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: The LISA space mission, designed to monitor low frequency gravitational waves, is also sensitive to passages of asteroids nearby one of its three spacecrafts. We report the expected rate of detections of asteroid passages, using the known catalog of asteroids and a modeled population. The method adopted consists of determining for each known asteroid the critical encounter distance capable of producing a detectable event, and then computing the rate of encounters within this distance. Results are then scaled to the modeled population using its differential distribution in absolute magnitude, correcting for selection effects. We find that an average of 2.0 +/- 0.1 events per year at a signal-to-noise ratio of 1 will be detected by LISA, including all the asteroids in the modeled population with absolute magnitude H 〈 22, roughly equivalent to all asteroids with a diameter larger than 100 m.
    Keywords: Space Sciences (General)
    Type: Classical and Quantum Gravity; 26; 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: The National Aeronautics and Space Administration of the United States of America (NASA) has arguably led this planet in space exploration and certainly has been one of two major leaders in those endeavors. NASA governance is institutionalized and managed in a series documents arranged in a hierarchy and flowing down to the work levels. A document tree of NASA s documentation in its totality would likely overwhelm and not be very informative. Taken in segments related to the various business topics and focusing in those segments, however, provides a logical and understandable relationship and flow of requirements and processes. That is the nature of this chapter, a selection of NASA documentation pertaining to space exploration and a description of how those documents together form the plan by which NASA business for space exploration is conducted. Information presented herein is taken from NASA publications and is available publicly and no information herein is protected by copyright or security regulations. While NASA documents are the source of information presented herein, any and all views expressed herein and any misrepresentations of NASA data that may occur herein are those of the author and should not be considered NASA official positions or statements, nor should NASA endorsement of anything presented in this work be assumed.
    Keywords: Space Sciences (General)
    Type: M09-0702
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.
    Keywords: Space Sciences (General)
    Type: JPL-Publ-09-02
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-17181-p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215804 , E-17067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-12
    Description: The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: This paper considers the streamline-upwind Petrov/Galerkin (SUPG) method applied to the compressible Euler and Navier-Stokes equations in conservation-variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, is briefly reviewed. Of particular interest is the behavior of the shock capturing operator, which is required to regularize the scheme in the presence of strong, shock-induced gradients. A standard shock capturing operator which has been widely used in previous studies by several authors is presented and discussed. Specific modifications are then made to this standard operator which are designed to produce a more physically consistent discretization in the presence of strong shock waves. The actual implementation of the term in a finite dimensional approximation is also discussed. The behavior of the standard and modified scheme is then compared for several supersonic/hypersonic flows. The modified shock capturing operator is found to preserve enthalpy in the inviscid portion of the flowfield substantially better than the standard operator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-18751
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18922
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).
    Keywords: Space Sciences (General)
    Type: JSC-CN-18990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-12
    Description: Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2009-215672 , E-17016
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Advances in Data-based Approaches for Hydrologic Modeling and Forecasting
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-12
    Description: This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
    Keywords: Space Sciences (General)
    Type: NASA/TP-2009-213146-REVA , S-978 , JSC-CN-17592
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215517 , E-16822
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-13
    Description: The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19144 , Microelectronics Reliability and Qualification Workshop; Dec 08, 2009 - Dec 09, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-13
    Description: A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-13
    Description: A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-13
    Description: Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215514 , E-16816 , Third Joint Army-Navy-NASA-Air Force (JANNAF) Spacecraft Propulsion Subcommittee (SPS) Meeting; Dec 08, 2008 - Dec 12, 2008; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-24
    Description: A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point includes a sintered metal material. A method of dissipating heat using a sublimator includes a sublimation plate having a thermal element and a control point. The thermal element is disposed adjacent to a feed water channel and the control point is disposed between at least a portion of the thermal element and a large pore substrate. The method includes controlling a flow rate of feed water to the large pore substrate at the control point and supplying heated coolant to the thermal element. Sublimation occurs in the large pore substrate and the controlling of the flow rate of feed water is independent of time. A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point restricts a flow rate of feed water from the feed water channel to the large pore substrate independent of time.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-24
    Description: Results are presented for 607 speckle interferometric observations of double stars, as well as 222 measures of single stars or unresolved pairs. All data were obtained in 2006 and 2007 at the Mount Wilson Observatory, using the 2.5 m Hooker telescope. Separations range from 0.06 to 6.31, with a median of 0.34. These three observing runs concentrated on binaries in need of confirmation (mainly Hipparcos and Tycho pairs), as well as systems in need of improved orbital elements. New orbital solutions have been determined for 35 systems as a result.
    Keywords: Space Sciences (General)
    Type: AD-A505053 , The Astronomical Journal; om 138; 813-826
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-13
    Description: The NASA Orbital Debris Program Office (ODPO) developed a high fidelity debris evolutionary model, LEGEND (a LEO-to-GEO Environment Debris model), in 2004 to enhance its capability to better model the near-Earth environment. LEGEND can mimic the growth of the historical debris population and project it into the future based on user-defined scenarios. The first major LEGEND study concluded that even without any future launches, the LEO population would continue to increase due to mutual collisions among existing objects. In reality, the increase will be worse than this prediction because of ongoing satellite launches and unexpected major breakups. Even with a full implementation of the commonly-adopted mitigation measures, the LEO population growth is inevitable. To preserve the near-Earth environment for future generations, active debris removal (ADR) must be considered. A follow-up LEGEND ADR study was completed recently. The main results indicate that (1) the mass and collision probability of each object can be used to establish an effective removal selection criterion and (2) a removal rate of ~5 objects per year is sufficient to stabilize the LEO environment. Due to the limitation of removal techniques, however, different target selection criteria (in size, altitude, inclination, etc.) may be more practical. A careful evaluation of the effectiveness of different proposed techniques must be carried out to maximize the long-term benefit to the environment.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19122 , International Conference on Orbital Debris; Dec 08, 2009 - Dec 10, 2009; Chantilly, Virginia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-28
    Description: A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.
    Keywords: Space Sciences (General)
    Type: M10-0027 , 2009 National Environmental Public Health Conference; Oct 26, 2009 - Oct 28, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-13
    Description: Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19380 , International Conference on Orbital Debris Removal; Dec 08, 2009 - Dec 10, 2009; Chantilly, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18698 , NASA Project Manage Challenge 2010; Feb 09, 2010 - Feb 10, 2010; Galveston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-13
    Description: The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the geomagnetic field. As a result, ISS exposure to many environmental factors can vary dramatically along a particular orbital ground track, and from one ground track to the next, during any 24-hour period. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles fleet. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma (7-11). Vehicle size (L) and velocity (V), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during flight through high latitudes (〉 +45deg) during each orbit. Finally, an induced ionizing radiation environment is produced by cosmic ray interaction with the relatively thick ISS structure and shielding materials. The intent of this review article is, therefore, to provide a summary of selected aspects and elements of the ISS vehicle with regard to LEO space environment effects, associated with the much larger and more complicated vehicle that ISS has become since 1998, but also with an eye towards performance life extension to the year 2016 and beyond.
    Keywords: Space Sciences (General)
    Type: Aging Aircraft Conference; May 04, 2009 - May 07, 2009; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.
    Keywords: Space Sciences (General)
    Type: AIAA Paper 2009-4631 , 7th International Energy Conversion and Engineering Conference; Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18148 , Experiments in Fluids; 47; 5-Apr; 673-688|14th International Symposium on Applications of Laser Techniques to Fluid Mechanics; Jul 07, 2008 - Jul 10, 2008; Lisbon; Portugal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights 〉950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes 〈100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's "warm ponds" on Titan.
    Keywords: Space Sciences (General)
    Type: Planetary and Space Science; 57; 1547-1557
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-7147 , AIAA Paper 2009-1169 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.
    Keywords: Space Sciences (General)
    Type: JSC-17626 , 40th Lunar and Planetary Science Conference; Mar 23, 2009 - Mar 27, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.
    Keywords: Space Sciences (General)
    Type: AIAA Paper 2009- 2809 , AIAA Balloon Systems Conference; May 05, 2009 - May 07, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-12
    Description: Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSC-24160-1/1-1/2-1/3-1 , NASA Tech Briefs, December 2009; 20-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-12
    Description: The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-5900 , LF99-6826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) is a study to advance the technology required for plant growth in microgravity and to research related food safety issues. Lada-VPU-P3R also investigates the non-nutritional value to the flight crew of developing plants on-orbit. The Lada-VPU-P3R uses the Lada hardware on the ISS and falls under a cooperative agreement between National Aeronautics and Space Administration (NASA) and the Russian Federal Space Association (FSA). Research Summary: Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) will optimize hardware and
    Keywords: Space Sciences (General)
    Type: JSC-17962-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: The HICO and RAIDS Experiment Payload - Remote Atmospheric and Ionospheric Detection System (HREP-RAIDS) experiment will provide atmospheric scientists with a complete description of the major constituents of the thermosphere (layer of the Earth's atmosphere) and ionosphere (uppermost layer of the Earth's atmosphere), global electron density profiles at altitudes between 100 - 350 kilometers.
    Keywords: Space Sciences (General)
    Type: JSC-17962-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: Materials on the International Space Station Experiment 6 (MISSE-6A and 6B) is a test bed for materials and coatings attached to the outside of the space station that are being evaluated for the effects of atomic oxygen, direct sunlight, radiation and extremes of heat and cold. This experiment allows the development and testing of new materials to better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials in space, leading to the design of stronger, more durable spacecraft components.
    Keywords: Space Sciences (General)
    Type: JSC-17962-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.
    Keywords: Space Sciences (General)
    Type: JSC-17962-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Education Payload Operation - Kit D (EPO-Kit D) includes education items that will be used to support the live International Space Station (ISS) education downlinks and Education Payload Operation (EPO) demonstrations onboard the ISS. The main objective of EPO-Kit D supports the National Aeronautics and Space Administration (NASA) goal of attracting students to study and seek careers in science, technology, engineering, and mathematics.
    Keywords: Space Sciences (General)
    Type: JSC-17962-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.
    Keywords: Space Sciences (General)
    Type: JSC-17962-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215766 , L-19662 , LF99-8753
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied.
    Keywords: Space Sciences (General)
    Type: NASA/CR-2009-215740 , M09-1252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: A method has been developed for improving heat flux performance relat ive to flat surfaces in spray-cooling systems. This study investigat es the effect of foam on spraycooling heat flux.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSC-15553-1 , NASA Tech Briefs, August 2009; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215464 , TFAWS08-1013 , E-16610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: Computations are performed to examine the effects of both an isolated and spanwise periodic array of trip elements on a high-speed laminar boundary layer, so as to identify the potential physical mechanisms underlying an earlier transition to turbulence as a result of the trip(s). In the context of a 0.333 scale model of the Hyper-X forebody configuration, the time accurate solution for an array of ramp shaped trips asymptotes to a stationary field at large times, indicating the likely absence of a strong absolute instability in the mildly separated flow due to the trips. A prominent feature of the wake flow behind the trip array corresponds to streamwise streaks that are further amplified in passing through the compression corner. Stability analysis of the streaks using a spatial, 2D eigenvalue approach reveals the potential for a strong convective instability that might explain the earlier onset of turbulence within the array wake. The dominant modes of streak instability are primarily sustained by the spanwise gradients associated with the streaks and lead to integrated logarithmic amplification factors (N factors) approaching 7 over the first ramp of the scaled Hyper-X forebody, and substantially higher over the second ramp. Additional computations are presented to shed further light on the effects of both trip geometry and the presence of a compression corner on the evolution of the streaks.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA-Paper-2009-0170 , LF99-7075
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-8943 , AIAA Paper 2010-0122 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The propulsion research portfolio of the National Aeronautics and Space Administration Fundamental Aeronautics Program Hypersonics Project encompasses a significant number of technical tasks that are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime. An overall coordinated programmatic and technical effort has been structured to advance the state-of-the-art, via both experimental and analytical efforts. A subset of the entire hypersonics propulsion research portfolio is presented in this overview paper. To this end, two programmatic research disciplines are discussed; namely, (1) the Propulsion Discipline, including three associated research elements: the X-51A partnership, the HIFiRE-2 partnership, and the Durable Combustor Rig, and (2) the Turbine-Based Combine Cycle Discipline, including three associated research elements: the Combined Cycle Engine Large Scale Inlet Mode Transition Experiment, the small-scale Inlet Mode Transition Experiment, and the High-Mach Fan Rig.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: LF99-9121 , 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference; Oct 19, 2009 - Oct 23, 2009; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.
    Keywords: Space Sciences (General)
    Type: M09-0292 , AIAA Space 2009 conference; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews NASA's future of science and space exploration. The topics include: 1) NASA's strategic goals; 2) NASA around the Country; 3) Marshall's History; 4) Marshall's Missions; 5) Marshall Statistics: From Exploration to Opportunity; 6) Propulsion and Transportation Systems; 7) Life Support systems; 8) Earth Science; 9) Space Science; 10) NASA Innovation Creates New Jobs, Markets, and Technologies; 11) NASA Inspires Future Generations of Explorers; and 12) Why Explore?
    Keywords: Space Sciences (General)
    Type: M09-0681 , Powering the Future of Science and Exploration; Aug 06, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Planning and scheduling for space operations entails the development of applications that embed intimate domain knowledge of distinct areas of mission control, while allowing for significant collaboration among them. The separation is useful because of differences in the planning problem, solution methods, and frequencies of replanning that arise in the different disciplines. For example, planning the activities of human spaceflight crews requires some reasoning about all spacecraft resources at timescales of minutes or seconds, and is subject to considerable volatility. Detailed power planning requires managing the complex interplay of power consumption and production, involves very different classes of constraints and preferences, but once plans are generated they are relatively stable.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN330 , IEEE Aerospace Conference; Mar 07, 2009 - Mar 14, 2009; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Mission architectures for human exploration of the lunar surface continue to advance as well as the definitions of capability needs, best practices and engineering design to mitigate the impact of lunar dust on exposed systems. The NASA DMP has been established as the agency focal point for dust characterization, technology, and simulant development. As described in this paper, the DMP has defined a process for selecting and justifying its R&T portfolio. The technology prioritization process, which is based on a ranking system according to weighted criteria, has been successfully applied to the current DMP dust mitigation technology portfolio. Several key findings emerged from this assessment. Within the dust removal and cleaning technologies group, there are critical technical challenges that must be overcome for these technologies to be implemented for lunar applications. For example, an in-situ source of CO2 on the moon is essential to the CO2 shower technology. Also, significant development effort is required to achieve technology readiness level TRL 6 for the electrostatic cleaning system for removal of particles smaller than 50 pm. The baseline materials related technologies require considerable development just to achieve TRL 6. It is also a nontrivial effort to integrate the materials in hardware for lunar application. At present, there are no terrestrial applications that are readily adaptable to lunar surface applications nor are there any obvious leading candidates. The unique requirements of dust sealing systems for lunar applications suggest an extensive development effort will be necessary to mature dust sealing systems to TRL 6 and beyond. As discussed here, several alternate materials and technologies have achieved high levels of maturity for terrestrial applications and warrant due diligence in ongoing assessment of the technology portfolio. The present assessment is the initial step in an ongoing effort to continually evaluate the DMP technology portfolio and external non-NASA relevant technology developments efforts to maintain an optimal investment profile. At the same time, there is an ongoing review of agency-wide dust-related R&T activities. The results of these ongoing assessments will be reported in future publications.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN216 , 2009 IEEE Aerospace Conference; Mar 07, 2009 - Mar 14, 2009; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and ~60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12-meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.
    Keywords: Space Sciences (General)
    Type: M09-0580 , SPIE UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV; Aug 03, 2009 - Aug 05, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Rossby waves are difficult to detect with in situ methods. However, as we show in this paper, they can be clearly identified in multi-parameters in multi-mission satellite observations of sea surface height (SSH), sea surface temperature (SST) and ocean color observations of chlorophyll-a (chl-a), as well as 1/12-deg global HYbrid Coordinate Ocean Model (HYCOM) simulations of SSH, SST and sea surface salinity (SSS) in the Indian Ocean. While the surface structure of Rossby waves can be elucidated from comparisons of the signal in different sea surface parameters, models are needed to gain direct information about how these waves affect the ocean at depth. The first three baroclinic modes of the Rossby waves are inferred from the Fast Fourier Transform (FFT), and two-dimensional Radon Transform (2D RT). At many latitudes the first and second baroclinic mode Rossby wave phase speeds from satellite observations and model parameters are identified.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AD-A503743 , NRL/JA/7320-08-8355 , Remote Sensing of the Environment; 113; 6; 1293-1303
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the spacesuit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper twill take you on a journey through an astronaut's earliest experiences working in the spacesuit. termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a spacesuit.
    Keywords: Space Sciences (General)
    Type: IAC-09.B6.3.6 , JSC-CN-18933 , 60th International Astronautical Congress; Oct 10, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.
    Keywords: Space Sciences (General)
    Type: LF99-9135 , International Symposium on Solar Energy from Space,; Sep 08, 2009 - Sep 10, 2009; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.
    Keywords: Space Sciences (General)
    Type: M09-0491 , Concrete Solutions 2009, 3rd International Conference on Concrete Repair; Jun 29, 2009 - Jul 02, 2009; Venice; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18722 , NASA Green Engineering Masters Forum; Sep 30, 2009 - Oct 01, 2009; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215662 , GT2008-51543 , E-17004 , Gas Turbine Technical Congress and Exposition (Turbo Expo 2008); Jun 09, 2008 - Jun 13, 2008; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...