ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (7)
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (3)
  • Agu  (5)
  • ELSEVIER  (2)
  • Cambridge University Press  (1)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (8)
  • 1955-1959
Collection
Publisher
Years
  • 2005-2009  (8)
  • 1955-1959
Year
  • 1
    Publication Date: 2017-04-04
    Description: Spectral properties of volcanic materials in the optical region (350–2500 nm) of the electromagnetic spectrum are analyzed. The goal is to characterize air-fall deposits, recent lava flows, and old lava flows based on their spectral reflectance properties and on the textural characteristics (grain size) of pyroclastic deposits at an active basaltic volcano. Data were acquired during a spectroradiometric field survey at Mt. Etna (Italy) in summer 2003 and combined with hyperspectral satellite (Hyperion) and airborne LiDAR (Light Detection and Ranging) data. In addition, air-fall deposits produced by the highly explosive 2002–2003 eruption have been sampled and spectrally characterized at different distances from the new vents. The spectral analysis shows that air-fall deposits are characterized by low reflectance values besides variations in grain size. This distinguishes them from other surface materials. Old lava flows show highest reflectance values due to weathering and vegetation cover. The spectral data set derived from the field survey has been compared to corrected satellite hyperspectral data in order to investigate the Hyperion capabilities to differentiate the surface cover using the reflectance properties. This has allowed us to identify the 2002–2003 air-fall deposits in a thematic image just few months after their emplacement. Moreover, the observed differences in the field spectra of volcanic surfaces have been compared with differences in the signal intensity detected by airborne LiDAR survey showing the possibility to include information on the texture of volcanic surfaces at Mt. Etna. The approach presented here may be particularly useful for remote and inaccessible volcanic areas and also represents a potentially powerful tool for the exploration of extraterrestrial volcanic surfaces.
    Description: Italian National Group of Volcanology
    Description: Published
    Description: 142-155
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Lava ; Reflectance spectra ; Hyperion ; LiDAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Twenty eruptive events from the Northeast Crater of Stromboli volcano recorded by a thermal monitoring camera in early 2004 were analysed in order to understand the eruptive dynamics. Selected eventswere chosen to be typical of explosions that characterize the steady activity of Stromboli in terms of jet height and duration. Most of the explosions consisted of clast-rich single bursts, originating from the same vent inside the Northeast Crater. Conspicuous ash emission was scarce. Eruptions were preceded by the flashing of a perturbation wave characterized by low temperatures and an average propagation velocity of about 35–100 m s−1. This perturbation was thought to be caused by the bursting of the gas slug at the bottom of the crater and is interpreted as an air wave. This was immediately followed by the expansion of a jet of ‘hot’ gas and particles, at a velocity of 35–75 m s−1. Ejecta coarser than 138 cm appeared ∼1.6–2 s after the onset of the explosion, moving at a variable velocity (30–60 m s−1). Eruptive events were either vertical or inclined 7–13◦ towards the NNW. This inclination is thought to be a consequence either of the morphology of the conduit, following modest rock falls that partially obstructed the uppermost part of the crater, or of the displacement of the internal conduit due to the explosive activity of the volcano. The instability of the summit area is a further possible cause of the deformation of the conduit.
    Description: This work was partially funded by the Istituto Nazionale di Geofisica e Vulcanologia and the Dipartimento della Protezione Civile, Italy, project INGVDPC V2
    Description: Published
    Description: 591–601
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: explosive dynamic ; thermal video monitoring ; volcano-tectonic structures ; volcano collapses ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The ocean bottom seismometer with hydrophone deployed on the flat top of the Marsili submarine volcano (790 m deep) by the Gibilmanna OBS Lab (CNT–INGV) from 12th to 21st July, 2006, recorded more than 1000 transient seismic signals. Nineteen of these signals were associated with tectonic earthquakes: 1 teleseismic, 8 regional (located by INGV) and 10 small local seismic events (non located earthquakes). The regional events were used to determine sensor orientation. By comparing the signals recorded with typical volcanic seismic activity, we were able to group all the other signals into three categories: 817 volcano–tectonic type B (VT-B) events, 159 occurrences of high frequency tremor (HFT) and 32 short duration events (SDE). Smallmagnitude VT-B swarms, having a frequency band of 2–6 Hz and a mean length of about 30 s, were almost all recorded during the first 7 days. During the last 2 days, the OBS/H mainly recorded HFT events with frequencies of over 40 Hz and of a few minutes in length. Signals that have similar features in frequency and time domain are generally associated with hydrothermal activity. During the last two days a signal was recorded that had a frequency content similar to that of VT-B events was recorded. It will be referred to as continuous volcanic tremor (CVT). The SDE signals, characterized by a quasi-monochromatic waveform and having an exponential decaying envelope, may have been generated by oscillations of resonant bodies excited by magmatic or hydrothermal activity. By applying polarization and parametric spectral analyses, we inferred that the VT-B were probably multi P-phase events having shallow sources that were situated in narrow azimuthal windows in relation to the positions of the OBS/H. The parametric spectral analysis of the SDE signals allowed us to determine their dominant complex frequencies with high accuracy; these frequencies are distributed in two distinct clusters on the complex plane.
    Description: Published
    Description: 17-29
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Marsili Seamount OBS/H Transient volcano–seismic signals Continuous volcanic tremor Polarization analysis Spectral analysis ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-20
    Description: The Campi Flegrei caldera is one of the highest risk volcanic areas on the Earth. Our research documents a 150 year-long period of intense volcanism following less than 200 years of repose after the Agnano-Monte Spina Plinian eruption (4.1 ka). The new data show that the renewal of volcanism was preceded by an uplift of a few tens of meters, triggered by mafic refilling of reservoirs at depths of 3 km or less. Our studies also indicate for the first time the occurrence of contemporaneous eruptions from at locations in different sectors of the caldera. These results suggest that a future eruptive crisis will likely be preceded by several meters of caldera-wide uplift in response to magma movements at depth. The trend of uplift of the caldera since 1969 may thus represent the unrest expected before a renewal of volcanism within an interval of decades to centuries.
    Description: Published
    Description: L21303
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Caldera ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We have simulated the impact of the tsunami generated by the Late Bronze Age (LBA) volcanic eruption of Santorini on the Eastern Mediterranean. Two different tsunami triggering mechanisms were considered: a caldera collapse and pyroclastic flows/surges entering the sea. Simulations include the ‘‘worst’’ input conditions in order to evaluate the maximum possible impacts, but also ‘‘lighter’’ input conditions, compatible with the lack of any tsunami trace on the Northern coasts of Crete. In all the simulations, tsunami propagation is mainly confined to the Southern Aegean. Outside the Aegean, the tsunami impact was negligible and not responsible for the slide-slumping of fine-grained pelagic and/or hemipelagic sediments considered the sources of the sporadically located seadeposits in the Ionian Sea and of the widespread megaturbidite deposits localized in the Ionian and Sirte Abyssal Plains.
    Description: Published
    Description: L18607
    Description: JCR Journal
    Description: reserved
    Keywords: Minoan tsunami ; Santorini ; eastern Mediterranean ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The FLOWGO thermo-rheological model links heat loss, core cooling, crystallization, rheology and flow dynamics for lava flowing in a channel. We fit this model to laser altimeter (LIDAR) derived channel width data, as well as effusion rate and flow velocity measurements, to produce a best-fit prediction of thermal and rheological conditions for lava flowing in a ~1.6 km long channel active on Mt. Etna (Italy) on 16th September 2004. Using, as a starting condition for the model, the mean channel width over the first 100 m (6 m) and a depth of 1 m we obtain an initial velocity and instantaneous effusion rate of 0.3-0.6 m/s and ~3 m3/s, respectively. This compares with field- and LIDAR-derived values of 0.4 m/s and 1-4 m3/s. The best-fit between model-output and LIDIR-measured channel widths comes from a hybrid run in which the proximal section of the channel is characterised by poorly insulated flow and the medial-distal section by well-insulated flow. This best-fit model implies that flow conditions evolve down-channel, where hot crusts on a free flowing channel maximise heat losses across the proximal section, whereas thick, stable, mature crusts of 'a'a clinker reduce heat losses across the medial-distal section. This results in core cooling per unit distance that decreases from ~0.02-0.015 °C m-1 across the proximal section, to ~0.005 °C m-1 across the medial-distal section. This produces an increase in core viscosity from ~3800 Pa s at the vent to ~8000 Pa s across the distal section.
    Description: In press
    Description: open
    Keywords: lava flow ; thermo-rheological ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: An application of LiDAR (Light Detection and Ranging) intensity for the identification and mapping of different lava flows from the Mt. Etna (Italy) active volcano is described. In September 2004 an airborne LiDAR survey was flown over summit sectors of Mt. Etna. The information derived from LiDAR intensity values was used to compare the lava flows with respect to their age of emplacement. Analysed lava flows vary in age between those dating prior to AD 1610 and those active during the survey (2004-2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the LiDAR footprint scale, are the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: i) initially, from the time of emplacement, the LiDAR intensity of lava flow surfaces decreases; ii) about 6 years after emplacement the LiDAR intensity of lava surfaces starts to increase with the age of flows. LiDAR capability in terms of geometric (accuracy of ~ 1 m in plan position and less than 1 m in elevation) and spectral (LiDAR intensity depends on surface reflection at λ= 1.064 μm) information can thus be effectively used to map lava flows and define a relative chronology of lava emplacement.
    Description: Published
    Description: open
    Keywords: Lava flow ; LiDAR ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Glass fragments in tephra erupted at Mt. Etna from May to December 1995 have been analyzed by laser ablation ICPMS. The trace element compositional variability of ashes deposited during this interval reveals the presence of discrete magma batches with different crystallization degrees in the shallow plumbing system. From May to October a highly crystalline magma is predominant within the conduit with only minor sporadic input of fresh and more primitive magma batches. After October new and less evolved magma batches become more prevalent and become progressively homogenized within more evolved resident magma. In December ashes closely match the chemistry of the volcanics subsequently erupted till February 1996. This study demonstrates that the trace element characterization of ashes has important implications for volcanic monitoring and is a useful tool for the forecasting of paroxysmal events at Mt. Etna.
    Description: Published
    Description: L05304
    Description: JCR Journal
    Description: reserved
    Keywords: magma ; 1995 ; Mt Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...