ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Internal waves
  • Acoustical Society of America  (1)
  • Oxford University Press  (1)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • 2005-2009  (2)
  • 1950-1954
  • 1935-1939
  • 1
    Publication Date: 2022-05-25
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 379-394, doi:10.1093/icesjms/fsp242.
    Description: In principle, measurements of high-frequency acoustic scattering from oceanic microstructure and zooplankton across a broad range of frequencies can reduce the ambiguities typically associated with the interpretation of acoustic scattering at a single frequency or a limited number of discrete narrowband frequencies. With this motivation, a high-frequency broadband scattering system has been developed for investigating zooplankton and microstructure, involving custom modifications of a commercially available system, with almost complete acoustic coverage spanning the frequency range 150–600 kHz. This frequency range spans the Rayleigh-to-geometric scattering transition for some zooplankton, as well as the diffusive roll-off in the spectrum for scattering from turbulent temperature microstructure. The system has been used to measure scattering from zooplankton and microstructure in regions of non-linear internal waves. The broadband capabilities of the system provide a continuous frequency response of the scattering over a wide frequency band, and improved range resolution and signal-to-noise ratios through pulse-compression signal-processing techniques. System specifications and calibration procedures are outlined and the system performance is assessed. The results point to the utility of high-frequency broadband scattering techniques in the detection, classification, and under certain circumstances, quantification of zooplankton and microstructure.
    Description: The work was supported by the US Office of Naval Research (Grant # N000140210359).
    Keywords: Broadband acoustic scattering ; Internal waves ; Oceanic microstructure ; Zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1996. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 99 (1996): 822-830, doi:10.1121/1.414563.
    Description: In a recent paper, Lynch et al. used modal and ray based perturbation techniques to compare predicted variances of acoustic travel times due to internal waves to measured variances in the Barents Sea Polar Front experiment [Lynch et al., J. Acoust. Soc. Am. 99, 803–821 (1996)]. One of the interesting results of this work is that the modal and ray travel-time variances are substantially different for rays and modes with the same grazing angle. Specifically, the maximum modal travel-time variance shows a resonant effect in which the variance increases with increasing frequency. Unlike the modal solution, the ray travel-time variance has a geometrically constrained maximum, independent of frequency. In this paper, the linear first-order solutions for the ray and modal variances due to the internal waves are reviewed, and in an Appendix the effects of the linearizing assumptions are examined. The ray and mode solutions are then shown to be consistent by considering a truncated sum of modes that constructively interfere along a geometric ray path. By defining the travel-time perturbation due to a truncated sum of modes, the travel-time variance of the modal sum is derived. With increasing frequency the maximum value of this variance converges to a frequency-independent result with a similar magnitude to the ray maximum variance.
    Keywords: Internal waves ; Oceanography ; Sound waves ; Travelling waves ; Underwater ; Wave propagation ; Barents Sea ; Ray trajectories ; Shallow–water equations ; Travel time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...