ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustic wave scattering  (22)
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Plate tectonics
  • Seismology
  • Acoustical Society of America  (24)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (11)
  • Victoria: Seychelles Fishing Authority  (2)
  • Am. Meteor. Soc.  (1)
  • 2005-2009  (37)
  • 1950-1954  (1)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 125 (2009): 73-88, doi:10.1121/1.3021298.
    Description: A new method has been developed to predict acoustic scattering by weakly scattering objects with three-dimensional variability in sound speed and density. This variability can take the form of inhomogeneities within the body of the scatterer and/or geometries where the acoustic wave passes through part of the scattering body, into the surrounding medium, and back into the body. This method applies the distorted wave Born approximation (DWBA) using a numerical approach that rigorously accounts for the phase changes within a scattering volume. Ranges of validity with respect to material properties and numerical considerations are first explored through comparisons with modal-series-based predictions of scattering by fluid-filled spherical and cylindrical fluid shells. The method is then applied to squid and incorporates high resolution spiral computerized tomography (SCT) scans of the complex morphology of the organism. Target strength predictions based on the SCT scans are compared with published backscattering data from live, freely swimming and tethered squid. The new method shows significant improvement for both single-orientation and orientation-averaged scattering predictions over the DWBA-homogeneous-prolate-spheroid model.
    Keywords: Acoustic wave scattering ; Approximation theory ; Bioacoustics ; Computerised tomography ; Inhomogeneous media ; Underwater sound ; Zoology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2004. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 116 (2004): 239-244, doi:10.1121/1.1675813.
    Description: Recent laboratory measurements of acoustic backscattering by individual benthic shells have isolated the edge-diffracted echo from echoes due to the surface of the main body of the shell. The data indicate that the echo near broadside incidence is generally the strongest for all orientations and is due principally to the surface of the main body. At angles well away from broadside, the echo levels are lower and are due primarily to the diffraction from the edge of the shell. The decrease in echo levels from broadside incidence to well off broadside is shown to be reasonably consistent with the decrease in acoustic backscattering from normal incidence to well off normal incidence by a shell-covered seafloor. The results suggest the importance of the edge of the shell in off-normal-incidence backscattering by a shell-covered seafloor. Furthermore, when considering bistatic diffraction by edges, there are implications that the edge of the shell (lying on the seafloor) can cause significant scattering in many directions, including at subcritical angles.
    Description: This research was supported by the U.S. Office of Naval Research (Grant No. N00014-02-1-0095) and the Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA.
    Keywords: Underwater sound ; Acoustic wave diffraction ; Acoustic wave scattering ; Echo
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 107 (2000): 1095-1102, doi:10.1121/1.428399.
    Description: Gaussian beams provide a useful insonifying field for surface or interface scattering problems such as encountered in electromagnetics, acoustics and seismology. Gaussian beams have these advantages: (i) They give a finite size for the scattering region on the interface. (ii) The incident energy is restricted to a small range of grazing angles. (iii) They do not have side lobes. (iv) They have a convenient mathematical expression. The major disadvantages are: (i) Insonification of an interface is nonuniform. The scattered field will depend on the location of the scatterers within the beam. (ii) The beams spread, so that propagation becomes an integral component of the scattering problem. A standard beam parameterization is proposed which keeps propagation effects uniform among various models so that the effects of scattering only can be compared. In continuous wave problems, for a given angle of incidence and incident amplitude threshold, there will be an optimum Gaussian beam which keeps the insonified area as small as possible. For numerical solutions of pulse beams, these standard parameters provide an estimate of the smallest truncated domain necessary for a physically meaningful result.
    Description: This work was carried out under Office of Naval Research Grant Nos. N00014-90-I-1493, N00014-96-1-0460, and N00014-95-1-0506 and under a Mellon Independent Study Award from Woods Hole Oceanographic Institution.
    Keywords: Acoustic wave scattering ; Underwater sound ; Acoustic pulses ; Numerical analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 254-264, doi:10.1121/1.421135.
    Description: A modeling study was conducted to determine the conditions under which fluidlike zooplankton of the same volume but different shapes (spherical/cylindrical) have similar or dramatically different scattering properties. Models of sound scattering by weakly scattering spheres and cylinders of finite length used in this analysis were either taken from other papers or derived and herein adapted for direct comparison over a range of conditions. The models were examined in the very low- (ka ≪ 1, kL ≪ 1), moderately low- (ka ≪ 1, kL ≳ 1), and high-frequency regions (ka ≫ 1, kL ≫ 1), where k is the acoustic wave number, a is the radius (spherical or cylindrical) of the body, and L is the length of the cylinders (for an elongated body with L/a = 10, "moderately low" corresponds to the range 0.1 ≲ ka ≲ 0.5). Straight and bent cylinder models were evaluated for broadside incidence, end-on incidence, and averages over various distributions of angle of orientation. The results show that for very low frequencies and for certain distributions of orientation angles at high frequencies, the averaged scattering by cylinders will be similar, if not identical, to the scattering by spheres of the same volume. Other orientation distributions of the cylinders at high frequencies produce markedly different results. Furthermore, over a wide range of orientation distributions the scattering by spheres is dramatically different from that of the cylinders in the moderately low-frequency region and in the Rayleigh/geometric transition region: (1) the Rayleigh to geometric scattering turning point occurs at different points for the two cases when the bodies are constrained to have the same volume and (2) the functional dependence of the scattering levels upon the volume of the bodies in the moderately low-frequency region is quite often different between the spheres and cylinders because of the fact that the scattering by the cylinders is still directional in this region. The study demonstrates that there are indeed conditions under which different shaped zooplankton of the same volume will yield similar (ensemble average) scattering levels, but generally the shape and orientation distribution of the elongated bodies must be taken into account for accurate predictions.
    Description: This work was supported by the U.S. Office of Naval Research Grant No. N00014-95-1-0287 and the National Science Foundation Grant No. OCE-9201264.
    Keywords: Acoustic wave scattering ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 236-253, doi:10.1121/1.421110.
    Description: Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups—fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225–235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.
    Description: This work was supported by the National Science Foundation Grant No. OCE-9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729, N00014-95-1-0287, and N00014-94-1-0452, and the MIT/WHOI Joint Graduate Education Program.
    Keywords: Backscatter ; Acoustic wave scattering ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.
    Description: The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].
    Description: This work was supported by the National Science Foundation Grant No. OCE- 9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729 and N00014-95-1-0287, and the MIT/ WHOI Joint Graduate Education Program.
    Keywords: Bioacoustics ; Acoustic wave scattering ; Fluctuations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 108 (2000): 535-550, doi:10.1121/1.429584.
    Description: Acoustic backscattering measurements and associated scattering modeling were recently conducted on a type of benthic shelled animal that has a spiral form of shell (Littorina littorea). Benthic and planktonic shelled animals with this shape occur on the seafloor and in the water column, respectively, and can be a significant source of acoustic scattering in the ocean. Modeling of the scattering properties allows reverberation predictions to be made for sonar performance predictions as well as for detection and classification of animals for biological and ecological applications. The studies involved measurements over the frequency range 24 kHz to 1 MHz and all angles of orientation in as small as 1° increments. This substantial data set is quite revealing of the physics of the acoustic scattering by these complex shelled bodies and served as a basis for the modeling. Specifically, the resonance structure of the scattering was strongly dependent upon angle of orientation and could be traced to various types of rays (e.g., subsonic Lamb waves and rays entering the opercular opening). The data are analyzed in both the frequency and time domain (compressed pulse processing) so that dominant scattering mechanisms could be identified. Given the complexity of the animal body (irregular elastic shell with discontinuities), approximate scattering models are used with only the dominant scattering properties retained. Two models are applied to the data, both approximating the body as a deformed sphere: (1) an averaged form of the exact modal-series-based solution for the spherical shell, which is used to estimate the backscattering by a deformed shell averaged over all angles of orientation, and produces reasonably accurate predictions over all k1aesr (k1 is the acoustic wave number of the surrounding water and aesr is the equivalent spherical radius of the body), and (2) a ray-based formula which is used to estimate the scattering at fixed angle of orientation, but only for high k1aesr. The ray-based model is an extension of a model recently developed for the shelled zooplankton Limacina retroversa that has a shape similar to that of the Littorina littorea but swims through the water [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998b)]. Applications of remote detection and classification of the seafloor and water column in the presence of shelled animals are discussed.
    Description: This work was supported by the U.S. Office of Naval Research Grant Nos. N00014-95-1- 0287 and N00014-96-1-0878, and the MIT/WHOI Joint Graduate Education Program.
    Keywords: Bioacoustics ; Acoustic wave scattering ; Backscatter ; Reverberation ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1997. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 102 (1997): 806-814, doi:10.1121/1.419906.
    Description: A previous study of high-frequency acoustic backscattering data collected at Eckernfoerde Bay, Germany revealed that scattering is mainly due to methane gas bubbles buried about a meter beneath the seafloor [Tang et al., J. Acoust. Soc. Am. 96, 2930–2936 (1994)]. A backscattering model was developed [Tang, Geo-Marine Lett. 16, 161–169 (1996)] where the gas bubbles were approximated by oblate spheroids. In this paper, a bistatic scattering model is proposed as an extension of the previously developed backscattering model. In this model, gas bubbles are again assumed to be oblate spheroids with varying aspect ratios and a single-scattering approximation is used. The model is compared to bistatic data acquired in Eckernfoerde Bay, Germany. In particular, the azimuthal dependence of the bistatic scattering strength predicted by the model is tested against experimental data and it is found that both the model and the bistatic scattering strength data exhibit a mild azimuthal dependence. Best agreement between model and data requires a 35% reduction in areal bubble density relative to that used in the backscattering model/data comparison. Possible reasons for this are discussed including multiple scattering effects.
    Description: This work is supported by the Coastal Benthic Boundary Layer Special Research Program, Office of Navel Research Grant No. N00014-95-1-G904.
    Keywords: Oceanographic regions ; Acoustic wave scattering ; Backscatter ; Bubbles ; Sediments ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 104 (1998): 39-55, doi:10.1121/1.424056.
    Description: Distinct frequency dependencies of the acoustic backscattering by zooplankton of different anatomical groups have been observed in our previous studies [Chu et al., ICES J. Mar. Sci. 49, 97–106 (1992); Stanton et al., ICES J. Mar. Sci. 51, 505–512 (1994)]. Based mainly on the spectral information, scattering models have been proposed to describe the backscattering mechanisms of different zooplankton groups [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998b)]. In this paper, an in-depth study of pulse compression (PC) techniques is presented to characterize the temporal, spectral, and statistical signatures of the acoustic backscattering by zooplankton of different gross anatomical classes. Data collected from various sources are analyzed and the results are consistent with our acoustic models. From compressed pulse (CP) outputs for all three different zooplankton groups, two major arrivals from different parts of the animal body can be identified: a primary and a secondary arrival. (1) Shrimplike animals (Euphausiids and decapod shrimp; near broadside incidence only): the primary one is from the front interface (interface closest to the transducer) of the animal and the secondary arrival is from the back interface; (2) gas-bearing animals (Siphonophores): the primary arrival is from the gas inclusion and the secondary arrival is from the body tissue ("local acoustic center of mass"); and (3) elastic shelled animals (Gastropods): the primary one is from the front interface and the secondary arrival corresponds to the subsonic Lamb wave that circumnavigates the surface of the shell. Statistical analysis of these arrivals is used to successfully infer the size of the individual animals. In conjunction with different aspects of PC techniques explored in this paper, a concept of partial wave target strength (PWTS) is introduced to describe scattering by the different CP highlights. Furthermore, temporal gating of the CP output allows rejection of unwanted signals, improves the output signal-to-noise ratio (SNR) of the spectra of selected partial waves of interest, and provides a better understanding of the scattering mechanism of the animals. In addition, it is found that the averaged PWTS can be used to obtain a more quantitative scattering characterization for certain animals such as siphonophores.
    Description: This work was supported by the National Science Foundation under Grant No. OCE-9201264 and the U.S. Office of Naval Research under Grant Nos. N00014-89-J-1729, N00014-94-1-0452, and N00014-95-1-0287.
    Keywords: Matched filters ; Acoustic signal processing ; Backscatter ; Acoustic wave scattering ; Statistical analysis ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1999. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 106 (1999): 1732-1743, doi:10.1121/1.428036.
    Description: The distorted wave Born approximation (DWBA) method has been successfully used in modeling the acoustic backscattering by weakly scattering zooplankton [Stanton et al., J. Acoust. Soc. Am. 94, 3463–3472 (1993), Wiebe et al., IEEE J. Ocean. Eng. 22(3), 445–464 (1997)]. However, the previously developed DWBA model ignores the imaginary part of the scattering amplitude and thus results in a zero-extinction cross section. As a consequence, the model fails to predict the scattering-induced attenuation which could be important under certain circumstances. In this paper, a phase-compensated DWBA-based approximation is presented. The improved method allows us to compute not only the scattering strength but also the acoustic attenuation. The new scattering model is validated by comparing with the existing exact solution for certain representative finite objects. The results from this study can be applied to bioacoustic applications where the attenuation due to scattering and/or multiple scattering by zooplankton is relevant, and where this information might be used to infer the acoustic properties of live animals.
    Description: This work was partially supported by the National Science Foundation under Grant No. OCE-9730680.
    Keywords: DWBA ; Backscatter ; Acoustic wave scattering ; Bioacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 330-335, doi:10.1121/1.421092.
    Description: Amplitude and phase fluctuations of monochromatic acoustic signals traveling through diffuse mid-ocean ridge hydrothermal vent plumes are modeled using existing theory in an attempt to find suitable frequencies and path lengths for plume monitoring. Weak-scattering solutions are evaluated numerically, with model parameters adjusted to match observed plume characteristics. Constraints required for weak-scattering solutions to be valid can be met for transmission ranges of 500–2000 m and frequencies of 20–80 kHz. Therefore, because fluid structure and scattering strength are more closely linked for weak scattering than for stronger scattering, inversion for fluid statistical properties may be possible, enabling diffuse vent monitoring. Such monitoring would be subject to geometric assumptions such as transmission entirely within a statistically homogeneous plume. Performance-limiting phase fluctuations have also been computed for a 13–17 kHz geodetic survey system.
    Description: This work was supported by the Woods Hole Oceanographic Institution with research funds provided by the Mellon Foundation.
    Keywords: Underwater sound ; Oceanography ; Acoustic wave scattering ; Seafloor phenomena
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 119 (2006): 3717-3725, doi:10.1121/1.2200699.
    Description: Expressions governing coherence scales of sound passing through a moving packet of nonlinear internal waves in a continental shelf environment are presented. The expressions describe the temporal coherence scale at a point, and the horizontal coherence scale in a plane transverse to the acoustic path, respectively. Factors in the expressions are the wave packet propagation speed, wave packet propagation direction, the fractional distance from the packet to the source, and the spatial scale S of packet displacement required to cause acoustic field decorrelation. The scale S is determined by the details of coupled mode propagation within the packet and the waveguide. Here, S is evaluated as a function of frequency for one environment, providing numerical values for the coherence scales of this environment. Coherence scales derived from numerical simulation of coupled mode acoustic propagation through moving wave packets substantiate the expressions.
    Description: This work was funded by grants from the Ocean Acoustics Program of the U.S. Office of Naval Research.
    Keywords: Underwater sound ; Acoustic wave propagation ; Acoustic field ; Acoustic waveguides ; Acoustic wave scattering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1978
    Description: This thesis consists of three papers examining problems related to the crustal structure, isostasy and subsidence history of aseismic ridges and mid-plate island chains. Analysis of gravity and bathymetry data across the Ninetyeast and eastern Walvis Ridges indicates these features are locally compensated by an over thickening of the oceanic crust. Maximum crustal thicknesses are 15-30 km. The western Walvis Ridge is also compensated by crustal thickening; however, the isostasy of this part of the ridge is best explained by a plate model of compensation with elastic plate thicknesses of 5-8 km. These results are consistent with the formation of the Ninetyeast and Walvis Ridges near spreading centers on young lithosphere with flexural rigidities at least an order of magnitude less than those typically determined from flexural studies in older parts of the ocean basins. As the lithosphere cools and thickens, its rigidity increases, explaining the differences in isostasy between aseismic ridges and mid-plate island chains. The long-term subsidence of aseismic ridges and island/ seamount chains can also be explained entirely by lithospheric cooling. Aseismic ridges form near ridge crests and subside at nearly the same rate as normal oceanic crust Mid-plate island chains subside at slower rates because they are built on older crust. However, some island chains have subsided faster than expected based on the age of the surrounding sea floor, probably because of lithospheric thinning over midplate hot spots, like Hawaii. This lithospheric thinning model has major implications both for lithospheric and mantle convection studies as well as the origin of continental rift systems.
    Keywords: Coral reefs and islands ; Sea-floor spreading ; Plate tectonics ; Ocean bottom ; Submarine geology ; Marine geophysics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 777-785, doi:10.1121/1.2751268.
    Description: A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator's ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the “state-switched” concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography.
    Description: The work was supported by ONR.
    Keywords: Acoustic generators ; Underwater sound ; Acoustic resonators ; Oceanographic equipment ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 104 (1998): 2121-2135, doi:10.1121/1.423726.
    Description: Acoustic scattering experiments involving simultaneous acquisition of broadband echoes and video footage from several Antarctic krill were carried out to determine the effect of animal orientation on echo spectral structure. A novel video analysis technique, applied to extract krill angle of orientation corresponding to each insonification, revealed that echo spectra from krill near broadside incidence relative to the incident acoustic wave exhibited widely spaced, deep nulls, whereas off-broadside echo spectra had a more erratic structure, with several closely spaced nulls of variable depth. The pattern of changes in echo spectra with orientation for the experimentally measured acoustic returns was very similar to theoretically predicted patterns based on a distorted wave Born approximation (DWBA) model. Information contained in the broadband echo spectra of the krill was exploited to invert the acoustic returns for angle of orientation by applying a newly developed Covariance Mean Variance Classification (CMVC) approach, using generic and animal-specific theoretical and empirical model spaces. The animal-specific empirical model space was best able to invert for angle of orientation. The CMVC inversion technique can be implemented using a generic empirical model space to determine angle of orientation based on broadband echoes from individual zooplankton in the field.
    Description: L.V.MT.’s research was supported by the Ocean Acoustics, Oceanic Biology and URIP programs of the Office of Naval Research Grant Nos. N00014-89-J-1729, N00014-95-1-0287, and N00014-92-J-1527, the Biological Oceanography program of the National Science Foundation Grant No. OCE-9201264, and the WHOI/MIT Joint Program Education Office.
    Keywords: Bioacoustics ; Acoustic wave scattering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 128-136, doi:10.1121/1.2917387.
    Description: When calibrating a broadband active acoustic system with a single standard target such as a sphere, the inherent resonances associated with the scattering by the sphere pose a significant challenge. In this paper, a method is developed which completely eliminates the source of resonances through isolating and exploiting the echo from the front interface of a sphere. This echo is relatively insensitive to frequency over a wide range of frequencies, lacking resonances, and is relatively insensitive to small changes in material properties and, in the case of spherical shells, shell thickness. The research builds upon the concept of using this echo for calibration in the work of Dragonette et al. [J. Acoust. Soc. Am. 69, 1186–1189 (1981)]. This current work generalizes that of Dragonette by (1) incorporating a pulse compression technique to significantly improve the ability to resolve the echo, and (2) rigorously accounting for the scattering physics of the echo so that the technique is applicable over a wide range of frequencies and material properties of the sphere. The utility of the new approach is illustrated through application to data collected at sea with an air-filled aluminum spherical shell and long broadband chirp signals (30–105 kHz).
    Description: This work was supported by the U.S. Office of Naval Research Grant Nos. N00014-04-1-0475 and N00014- 04-1-0440 and the J. Seward Johnson Chair at WHOI.
    Keywords: Acoustic resonance ; Acoustic wave scattering ; Calibration ; Echo ; Pulse compression
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 3177-3194, doi:10.1121/1.2783001.
    Description: A cw solution of acoustic diffraction by a three-sided semi-infinite barrier or a double edge, where the width of the midplanar segment is finite and cannot be ignored, involving all orders of diffraction is presented. The solution is an extension of the asymptotic formulas for the double-edge second-order diffraction via amplitude and phase matching given by Pierce [A. D. Pierce, J. Acoust. Soc. Am. 55, 943–955 (1974)]. The model accounts for all orders of diffraction and is valid for all kw, where k is the acoustic wave number and w is the width of the midplanar segment and reduces to the solution of diffraction by a single knife edge as w→0. The theory is incorporated into the deformed edge solution [Stanton et al., J. Acoust. Soc. Am. 122, 3167 (2007)] to model the diffraction by a disk of finite thickness, and is compared with laboratory experiments of backscattering by elastic disks of various thicknesses and by a hard strip. It is shown that the model describes the edge diffraction reasonably well in predicting the diffraction as a function of scattering angle, edge thickness, and frequency.
    Description: This work was supported by the US Office of Naval Research and by the Woods Hole Oceanographic Institution.
    Keywords: Acoustic wave diffraction ; Acoustic wave scattering ; Backscatter ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 3304-3326, doi:10.1121/1.2793613.
    Description: High-frequency acoustic scattering techniques have been used to investigate dominant scatterers in mixed zooplankton populations. Volume backscattering was measured in the Gulf of Maine at 43, 120, 200, and 420 kHz. Zooplankton composition and size were determined using net and video sampling techniques, and water properties were determined using conductivity, temperature, and depth sensors. Dominant scatterers have been identified using recently developed scattering models for zooplankton and microstructure. Microstructure generally did not contribute to the scattering. At certain locations, gas-bearing zooplankton, that account for a small fraction of the total abundance and biomass, dominated the scattering at all frequencies. At these locations, acoustically inferred size agreed well with size determined from the net samples. Significant differences between the acoustic, net, and video estimates of abundance for these zooplankton are most likely due to limitations of the net and video techniques. No other type of biological scatterer ever dominated the scattering at all frequencies. Copepods, fluid-like zooplankton that account for most of the abundance and biomass, dominated at select locations only at the highest frequencies. At these locations, acoustically inferred abundance agreed well with net and video estimates. A general approach for the difficult problem of interpreting high-frequency acoustic scattering in mixed zooplankton populations is described.
    Description: This research was supported in part by the U.S. GLOBEC program, NOAA (Grant nos. NA17RJ1223 and NA67RJ0148), the James S. Cole and Cecily C. Selby Endowed Funds, the Penzance Endowed Fund for Support of Assistant Scientists, and the Adams Chair at the Woods Hole Oceanographic Institution. A selected number of focused experiments were also funded by the ONR (Grant No. N00014-98-1-0362).
    Keywords: Acoustic wave scattering ; Bioacoustics ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 2685-2697, doi:10.1121/1.1614258.
    Description: Acoustic scattering techniques provide a unique and powerful tool to remotely investigate the physical properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic scattering it is possible to probe physical processes that occur at the microstructure scale, spanning submillimeter to centimeter scale processes. An acoustic scattering model for turbulent oceanic microstructure is presented in which the current theory, which only accounts for fluctuations in the sound speed, has been extended to include fluctuations in the density as well. The inclusion of density fluctuations results in an expression for the scattering cross section per unit volume, σv, that is explicitly dependent on the scattering angle. By relating the variability in the density and sound speed to random fluctuations in oceanic temperature and salinity, σv has been expressed in terms of the temperature and salinity wave number spectra, and the temperature-salinity co-spectrum. A Batchelor spectrum for temperature and salinity, which depends on parameters such as the dissipation rates of turbulent kinetic energy and temperature variance, has been used to evaluate σv. Two models for the temperature-salinity co-spectrum have also been used. The predictions indicate that fluctuations in the density could be as important in determining backscattering as fluctuations in the sound speed. Using data obtained in the ocean with a high resolution vertical microstructure profiler, it is predicted that scattering from oceanic microstructure can be as strong as scattering from zooplankton.
    Description: This work was supported in part by ONR, NSF, and the Woods Hole Oceanographic Institution.
    Keywords: Acoustic wave scattering ; Underwater acoustic propagation ; Oceanography ; Remote sensing ; Oceanographic techniques
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2002. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 111 (2002): 1197-1210, doi:10.1121/1.1433813.
    Description: Scattering models that correctly incorporate organism size and shape are a critical component for the remote detection and classification of many marine organisms. In this work, an acoustic scattering model has been developed for fluid-like zooplankton that is based on the distorted wave Born approximation (DWBA) and that makes use of high-resolution three-dimensional measurements of the animal's outer boundary shape. High-resolution computerized tomography (CT) was used to determine the three-dimensional digitizations of animal shape. This study focuses on developing the methodology for incorporating high-resolution CT scans into a scattering model that is generally valid for any body with fluid-like material properties. The model predictions are compared to controlled laboratory measurements of the acoustic backscattering from live individual decapod shrimp. The frequency range used was 50 kHz to 1 MHz and the angular characteristics of the backscattering were investigated with up to a 1° angular resolution. The practical conditions under which it is necessary to make use of high-resolution digitizations of shape are assessed.
    Description: This work was supported in part by the Woods Hole Oceanographic Institution Education Office.
    Keywords: Acoustic wave scattering ; Computerised tomography ; Underwater sound ; Backscatter ; Acoustic tomography ; Acoustic field ; Microorganisms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 119 (2006): 232-242, doi:10.1121/1.2141229.
    Description: There are historical discrepancies between empirical observations of Antarctic krill target strength and predictions using theoretical scattering models. These differences are addressed through improved understanding of key model parameters. The scattering process was modeled using the distorted-wave Born approximation, representing the shape of the animal as a bent and tapered cylinder. Recently published length-based regressions were used to constrain the sound speed and density contrasts between the animal and the surrounding seawater, rather than the earlier approach of using single values for all lengths. To constrain the parameter governing the orientation of the animal relative to the incident acoustic wave, direct measurements of the orientation of krill in situ were made with a video plankton recorder. In contrast to previous indirect and aquarium-based observations, krill were observed to orient themselves mostly horizontally. Averaging predicted scattering over the measured distribution of orientations resulted in predictions of target strength consistent with in situ measurements of target strength of large krill (mean length 40–43 mm) at four frequencies (43–420 kHz), but smaller than expected under the semi-empirical model traditionally used to estimate krill target strength.
    Description: This project was supported by NSF U.S. Antarctic Program Grant No. OPP-9910307. G. Lawson was supported by an Office of Naval Research Graduate Traineeship Award in Ocean Acoustics (Grant No. N000 14-03-1-0212), a Fulbright Scholarship, a Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarship, and the Woods Hole Oceanographic Institution Academic Programs Office.
    Keywords: Underwater sound ; Seawater ; Acoustic wave scattering ; Acoustic wave velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 118 (2005): 2899-2903, doi:10.1121/1.2062127.
    Description: The relative importance of internal-wave strain and internal-wave shear on perturbation of acoustic ray trajectories in the ocean is analyzed. Previous estimates based on the Garrett-Munk internal-wave spectral model are updated using data from recent field studies of internal waves. Estimates of the ratio of the rms shear effect to the rms strain effect based on data from the upper kilometer of ocean are as high as 0.25–0.4, exceeding the estimates of 0.08–0.17 stemming from the model. Increased strength of three phenomena that have shear to strain ratios higher than the internal-wave average can cause this effect. These are near-inertial waves, internal tides, and vortical modes.
    Description: This work was funded by grants from the U.S. Office of Naval Research.
    Keywords: Ocean waves ; Tides ; Underwater sound ; Acoustic wave scattering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 108 (2000): 551-555, doi:10.1121/1.429585.
    Description: Acoustic scattering by the seafloor is sometimes influenced, if not dominated, by the presence of discrete volumetric objects such as shells. A series of measurements of target strength of a type of benthic shelled animal and associated scattering modeling have recently been completed (Stanton et al., "Acoustic scattering by benthic and planktonic shelled animals," J. Acoust. Soc. Am., this issue). The results of that study are used herein to estimate the scattering by the seafloor with a covering of shells at high acoustic frequencies. A simple formulation is derived that expresses the area scattering strength of the seafloor in terms of the average reduced target strength or material properties of the discrete scatterers and their packing factor (where the reduced target strength is the target strength normalized by the geometric cross section of the scatterers and the averaging is done over orientation and/or a narrow range of size or frequency). The formula shows that, to first order, the backscattering at high acoustic frequencies by a layer of shells (or other discrete bodies such as rocks) depends principally upon material properties of the objects and packing factor and is independent of size and acoustic frequency. Estimates of area scattering strength using this formula and measured values of the target strength of shelled bodies from Stanton et al. (this issue) are close to or consistent with observed area scattering strengths due to shell-covered seafloors published in other papers.
    Description: This research was supported by the U.S. Office of Naval Research Grant No. N00014-95-1-0287.
    Keywords: Underwater sound ; Oceanography ; Acoustic wave scattering ; Backscatter
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 123 (2008): 667-678, doi:10.1121/1.2821975.
    Description: This paper introduces a perturbative inversion algorithm for determining sea floor acoustic properties, which uses modal amplitudes as input data. Perturbative inverse methods have been used in the past to estimate bottom acoustic properties in sediments, but up to this point these methods have used only the modal eigenvalues as input data. As with previous perturbative inversion methods, the one developed in this paper solves the nonlinear inverse problem using a series of approximate, linear steps. Examples of the method applied to synthetic and experimental data are provided to demonstrate the method's feasibility. Finally, it is shown that modal eigenvalue and amplitude perturbation can be combined into a single inversion algorithm that uses all of the potentially available modal data.
    Description: Funding for the research presented here was provided by the Office of Naval Research, and the WHOI Academic Programs Office.
    Keywords: Geophysical techniques ; Inverse problems ; Sediments ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1972
    Description: Free-air and simple Bouguer anomaly maps of the Venezuelan continental margin (from 60°W to 72°W and from 7°N to 13°N) are presented. The major features of the free-air map are: the large lows associated with the deep sedimentary basins, -200 mgal in the Eastern Venezuela basin and -164 mgal in the Maracaibo basin; the high of greater than 300 mgal over the Venezuelan Andes; and a belt of highs associated with the offshore islands extending from Blanquilla to Curacao and then over the Guajira peninsula, where they terminate. The Bouguer anomaly map shows a large low (-196 mgal) over the Eastern Venezuela basin and relative minimums over the coastal mountains. A minimum associated with the Venezuelan Andes is shifted to the northwest of the topographic axis and lies over the flank of the Andes and part of the Maracaibo basin. Using the gravity data, structural sections were constructed for a series of profiles across the Venezuelan Andes and Caribbean mountains. They show that there is no light crustal root under the Andes, the relative mass excess is as much as 600 kg/cm2, and that there is an excess of low density material under the Maracaibo basin. This appears to be caused by a combination of a southeastward dipping shear zone in the lithosphere under the basin-mountain boundary and a component of compressive stress perpendicular to this zone, both of which have resulted in the uplift of the crust under the Andes, and downwarp under the basin. The apparent flexural rigidity of the lithosphere under the Maracaibo basin is 0.6 x 1023 newton-m, a normal value for lithosphere deformations of Miocene age. The Caribbean mountains have a light crustal root which has been formed by the sliding of blocks of crustal material from the north over the rocks to the south, and perhaps by the underthrusting of oceanic crust under the continental crust. This underthrusting may have been a result of the formation of a downgoing slab of lithosphere along the Venezuelan continental margin during the late Cretaceous. The downgoing slab may have existed until mid-Eocene time. The gravity minimum over the Eastern Venezuela basin is due to the downwarping of lighter crustal material into the higher density mantle. This may be a result of compression from the north along a north-south direction causing plastic downbuckling of the lithosphere. The present deformation along the northern boundary appears to be due to differences in relative motion between the North and South American plates. Because the Caribbean mountains are partially isostatically compensated, while the Venezuelan Andes are above isostatic equilibrium, this suggests that the relative motion of the Caribbean plate with respect to the South American plate is eastward. The compressive stress across the boundary in the region of the Venezuelan Andes is probably greater than the compressive stress across the Caribbean mountains.
    Description: This investigation was supported by a grant from the National Science Foundation GA-12204, and by contract N00014-66-C-024l with the Office of Naval Research.
    Keywords: Marine geophysics ; Plate tectonics ; Atlantis II (Ship : 1963-) Cruise AII54 ; Chain (Ship : 1958-) Cruise CH55
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 1449-1462, doi:10.1121/1.2764475.
    Description: Laboratory measurements of high-frequency broadband acoustic backscattering (200–600 kHz) from the diffusive regime of double-diffusive microstructure have been performed. This type of microstructure, which was characterized using direct microstructure and optical shadowgraph techniques, is identified by sharp density and sound speed interfaces separating well-mixed layers. Vertical acoustic backscattering measurements were performed for a range of physical parameters controlling the double-diffusive microstructure. The echoes have been analyzed in both the frequency domain, providing information on the spectral response of the scattering, and in the time domain, using pulse compression techniques. High levels of variability were observed, associated with interface oscillations and turbulent plumes, with many echoes showing significant spectral structure. Acoustic estimates of interface thickness (1–3 cm), obtained for the echoes with exactly two peaks in the compressed pulse output, were in good agreement with estimates based on direct microstructure and optical shadowgraph measurements. Predictions based on a one-dimensional weak-scattering model that includes the actual density and sound speed profiles agree reasonably with the measured scattering. A remote-sensing tool for mapping oceanic microstructure, such as high-frequency broadband acoustic scattering, could lead to a better understanding of the extent and evolution of double-diffusive layering, and to the importance of double diffusion to oceanic mixing.
    Description: Funding for this project was provided by the Ocean Acoustics program at the Office of Naval Research and by the Woods Hole Oceanographic Institution Cecil and Ida Greene Technology Award. Tetjana Ross was supported by the WHOI Postdoctoral Scholarship through the generous support of the Doherty Foundation.
    Keywords: Acoustic measurement ; Acoustic wave scattering ; Echo ; Oceanographic techniques ; Pulse compression ; Remote sensing ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1981
    Description: The results of a detailed geophysical survey are used in conjunction with all available information in a study of the tectonic development of the Cayman Trough and the Greater Antilles Ridge. This development is connected with the relative motions of the North and South Americas and the eastern Pacific plates. Thus, the pre-Tertiary history of the region is one of simple convergence. This contrasts with the complex tectonism of primary translation, with secondary convergence and divergence during the Tertiary. The ancestral Greater Antillean Arc suffered fracturing during collision with the Bahamas stable platform in the Late Cretaceous. Oblique convergence re-established itself across the remnant fragments of the ancestral arc in the Tertiary, producing a sheared welt partially decoupled from both the North American and Caribbean plates. Pronounced temporal and structural heterogeneity occurs within this Plate Boundary Zone. Along its northern margin secondary convergence with the North American plate formed the massive subduction complex of the Cuchillas Uplift and the Sierra Septentrional. Convergence between the Plate Boundary Zone and the Caribbean plate resulted in the triple virgation of the fold belts extending westward from the Los Muertos Trough to Oriente Province (Cuba), the Cayman Trough and the Nicaraguan Rise. Tectonism along these fold belts youngs southwestward preserving the stratigraphy of the Caribbean Basin at the time of their formation during the early, middle, and late Tertiary. The Caribbean/North American Plate boundary occurred along the zones of major strain accomodation within the Plate Boundary Zone. The Cayman Trough was produced during a period of divergence between the Nicaraguan Rise and the North American plates during the Miocene. Since the Pliocene, the shear boundary within the Cayman Trough occurs along the Oriente Deep proceeding via the Windward Passage Deep and the Valle del Cibao to the Puerto Rico Trench. Convergence and shear predominate the present tectonic framework of the Plate Boundary Zone.
    Description: Cruise #97 of the R. V. ATLANTIS II was sponsored by the National Science Foundation (OCE78-20/ 11336.00). Further support was received from the Ocean Industry Program and the Educational Program of Woods Hole Oceanographic Institution.
    Keywords: Plate tectonics ; Marine geophysics ; Atlantis II (Ship : 1963-) Cruise AII97
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1979
    Description: A major goal in the study of plate tectonics is the acquisition of a knowledge of the history of relative motion among the rigid plates of the earth's lithosphere. The three papers of this thesis contribute to this effort and demonstrate that studies of the stability and evolution of triple junctions and of the finite rotations of systems of three plates can yield significantly more accurate tectonic histories than can studies of the relative motions between two plates alone. Topographic and magnetic investigation of the Southwest Indian Ridge and reconstruction of the plate system of the Indian Ocean shows that both Africa and Antarctica are rigid plates and their pole of relative rotation has remained fixed near 8°N, 42°W since the Eocene. A detailed survey of the Indian Ocean triple junction reveals that the Indian Ocean plate motions have remained constant since 10 Ma. The stability conditions of the junction show that the general morphology of the Southwest Indian Ridge results from the evolution of the Indian Ocean triple junction. A method is presented for determining the finite rotations best reconstructing the past relative positions of three plates around a triple junction. The method is illustrated by reconstructions of the plates around the Labrador Sea triple junction at the times of anomalies 24 (56 Ma) and 21 (50 Ma). The region of uncertainty of the Greenland-North America finite pole is mapped for each reconstruction, and it demonstrates that consideration of the three plate system yields more well-constrained results than does a treatment of the two plates alone.
    Description: This work was supported by the Office of Naval Research contract N00014-75-C-0291 with the Massachusetts Institute of Technology.
    Keywords: Plate tectonics ; Sea-floor spreading ; Geology ; Atlantis II (Ship : 1963-) Cruise AII93-5 ; Atlantis II (Ship : 1963-) Cruise AII93-6
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1996
    Description: Two-thirds of the Earth's surface is oceanic crust formed by magmatic and tectonic processes along mid-ocean ridges. Slow-spreading ridges, such as the Mid-Atlantic Ridge, are discontinuous and composed of ridge segments. Segments are thus fundamental units of magmatic accretion and tectonic deformation that control the evolution of the crust. The objective of this Thesis is to constrain the tectonic processes that occur at the scale of slowspreading segments, to identify the factors controlling segment propagation, and to provide constraints on lithospheric strength with laboratory deformation experiments. In chapter 2, bathymetry and gravity from various areas along the global mid-ocean ridge system are analyzed to quantify systematic variations at the scale of individual segments. There is a marked asymmetry in bathymetry and gravity in the vicinity of segment offsets. We develop a model of faulting to explain these observations. Low-angle faults appear to accommodate tectonic extension at the inside corners of ridge-offset intersections, and result in substantially uplifted terrain with thin crust with respect to that at the outside corners or centers of segments. Results from Chapter 3 indicate that the crust magmatically emplaced on axis is not maintained off-axis. This transition is revealed by both statistical and spectral analyses of bathymetry and gravity. Tectonic extension varies along the length of a segment, resulting in thinning and uplift of the crust at ridge-offset inside corners, and a decorrelation between bathymetry and gravity patterns. Tectonic deformation substantially reshapes the oceanic crust that is magmatically emplaced on-axis, and strongly controls the crustal structure and seafloor morphology off-axis. Satellite gravity data over the Atlantic shown in Chapter 4 reveal a complex history of ridge segmentation, and provides constraints on the processes driving the propagation of segments. The pattern of segmentation is controlled mainly by the geometry of the ridge axis, and secondarily by hot spots. Segments migrate primarily down regional gradients associated with hot spot swells. However, the lack of correlation between gradients and propagation rate, and the propagation up gradient of some offsets, suggest that additional factors control propagation (e.g., variations in lithospheric strength). Most non-transform offsets are short-lived and migrating, while transform offsets are long-lived and stable. Both the propagation of segments (Chapter 4) tectonism along a segment (Chapters 2 and 3) are controlled by the lithospheric rheology. In Chapter 5 I present results from laboratory deformation experiments on serpentinite. These experiments demonstrate that serpentinites are considerably weaker than peridotites or gabbros, display a non-dilatant style of brittle deformation, and strain is accommodated by shear cracking. Serpentinites may weaken the lithosphere, enhance strain localization along faults, and control the style of faulting.
    Description: A fellowship from Caixa de Pensions "La Caixa" in Barcelona provided me with all the required financial support to come to WHOI. The work presented in this thesis was also supported by the National Science Foundation grants OCE-90l2576, OCE-930078, OCE-9313812, and Office of Naval Research grant N00014-9l-J-1433.
    Keywords: Sea-floor spreading ; Plate tectonics ; Structural geology ; Mid-ocean ridges ; Plumes ; Submarine geology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Victoria: Seychelles Fishing Authority
    Publication Date: 2021-05-19
    Description: Seychelles is composed of over 100 islands with a land area of approximately 455 km², centred close to 4°30'S and 55°30'E. The combined coastline is approximately 600 km long, the oceanic shelf totals about 50 000 km² and the Exclusive Economic Zone (EEZ) is over 1 370 000 km². The total population (1994 census) stands at just under 74 000. in 1994, the population registered a growth rate of 2.2%. The GDP (1994) was SR 2373.8 million, fisheries representing 4.8% of this sum. Licensing agreements for foreign fishing activities provided a yearly revenue of SR8 million. Port Victoria is seen as a prime centre for tuna fishing operations in the Indian Ocean. In the artisanal fishery just under 900 persons are working. The largest contributor to catch by vessel type are the traditional whaler vessels representing 47.8% of the total catch. Over 66.3% of the catch is by the handline method. Carangidae representing 24% and Lutjanidae 19% of total landings. There are six specific objectives to the fisheries sector policy, which aims as resource development and maximisation of potential benefits. Nearshore fishery resources are considered to be heavily exploited, however opportunities exist around the distant islands and in deeper waters off the Mahe plateau shelf. Aquaculture of molluscs and prawns is being developed and carried out. The main constraints to development are seen as the lack of skilled manpower and foreign exchange.
    Description: Published
    Keywords: Country profile ; Fisheries ; Seychelles ; Statistics ; Fisheries ; Fishery statistics
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 186058 bytes
    Format: 520444 bytes
    Format: application/pdf
    Format: application/pdf
    Format: 19
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Victoria: Seychelles Fishing Authority | Victoria
    Publication Date: 2021-08-09
    Description: Published
    Description: Industrial tuna fishing
    Keywords: Tuna ; Fisheries ; Fishery economics ; Fishery industry ; Fishery statistics ; Tuna fisheries
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 1589602 bytes
    Format: application/pdf
    Format: 28
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1976
    Description: This thesis is a collection and analysis of seafloor magnetic anomalies, bathymetry, and the paleomagnetism of DSDP sediments and basalt in the West Philippine Basin, in an attempt to resolve questions about its origin as a marginal basin. Our results suggest that this basin was formed in an Eocene pulse of rapid spreading (v1/2 = 41-44 mm/yr) in a direction (N 21°E) significantly different from later pulses which opened the more eastern basins of the Philippine Sea. The Central Basin Fault appears to be intimately associated with this spreading by nature of its structure and trend, and it may be a remanent of a former ridge system. Our preliminary calculation of paleopole positions also suggests that there was a large amount (60°) of clockwise rotation between this basin and the magnetic pole. This is consistent with rotations of the Pacific plate with respect to the magnetic pole and current directions of Philippine- Pacific'relative rotations. Basement depths of 6 km in the West philippine Basin imply that its crustal and/or lithospheric structure is different from Pacific structure of the same age.
    Keywords: Plate tectonics ; Magnetic anomalies ; Paleomagnetism ; Melville (Ship) Cruise ; Thomas Washington (Ship) Cruise Tasaday
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 6706103 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January, 1977
    Description: This thes is is a collection of papers on the paleomagnetics of samples from several Deep Sea Drilling Project (DSDP) sites in the Indian Ocean. These papers present the basic paleomagnetic data, discuss the statistical methods for analyzing such data from DSDP cores, and examine the implications of the paleolatitudes for the origin of the Ninetyeast Ridge and the northward motion of India. Rarely do DSDP paleolatitudes approach the reliability of good continental pole positions. However, the reliability of such paleolatitudes can be markedly improved by using comparisons with paleolatitudes of different ages from the same site, paleolatitudes of similar ages from different sites on the same plate, estimates of paleolatitude from the skewness of marine magnetic anomalies, and continental paleopole. positions. Using such comparisons, a new paleomagnetic pole of upper Cretaceous age has been defined for the Pacific plate. A middle Cretaceous pole has been defined for the Wharton Basin plate, and it suggests that there may have been left lateral motion between Australia and the Wharton Basin. Paleolatitudes from the Ninetyeast Ridge are consistent with the pole position for the Deccan Traps. These data indicate that India and the Ninetyeast Ridge moved northwards with respect to the South Pole at 14.9 ± 4.5 cm/yr from 70 to 40 mybp and at 5.2 ± .8 cm/yr from 40 mybp until the present. However, when this paleomotion is compared to the Australian paleomagnetic data (by removing the relative motion components), a major inconsistency appears between 40 and 50 mybp. The Australian data indicate that India should be 13° further north than the positions implied by the Ninetyeast Ridge data. Basal paleolatitudes on the Ninetyeast Ridge indicate that its volcanic source was approximately fixed in latitude near 50°S, supporting the hypothesis that the ridge is the trace of the Kerguelen hotspot on the northward moving Indian plate. There is considerable geologic evidence in favor of such an hypothesis, and there is none to contradict it.
    Description: National Science Foundation (Grant DES-74-22552).
    Keywords: Paleomagnetism ; Plate tectonics ; Seafloor spreading ; Basalt ; Paleogeography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 9359516 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1975
    Description: The Mid-Atlantic Ridge is one of the most well known and yet poorly understood spreading centers in the world. A detailed investigation of the Mid-Atlantic Ridge crest near 37°N (FAMOUS) was conducted using a deeply towed instrument package. The objective was to study the detailed structure and spreading history of the Mid-Atlantic Ridge median valley, to explore the roles of volcanism and faulting in the evolution of oceanic crust, and to study the morphologic expression and structural history of the zone of crustal accretion. In addition, microearthquake surveys were conducted using arrays of free-floating hydrophones. The most recent expression of the accreting plate boundary in the Famous Rift is an alternating series of linear central volcanoes and depressions 1.5 km wide which lie within the inner floor. This lineament is marked by a sharp maximum in crustal magnetization only 2-3 km wide. Magnetic studies indicate that over 90% of the extrusive volcanism occurs within the rift inner floor, a zone 1 to 12 km wide, while volcanism is extremely rare in the rift mountains. Volcanoes created in the inner floor are transported out on, block faults, becoming a lasting part of the topography. Magnetic anomaly transition widths vary from 1 km to 8 km with time and appear to reflect a bi-stable median valley structure. The valley has either a wide inner floor and narrow terraces, in which case the volcanic zone is wide and magnetic anomalies are poorly recorded (wide transition widths); or it has a narrow inner floor and wide terraces, the volcanic zone is then narrow and anomalies are clearly recorded (narrow transition widths). The median valley of any ridge segment varies between these two structures with time. At present the. Famous Rift has a narrow inner floor and volcanic zone (1-3 km) while the south Famous Rift is at the opposite end of the cycle with a wide inner floor and volcanic zone (10-12 km). Over 95% of the large scale (〉2 km) relief of the median valley is accounted for by normal faults dipping toward the valley axis. Normal faulting along fault planes dipping away from the valley begins just past the outer walls of the valley. Outward facing normal faulting accounts for most of the decay of median valley relief in the rift mountains while crustal tilting accounts for less than 20%. The pattern of normal faulting creates a broad, undulating horst and graben relief. Volcanic features contribute little to the large scale relief, but contribute to the short wavelength (〈2km) roughness of the topography. Spreading in the Famous area is highly asymmetric with rates twice as high to the east as to the west. At 1.7 m.y.b.p. the sense of asymmetry reverses in direction with spreading faster to the west, resulting in a gross symmetry when averaged through time. The change in spreading asymmetry occurred in less than 0.15 m.y. Structural studies indicate that the asymmetric spreading is accomplished through asymmetric crustal extension as well as asymmetric crustal accretion. Spreading in the Famous area is 17° oblique. Even on a fine scale there is no indication of readjustment to an orthogonal plate boundary system. Spreading has been stably oblique for at least 6 m.y., even through a change in spreading direction. Magnetic studies reveal that the deep DSDP hole at site 332 was drilled into a magnetic polarity transition, and may have sampled rocks which recorded the earth i s field behavior during a reversal. The presence of negative polarity crust within the Brunhes normal epoch in the inner floor has been determined, and may be due to old crust left behind or recording of a geomagnetic field event. Crustal magnetization decays to lie of its initial value in less than 0.6 m.y. The rapid decay may be facillitated by very intense crustal fracturing observed in the inner floor. Microearthquake, magnetic and structural studies indicate that both the spreading and transform plate boundaries are very narrow (1-2 km) and well-defined for short periods, but migrate over zones 10-20 km wide through time.
    Keywords: Submarine geology ; Geophysics ; Geomorphology ; Plate tectonics ; Knorr (Ship : 1970-) Cruise KN31
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 10114098 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Am. Meteor. Soc.
    In:  Professional Paper, Compendium of Meteorology, Dover, 439 pp., Am. Meteor. Soc., vol. 7, no. XVI:, pp. 1303-1311, (ISBN: 3-540-23712-7)
    Publication Date: 1951
    Keywords: Micro seismicity ; Seismology ; NOISE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...