ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Plate tectonics  (8)
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (11)
  • Victoria: Seychelles Fishing Authority  (2)
  • Am. Meteor. Soc.  (1)
  • 2005-2009  (13)
  • 1950-1954  (1)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1978
    Description: This thesis consists of three papers examining problems related to the crustal structure, isostasy and subsidence history of aseismic ridges and mid-plate island chains. Analysis of gravity and bathymetry data across the Ninetyeast and eastern Walvis Ridges indicates these features are locally compensated by an over thickening of the oceanic crust. Maximum crustal thicknesses are 15-30 km. The western Walvis Ridge is also compensated by crustal thickening; however, the isostasy of this part of the ridge is best explained by a plate model of compensation with elastic plate thicknesses of 5-8 km. These results are consistent with the formation of the Ninetyeast and Walvis Ridges near spreading centers on young lithosphere with flexural rigidities at least an order of magnitude less than those typically determined from flexural studies in older parts of the ocean basins. As the lithosphere cools and thickens, its rigidity increases, explaining the differences in isostasy between aseismic ridges and mid-plate island chains. The long-term subsidence of aseismic ridges and island/ seamount chains can also be explained entirely by lithospheric cooling. Aseismic ridges form near ridge crests and subside at nearly the same rate as normal oceanic crust Mid-plate island chains subside at slower rates because they are built on older crust. However, some island chains have subsided faster than expected based on the age of the surrounding sea floor, probably because of lithospheric thinning over midplate hot spots, like Hawaii. This lithospheric thinning model has major implications both for lithospheric and mantle convection studies as well as the origin of continental rift systems.
    Keywords: Coral reefs and islands ; Sea-floor spreading ; Plate tectonics ; Ocean bottom ; Submarine geology ; Marine geophysics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1972
    Description: Free-air and simple Bouguer anomaly maps of the Venezuelan continental margin (from 60°W to 72°W and from 7°N to 13°N) are presented. The major features of the free-air map are: the large lows associated with the deep sedimentary basins, -200 mgal in the Eastern Venezuela basin and -164 mgal in the Maracaibo basin; the high of greater than 300 mgal over the Venezuelan Andes; and a belt of highs associated with the offshore islands extending from Blanquilla to Curacao and then over the Guajira peninsula, where they terminate. The Bouguer anomaly map shows a large low (-196 mgal) over the Eastern Venezuela basin and relative minimums over the coastal mountains. A minimum associated with the Venezuelan Andes is shifted to the northwest of the topographic axis and lies over the flank of the Andes and part of the Maracaibo basin. Using the gravity data, structural sections were constructed for a series of profiles across the Venezuelan Andes and Caribbean mountains. They show that there is no light crustal root under the Andes, the relative mass excess is as much as 600 kg/cm2, and that there is an excess of low density material under the Maracaibo basin. This appears to be caused by a combination of a southeastward dipping shear zone in the lithosphere under the basin-mountain boundary and a component of compressive stress perpendicular to this zone, both of which have resulted in the uplift of the crust under the Andes, and downwarp under the basin. The apparent flexural rigidity of the lithosphere under the Maracaibo basin is 0.6 x 1023 newton-m, a normal value for lithosphere deformations of Miocene age. The Caribbean mountains have a light crustal root which has been formed by the sliding of blocks of crustal material from the north over the rocks to the south, and perhaps by the underthrusting of oceanic crust under the continental crust. This underthrusting may have been a result of the formation of a downgoing slab of lithosphere along the Venezuelan continental margin during the late Cretaceous. The downgoing slab may have existed until mid-Eocene time. The gravity minimum over the Eastern Venezuela basin is due to the downwarping of lighter crustal material into the higher density mantle. This may be a result of compression from the north along a north-south direction causing plastic downbuckling of the lithosphere. The present deformation along the northern boundary appears to be due to differences in relative motion between the North and South American plates. Because the Caribbean mountains are partially isostatically compensated, while the Venezuelan Andes are above isostatic equilibrium, this suggests that the relative motion of the Caribbean plate with respect to the South American plate is eastward. The compressive stress across the boundary in the region of the Venezuelan Andes is probably greater than the compressive stress across the Caribbean mountains.
    Description: This investigation was supported by a grant from the National Science Foundation GA-12204, and by contract N00014-66-C-024l with the Office of Naval Research.
    Keywords: Marine geophysics ; Plate tectonics ; Atlantis II (Ship : 1963-) Cruise AII54 ; Chain (Ship : 1958-) Cruise CH55
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1981
    Description: The results of a detailed geophysical survey are used in conjunction with all available information in a study of the tectonic development of the Cayman Trough and the Greater Antilles Ridge. This development is connected with the relative motions of the North and South Americas and the eastern Pacific plates. Thus, the pre-Tertiary history of the region is one of simple convergence. This contrasts with the complex tectonism of primary translation, with secondary convergence and divergence during the Tertiary. The ancestral Greater Antillean Arc suffered fracturing during collision with the Bahamas stable platform in the Late Cretaceous. Oblique convergence re-established itself across the remnant fragments of the ancestral arc in the Tertiary, producing a sheared welt partially decoupled from both the North American and Caribbean plates. Pronounced temporal and structural heterogeneity occurs within this Plate Boundary Zone. Along its northern margin secondary convergence with the North American plate formed the massive subduction complex of the Cuchillas Uplift and the Sierra Septentrional. Convergence between the Plate Boundary Zone and the Caribbean plate resulted in the triple virgation of the fold belts extending westward from the Los Muertos Trough to Oriente Province (Cuba), the Cayman Trough and the Nicaraguan Rise. Tectonism along these fold belts youngs southwestward preserving the stratigraphy of the Caribbean Basin at the time of their formation during the early, middle, and late Tertiary. The Caribbean/North American Plate boundary occurred along the zones of major strain accomodation within the Plate Boundary Zone. The Cayman Trough was produced during a period of divergence between the Nicaraguan Rise and the North American plates during the Miocene. Since the Pliocene, the shear boundary within the Cayman Trough occurs along the Oriente Deep proceeding via the Windward Passage Deep and the Valle del Cibao to the Puerto Rico Trench. Convergence and shear predominate the present tectonic framework of the Plate Boundary Zone.
    Description: Cruise #97 of the R. V. ATLANTIS II was sponsored by the National Science Foundation (OCE78-20/ 11336.00). Further support was received from the Ocean Industry Program and the Educational Program of Woods Hole Oceanographic Institution.
    Keywords: Plate tectonics ; Marine geophysics ; Atlantis II (Ship : 1963-) Cruise AII97
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1979
    Description: A major goal in the study of plate tectonics is the acquisition of a knowledge of the history of relative motion among the rigid plates of the earth's lithosphere. The three papers of this thesis contribute to this effort and demonstrate that studies of the stability and evolution of triple junctions and of the finite rotations of systems of three plates can yield significantly more accurate tectonic histories than can studies of the relative motions between two plates alone. Topographic and magnetic investigation of the Southwest Indian Ridge and reconstruction of the plate system of the Indian Ocean shows that both Africa and Antarctica are rigid plates and their pole of relative rotation has remained fixed near 8°N, 42°W since the Eocene. A detailed survey of the Indian Ocean triple junction reveals that the Indian Ocean plate motions have remained constant since 10 Ma. The stability conditions of the junction show that the general morphology of the Southwest Indian Ridge results from the evolution of the Indian Ocean triple junction. A method is presented for determining the finite rotations best reconstructing the past relative positions of three plates around a triple junction. The method is illustrated by reconstructions of the plates around the Labrador Sea triple junction at the times of anomalies 24 (56 Ma) and 21 (50 Ma). The region of uncertainty of the Greenland-North America finite pole is mapped for each reconstruction, and it demonstrates that consideration of the three plate system yields more well-constrained results than does a treatment of the two plates alone.
    Description: This work was supported by the Office of Naval Research contract N00014-75-C-0291 with the Massachusetts Institute of Technology.
    Keywords: Plate tectonics ; Sea-floor spreading ; Geology ; Atlantis II (Ship : 1963-) Cruise AII93-5 ; Atlantis II (Ship : 1963-) Cruise AII93-6
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1996
    Description: Two-thirds of the Earth's surface is oceanic crust formed by magmatic and tectonic processes along mid-ocean ridges. Slow-spreading ridges, such as the Mid-Atlantic Ridge, are discontinuous and composed of ridge segments. Segments are thus fundamental units of magmatic accretion and tectonic deformation that control the evolution of the crust. The objective of this Thesis is to constrain the tectonic processes that occur at the scale of slowspreading segments, to identify the factors controlling segment propagation, and to provide constraints on lithospheric strength with laboratory deformation experiments. In chapter 2, bathymetry and gravity from various areas along the global mid-ocean ridge system are analyzed to quantify systematic variations at the scale of individual segments. There is a marked asymmetry in bathymetry and gravity in the vicinity of segment offsets. We develop a model of faulting to explain these observations. Low-angle faults appear to accommodate tectonic extension at the inside corners of ridge-offset intersections, and result in substantially uplifted terrain with thin crust with respect to that at the outside corners or centers of segments. Results from Chapter 3 indicate that the crust magmatically emplaced on axis is not maintained off-axis. This transition is revealed by both statistical and spectral analyses of bathymetry and gravity. Tectonic extension varies along the length of a segment, resulting in thinning and uplift of the crust at ridge-offset inside corners, and a decorrelation between bathymetry and gravity patterns. Tectonic deformation substantially reshapes the oceanic crust that is magmatically emplaced on-axis, and strongly controls the crustal structure and seafloor morphology off-axis. Satellite gravity data over the Atlantic shown in Chapter 4 reveal a complex history of ridge segmentation, and provides constraints on the processes driving the propagation of segments. The pattern of segmentation is controlled mainly by the geometry of the ridge axis, and secondarily by hot spots. Segments migrate primarily down regional gradients associated with hot spot swells. However, the lack of correlation between gradients and propagation rate, and the propagation up gradient of some offsets, suggest that additional factors control propagation (e.g., variations in lithospheric strength). Most non-transform offsets are short-lived and migrating, while transform offsets are long-lived and stable. Both the propagation of segments (Chapter 4) tectonism along a segment (Chapters 2 and 3) are controlled by the lithospheric rheology. In Chapter 5 I present results from laboratory deformation experiments on serpentinite. These experiments demonstrate that serpentinites are considerably weaker than peridotites or gabbros, display a non-dilatant style of brittle deformation, and strain is accommodated by shear cracking. Serpentinites may weaken the lithosphere, enhance strain localization along faults, and control the style of faulting.
    Description: A fellowship from Caixa de Pensions "La Caixa" in Barcelona provided me with all the required financial support to come to WHOI. The work presented in this thesis was also supported by the National Science Foundation grants OCE-90l2576, OCE-930078, OCE-9313812, and Office of Naval Research grant N00014-9l-J-1433.
    Keywords: Sea-floor spreading ; Plate tectonics ; Structural geology ; Mid-ocean ridges ; Plumes ; Submarine geology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Victoria: Seychelles Fishing Authority
    Publication Date: 2021-05-19
    Description: Seychelles is composed of over 100 islands with a land area of approximately 455 km², centred close to 4°30'S and 55°30'E. The combined coastline is approximately 600 km long, the oceanic shelf totals about 50 000 km² and the Exclusive Economic Zone (EEZ) is over 1 370 000 km². The total population (1994 census) stands at just under 74 000. in 1994, the population registered a growth rate of 2.2%. The GDP (1994) was SR 2373.8 million, fisheries representing 4.8% of this sum. Licensing agreements for foreign fishing activities provided a yearly revenue of SR8 million. Port Victoria is seen as a prime centre for tuna fishing operations in the Indian Ocean. In the artisanal fishery just under 900 persons are working. The largest contributor to catch by vessel type are the traditional whaler vessels representing 47.8% of the total catch. Over 66.3% of the catch is by the handline method. Carangidae representing 24% and Lutjanidae 19% of total landings. There are six specific objectives to the fisheries sector policy, which aims as resource development and maximisation of potential benefits. Nearshore fishery resources are considered to be heavily exploited, however opportunities exist around the distant islands and in deeper waters off the Mahe plateau shelf. Aquaculture of molluscs and prawns is being developed and carried out. The main constraints to development are seen as the lack of skilled manpower and foreign exchange.
    Description: Published
    Keywords: Country profile ; Fisheries ; Seychelles ; Statistics ; Fisheries ; Fishery statistics
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 186058 bytes
    Format: 520444 bytes
    Format: application/pdf
    Format: application/pdf
    Format: 19
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Victoria: Seychelles Fishing Authority | Victoria
    Publication Date: 2021-08-09
    Description: Published
    Description: Industrial tuna fishing
    Keywords: Tuna ; Fisheries ; Fishery economics ; Fishery industry ; Fishery statistics ; Tuna fisheries
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 1589602 bytes
    Format: application/pdf
    Format: 28
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1976
    Description: This thesis is a collection and analysis of seafloor magnetic anomalies, bathymetry, and the paleomagnetism of DSDP sediments and basalt in the West Philippine Basin, in an attempt to resolve questions about its origin as a marginal basin. Our results suggest that this basin was formed in an Eocene pulse of rapid spreading (v1/2 = 41-44 mm/yr) in a direction (N 21°E) significantly different from later pulses which opened the more eastern basins of the Philippine Sea. The Central Basin Fault appears to be intimately associated with this spreading by nature of its structure and trend, and it may be a remanent of a former ridge system. Our preliminary calculation of paleopole positions also suggests that there was a large amount (60°) of clockwise rotation between this basin and the magnetic pole. This is consistent with rotations of the Pacific plate with respect to the magnetic pole and current directions of Philippine- Pacific'relative rotations. Basement depths of 6 km in the West philippine Basin imply that its crustal and/or lithospheric structure is different from Pacific structure of the same age.
    Keywords: Plate tectonics ; Magnetic anomalies ; Paleomagnetism ; Melville (Ship) Cruise ; Thomas Washington (Ship) Cruise Tasaday
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 6706103 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January, 1977
    Description: This thes is is a collection of papers on the paleomagnetics of samples from several Deep Sea Drilling Project (DSDP) sites in the Indian Ocean. These papers present the basic paleomagnetic data, discuss the statistical methods for analyzing such data from DSDP cores, and examine the implications of the paleolatitudes for the origin of the Ninetyeast Ridge and the northward motion of India. Rarely do DSDP paleolatitudes approach the reliability of good continental pole positions. However, the reliability of such paleolatitudes can be markedly improved by using comparisons with paleolatitudes of different ages from the same site, paleolatitudes of similar ages from different sites on the same plate, estimates of paleolatitude from the skewness of marine magnetic anomalies, and continental paleopole. positions. Using such comparisons, a new paleomagnetic pole of upper Cretaceous age has been defined for the Pacific plate. A middle Cretaceous pole has been defined for the Wharton Basin plate, and it suggests that there may have been left lateral motion between Australia and the Wharton Basin. Paleolatitudes from the Ninetyeast Ridge are consistent with the pole position for the Deccan Traps. These data indicate that India and the Ninetyeast Ridge moved northwards with respect to the South Pole at 14.9 ± 4.5 cm/yr from 70 to 40 mybp and at 5.2 ± .8 cm/yr from 40 mybp until the present. However, when this paleomotion is compared to the Australian paleomagnetic data (by removing the relative motion components), a major inconsistency appears between 40 and 50 mybp. The Australian data indicate that India should be 13° further north than the positions implied by the Ninetyeast Ridge data. Basal paleolatitudes on the Ninetyeast Ridge indicate that its volcanic source was approximately fixed in latitude near 50°S, supporting the hypothesis that the ridge is the trace of the Kerguelen hotspot on the northward moving Indian plate. There is considerable geologic evidence in favor of such an hypothesis, and there is none to contradict it.
    Description: National Science Foundation (Grant DES-74-22552).
    Keywords: Paleomagnetism ; Plate tectonics ; Seafloor spreading ; Basalt ; Paleogeography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 9359516 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1975
    Description: The Mid-Atlantic Ridge is one of the most well known and yet poorly understood spreading centers in the world. A detailed investigation of the Mid-Atlantic Ridge crest near 37°N (FAMOUS) was conducted using a deeply towed instrument package. The objective was to study the detailed structure and spreading history of the Mid-Atlantic Ridge median valley, to explore the roles of volcanism and faulting in the evolution of oceanic crust, and to study the morphologic expression and structural history of the zone of crustal accretion. In addition, microearthquake surveys were conducted using arrays of free-floating hydrophones. The most recent expression of the accreting plate boundary in the Famous Rift is an alternating series of linear central volcanoes and depressions 1.5 km wide which lie within the inner floor. This lineament is marked by a sharp maximum in crustal magnetization only 2-3 km wide. Magnetic studies indicate that over 90% of the extrusive volcanism occurs within the rift inner floor, a zone 1 to 12 km wide, while volcanism is extremely rare in the rift mountains. Volcanoes created in the inner floor are transported out on, block faults, becoming a lasting part of the topography. Magnetic anomaly transition widths vary from 1 km to 8 km with time and appear to reflect a bi-stable median valley structure. The valley has either a wide inner floor and narrow terraces, in which case the volcanic zone is wide and magnetic anomalies are poorly recorded (wide transition widths); or it has a narrow inner floor and wide terraces, the volcanic zone is then narrow and anomalies are clearly recorded (narrow transition widths). The median valley of any ridge segment varies between these two structures with time. At present the. Famous Rift has a narrow inner floor and volcanic zone (1-3 km) while the south Famous Rift is at the opposite end of the cycle with a wide inner floor and volcanic zone (10-12 km). Over 95% of the large scale (〉2 km) relief of the median valley is accounted for by normal faults dipping toward the valley axis. Normal faulting along fault planes dipping away from the valley begins just past the outer walls of the valley. Outward facing normal faulting accounts for most of the decay of median valley relief in the rift mountains while crustal tilting accounts for less than 20%. The pattern of normal faulting creates a broad, undulating horst and graben relief. Volcanic features contribute little to the large scale relief, but contribute to the short wavelength (〈2km) roughness of the topography. Spreading in the Famous area is highly asymmetric with rates twice as high to the east as to the west. At 1.7 m.y.b.p. the sense of asymmetry reverses in direction with spreading faster to the west, resulting in a gross symmetry when averaged through time. The change in spreading asymmetry occurred in less than 0.15 m.y. Structural studies indicate that the asymmetric spreading is accomplished through asymmetric crustal extension as well as asymmetric crustal accretion. Spreading in the Famous area is 17° oblique. Even on a fine scale there is no indication of readjustment to an orthogonal plate boundary system. Spreading has been stably oblique for at least 6 m.y., even through a change in spreading direction. Magnetic studies reveal that the deep DSDP hole at site 332 was drilled into a magnetic polarity transition, and may have sampled rocks which recorded the earth i s field behavior during a reversal. The presence of negative polarity crust within the Brunhes normal epoch in the inner floor has been determined, and may be due to old crust left behind or recording of a geomagnetic field event. Crustal magnetization decays to lie of its initial value in less than 0.6 m.y. The rapid decay may be facillitated by very intense crustal fracturing observed in the inner floor. Microearthquake, magnetic and structural studies indicate that both the spreading and transform plate boundaries are very narrow (1-2 km) and well-defined for short periods, but migrate over zones 10-20 km wide through time.
    Keywords: Submarine geology ; Geophysics ; Geomorphology ; Plate tectonics ; Knorr (Ship : 1970-) Cruise KN31
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 10114098 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Am. Meteor. Soc.
    In:  Professional Paper, Compendium of Meteorology, Dover, 439 pp., Am. Meteor. Soc., vol. 7, no. XVI:, pp. 1303-1311, (ISBN: 3-540-23712-7)
    Publication Date: 1951
    Keywords: Micro seismicity ; Seismology ; NOISE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...