ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,007)
  • Spacecraft Design, Testing and Performance  (882)
  • Space Sciences (General)  (742)
  • Spacecraft Propulsion and Power  (702)
  • Aerodynamics  (566)
  • AERODYNAMICS
  • Animals
  • General Chemistry
  • 2005-2009  (2,625)
  • 1955-1959  (277)
  • 1950-1954  (93)
  • 1930-1934  (6)
  • 1925-1929  (6)
Collection
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-03-16
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-11-02
    Description: The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-10
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-11
    Keywords: AERODYNAMICS
    Type: RM-2419-NASA , RM-2419-NASA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-18
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A simple, systematic, optimized vortex-lattice approach is developed for application to lifting-surface problems. It affords a significant reduction in computational costs when compared to current methods. Extensive numerical experiments have been carried out on a wide variety of configurations, including wings with camber and single or multiple flaps, as well as high-lift jetflap systems. Rapid convergence as the number of spanwise or chordwise lattices are increased is assured, along with accurate answers. The results from this model should be useful not only in preliminary aircraft design but also, for example, as input for wake vortex roll-up studies and transonic flow calculations.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Res. Center Vortex-Lattice Utilization; p 325-342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: Cassini-Huygens is a multidisciplinary, international planetary mission consisting of an orbiting spacecraft and a probe. The Huygens probe successfully landed on Titan's surface on January 14, 2005, while the orbiter has performed observations of Saturn, its rings, satellites, and magnetosphere since it entered orbit around Saturn on July 1, 2004. The Cassini mission has been prolific in its scientific discoveries about the Saturn system. In this special section, we present new mission results with a focus on the 'icy satellites,' which we define as all Saturn's moons with the exception of Titan. The results included in this section have come out of the Cassini SOST--Satellites Orbiter Science Team--a multi-instrument and multidiscipline group that works together to better understand the icy satellites and their interactions with Saturn and its rings. Other papers included in this issue present ground-based observations and interior modeling of these icy moons.
    Keywords: Space Sciences (General)
    Type: Icarus (ISSN 0019-1035); Volume 193; No. 2; 305-308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The device and associated analysis methodology summarized in this report were developed for the purpose of estimating the size of discontinuities in the surface of the foam that covers the Space Shuttle External Tank. These surface offsets are thought to be due to subsurface cracks in the foam insulation. The mathematical analysis and procedure described here provide a method to quantity the dimensions of the crack offset in a direction perpendicular to the surface, making use of the projected laser target device (PLTD) tool and a laser line projector. The keys to the construction and use of the PLTD are the following geometrical design requirements: Laser dots are on a square grid: length on a side. Laser beams are perpendicular to projected surface. Beams are parallel out to the distance being projected. The PLTD can be used to (1) calibrate fixed cameras of unknown magnification and orientation (far-field solution); (2) provide equivalent calibration to multiple cameras, previously achieved only by the use of known target points, for example, in 3.D foreign-object debris tracking on a fixed launch platform; (3) compute scaling for conventional 2.D images, and depth of field for 3.D images (near-field solution); and (4) in conjunction with a laser line projector, achieve accurate measurements of surface discontinuity (cracks) in a direction perpendicular to the surface.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 22-23; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected dust angle, as a function of Lunar Module altitude.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 44-45; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 38-39; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A special system was fabricated to properly calibrate the wireless inclinometer, a new device that will measure the Orbiter s hang angle. The wireless inclinometer has a unique design and method of attachment to the Orbiter that will improve the accuracy of the measurements, as well as the safety and ease of the operation. The system properly calibrates the four attached inclinometers, in both the horizontal and vertical axes, without needing to remove any of the component parts. The Wireless Inclinometer Calibration System combines (1) a calibration fixture that emulates the point of attachment to the Orbiter in both the horizontal and vertical axes and the measurement surfaces, (2) an application-specific software program that accepts calibration data such as dates, zero functions, or offsets and tables, and (3) a wireless interface module that enables the wireless inclinometer to communicate with a calibration PC.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 114-115; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 106; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A SALT effort was initiated in late 2005 with seed funding from the Office of Safety and Mission Assurance Human Factors organization. Its objectives included demonstrating human behavior and performance modeling and simulation technologies for launch team analysis, training, and evaluation. The goal of the research is to improve future NASA operations and training. The project employed an iterative approach, with the first iteration focusing on the last 70 minutes of a nominal-case Space Shuttle countdown, the second iteration focusing on aborts and launch commit criteria violations, the third iteration focusing on Ares I-X communications, and the fourth iteration focusing on Ares I-X Firing Room configurations. SALT applied new commercial off-the-shelf technologies from industry and the Department of Defense in the spaceport domain.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 100-101; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is shown.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 116-117; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 58-59; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: To monitor hydrazine concentrations accurately and safely, hydrazine is converted into a stable derivative that will be monitored and correlated to the actual hydrazine concentration. The hydrazine's reactivity is harnessed to produce a chemical reaction that will form a stable gas-phase derivative which will not react or decompose before it reaches the detector. Hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine belong to a class of compounds known as hypergolic fuels. These fuels self-ignite upon mixing with hypergolic oxidizer (dinitrogen tetroxide), without need of a spark or other ignition source. The resulting reaction produces thrust with exceptionally high energy, making these compounds particularly useful as rocket propellants. Hydrazines are also highly toxic and corrosive. The combined properties of reactivity, corrosivity, and toxicity present the potential for a leak, a disastrous situation in a hypergol-loaded system. Consequently, leak detection is of the utmost importance in protecting equipment and personnel. Hydrazine vapor quantification presents many challenges in addition to the safety concerns. The reactivity of these compounds causes thermal and catalytic decomposition, which results in significant losses. Further complications arise from the sticky nature of hydrazine. Molecules adsorb irreversibly to virtually any surface they make contact with before detection, which results in instrument drift. These properties make it difficult to accurately quantify hydrazines. Current analytical methods seek to minimize these interactions. After an extensive literature search to determine appropriate chemical reactions, a method was devised to quantify hydrazines, without the limitations of monitoring hydrazines.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 76-77; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 120-121; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal polymer processing techniques can turn these composite materials into unique, custom parts for ground support, Shuttle, and Constellation needs. We fabricated test specimens of the composite and base materials for thermal and mechanical characterization and found that the strength of the composite material at nominal-percentage loading remained relatively unchanged from the base material.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 74-75; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 112-113; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Weather conditions at Kennedy Space Center are extremely dynamic, and they greatly affect the safety of the Space Shuttles sitting on the launch pads. For example, on May 13, 1999, the foam on the External Tank (ET) of STS-96 was significantly damaged by hail at the launch pad, requiring rollback to the Vehicle Assembly Building. The loss of ET foam on STS-114 in 2005 intensified interest in monitoring and measuring damage to ET foam, especially from hail. But hail can be difficult to detect and monitor because it is often localized and obscured by heavy rain. Furthermore, the hot Florida climate usually melts the hail even before the rainfall subsides. In response, the hail monitor array (HMA) system, a joint effort of the Applied Physics Laboratory operated by NASA and ASRC Aerospace at KSC, was deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network, in conjunction with Colorado State University, continue to test duplicate hail monitor systems deployed in the high plains of Colorado.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 54-55; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 118-119; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Commodity-free calibration is a reaction rate calibration technique that does not require the addition of any commodities. This technique is a specific form of the reaction rate technique, where all of the necessary reactants, other than the sample being analyzed, are either inherent in the analyzing system or specifically added or provided to the system for a reason other than calibration. After introduction, the component of interest is exposed to other reactants or flow paths already present in the system. The instrument detector records one of the following to determine the rate of reaction: the increase in the response of the reaction product, a decrease in the signal of the analyte response, or a decrease in the signal from the inherent reactant. With this data, the initial concentration of the analyte is calculated. This type of system can analyze and calibrate simultaneously, reduce the risk of false positives and exposure to toxic vapors, and improve accuracy. Moreover, having an excess of the reactant already present in the system eliminates the need to add commodities, which further reduces cost, logistic problems, and potential contamination. Also, the calculations involved can be simplified by comparison to those of the reaction rate technique. We conducted tests with hypergols as an initial investigation into the feasiblility of the technique.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 18-19; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Personnel working in a confined environment can be exposed to hazardous gases, and certain gases can be extremely dangerous even in concentrations as low as a few parts per billion. Nanosensors can be placed in multiple locations over a large area, thus allowing for more precise and timely detection of gas leaks. ASRC Aerospace and its research partners are developing nanosensors to detect various gases, including hydrogen, ammonia, nitrogen tetroxide, and hydrazine. Initial laboratory testing demonstrated the capability to detect these gases in concentrations lower than parts per million, and current testing is evaluating sensitivity at concentration levels three orders of magnitude lower. Testing and development continue to improve the response and recovery times and to increase the sensitivity of the devices. The development team is evaluating different coatings and electrodes to determine the optimum configuration for detecting and identifying a variety of gases. The small footprint of the nanosensors allows several devices to be placed into a single substrate. Each sensor is responsive in a different way to different gases. Embedding multiple devices into a single substrate results in better reliability and less frequent calibrations. The use of different coatings for individual elements of a multichannel sensor allows different gases to be identified. The sensor system is implemented by the use of a custom multichannel signal conditioner amplifier built on a small multichip module. This device processes the output of the sensors and transmits a signal that can be monitored and analyzed remotely.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 110-111; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to ~44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.
    Keywords: Space Sciences (General)
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-11
    Description: Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses. Planetary ephemeris uncertainties are the next greatest source of systematic error, causing up to 23 Earth-radii of uncertainty. The SDM Earth point-mass assumption introduces an additional 2.9 Earth-radii of prediction error by 2036. Unmodeled asteroid perturbations produce as much as 2.3 Earth-radii of error. We find no future small-body encounters likely to yield an Apophis mass determination prior to 2029. However, asteroid (144898) 2004 VD17, itself having a statistical Earth impact in 2102, will probably encounter Apophis at 6.7 lunar distances in 2034, their uncertainty regions coming as close as 1.6 lunar distances near the center of both SDM probability distributions.
    Keywords: Space Sciences (General)
    Type: Icarus; Volume 193; Issue 1; 1-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-11
    Description: A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new satellites (i.e., debris) due to collisions exceeds the loss of objects due to orbital decay. NASA s evolutionary satellite population model LEGEND (LEO-to-GEO Environment Debris model), developed by the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, is a high fidelity three-dimensional physical model that is capable of simulating the historical satellite environment, as well as the evolution of future debris populations (14, 15). The subject study assumed no rocket bodies and spacecraft were launched after December 2004, and no future disposal maneuvers were allowed for existing spacecraft, few of which currently have such a capability. The rate of satellite explosions would naturally decrease to zero within a few decades as the current satellite population ages. The LEGEND future projection adopts a Monte Carlo approach to simulate future on-orbit explosions and collisions. Within a given projection time step, once the explosion probability is estimated for an intact object, a random number is drawn and compared with the probability to determine if an explosion would occur. A similar procedure is applied to collisions for each pair of target and projectile involved within the same time step. Due to the nature of the Monte Carlo process, multiple projection runs must be performed and analyzed before one can draw reliable and meaningful conclusions from the outcome. A total of fifty, 200-year future projection Monte Carlo simulations were executed and evaluated (16).
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-11
    Description: With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-11
    Description: A pinpoint landing capability will be a critical component for many planned NASA missions to Mars and beyond. Implicit in the requirement is the ability to accurately localize the spacecraft with respect to the terrain during descent. In this paper, we present evidence that a vision-based solution using craters as landmarks is both practical and will meet the requirements of next generation missions. Our emphasis in this paper is on the feasibility of such a system in terms of (a) localization accuracy and (b) applicability to Martian terrain. We show that accuracy of well under 100 meters can be expected under suitable conditions. We also present a sensitivity analysis that makes an explicit connection between input data and robustness of our pose estimate. In addition, we present an analysis of the susceptibility of our technique to inherently ambiguous configurations of craters. We show that probability of failure due to such ambiguity is becoming increasingly small.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Photogrammetric Engineering and Remote Sensing (ISSN 0099-1112); Volume 71; No. 10; 1197-1204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-11
    Description: The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
    Keywords: Space Sciences (General)
    Type: To appear in the Journal of Experimental Astronomy; projected release date March 2008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-11
    Description: The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-11
    Description: The Orbiter radiator system consists of eight individual 4.6 m x 3.2 m panels located with four on each payload bay door. Forward panels #1 and #2 are 2.3 cm thick while the aft panels #3 and #4 have a smaller overall thickness of 1.3 cm. The honeycomb radiator panels consist of 0.028 cm thick Aluminum 2024-T81 facesheets and Al5056-H39 cores. The face-sheets are topped with 0.005 in. (0.127 mm) silver-Teflon tape. The radiators are located on the inside of the shuttle payload bay doors, which are closed during ascent and reentry, limiting damage to the on-orbit portion of the mission. Post-flight inspections at the Kennedy Space Center (KSC) following the STS-115 mission revealed a large micrometeoroid/orbital debris (MMOD) impact near the hinge line on the #4 starboard payload bay door radiator panel. The features of this impact make it the largest ever recorded on an orbiter payload bay door radiator. The general location of the damage site and the adjacent radiator panels can be seen in Figure 2. Initial measurements of the defect indicated that the hole in the facesheet was 0.108 in. (2.74 mm) in diameter. Figure 3 shows an image of the front side damage. Subsequent observations revealed exit damage on the rear facesheet. Impact damage features on the rear facesheet included a 0.03 in. diameter hole (0.76 mm), a approx.0.05 in. tall bulge (approx.1.3 mm), and a larger approx.0.2 in. tall bulge (approx.5.1 mm) that exhibited a crack over 0.27 in. (6.8 mm) long. A large approx.1 in. (25 mm) diameter region of the honeycomb core was also damaged. Refer to Figure 4 for an image of the backside damage to the panel. No damage was found on thermal blankets or payload bay door structure under the radiator panel. Figure 5 shows the front facesheet with the thermal tape removed. Ultrasound examination indicated a maximum facesheet debond extent of approximately 1 in. (25 mm) from the entry hole. X-ray examinations revealed damage to an estimated 31 honeycomb cells with an extent of 0.85 in. x 1.1 in. (21.6 x 27.9 mm). Pieces of the radiator at and surrounding the impact site were recovered during the repair procedures at KSC. They included the thermal tape, front facesheet, honeycomb core, and rear facesheet. These articles were examined at JSC using a scanning electron microscope (SEM) with an energy dispersive x-ray spectrometer (EDS). Figure 6 shows SEM images of the entry hole in the facesheet. The asymmetric height of the lip may be attributed to projectile shape and impact angle. Numerous instances of a glass-fiber organic matrix composite were observed in the facesheet tape sample. The fibers were approximately 10 micrometers in diameter and variable lengths. EDS analysis indicated a composition of Mg, Ca, Al, Si, and O. Figures 7 and 8 present images of the fiber bundles, which were believed to be circuit board material based on similarity in fiber diameter, orientation, consistency, and composition. A test program was initiated in an attempt to simulate the observed damage to the radiator facesheet and honeycomb. Twelve test shots were performed using projectiles cut from a 1.6 mm thick fiberglass circuit board substrate panel. Results from test HITF07017, shown in figures 9 and 10, correlates with the observed impact features reasonably well. The test was performed at 4.14 km/sec with an impact angle of 45 degrees using a cylindrical projectile with a diameter and length of 1.25 mm. The fiberglass circuit board material had a density of 1.65 g/cu cm, giving a projectile mass of 2.53 mg. An analysis was performed using the Bumper code to estimate the probability of impact to the shuttle from a 1.25 mm diameter particle. Table 1 shows a 1.6% chance (impact odds = 1 in 62) of a 1.25 mm or larger MMOD impact on the radiators of the vehicle during a typical ISS mission. There is a 0.4% chance (impact odds = 1 in 260) that a 1.25 mm or larger MMOD particle would impact the RCC wing leading edge and nose cap during a typical miion. Figure 11 illustrates the vulnerable areas of the wing leading edge reinforced carbon-carbon (RCC), an area of the vehicle that is very sensitive to impact damage. The highlighted red, orange, yellow, and light green areas would be expected to experience critical damage if impacted by an OD particle such as the one that hit the RH4 radiator panel on STS-115.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 2-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-11
    Description: Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-11
    Description: A second-order unstructured-grid code, developed and used primarily for steady aerodynamic simulations, is applied to the synthetic jet in a cross flow. The code, FUN3D, is a vertex-centered finite-volume method originally developed by Anderson[1, 2], and is currently supported by members of the Fast Adaptive Aerospace Tools team at NASA Langley. Used primarily for design[3] and analysis[4] of steady aerodynamic configurations, FUN3D incorporates a discrete adjoint capability, and supports parallel computations using MPI. A detailed description of the FUN3D code can be found in the references given above. The code is under continuous development and contains a variety of flux splitting algorithms for the inviscid terms, two methods for computing gradients, several turbulence models, and several solution methodologies; all in varying states of development. Only the most robust and reliable components, based on experiences with steady aerodynamic simulations, were employed in this work. As applied in this work, FUN3D solves the Reynolds averaged Navier-Stokes equations using the one equation turbulence model of Spalart and Allmaras[5]. The spatial discretization is formed on unstructured meshes using a vertex-centered approach. The inviscid terms are evaluated by a flux-difference splitting formulation using least-squares reconstruction and Roe-type approximate Riemann fluxes. Green-Gauss gradient evaluations are used for viscous and turbulence modeling terms. The discrete spatial operator is combined with a backward time operator which is then solved iteratively using point or line Gauss-Seidel and local time stepping in a pseudo time. For steady flows, the physical time step is set to infinity and the pseudo time step is ramped up with the iteration count. A second-order backward in time operator is used for time accurate flows with 20 to 50 steps in the pseudo time applied at each physical time step. For this effort, FUN3D was modified to support spatially varying boundary and initial conditions, and unsteady boundary conditions. Also, a specialized in/out flow boundary condition was implemented to model the action of the diaphragm. This boundary condition is described below in more detail. The grids were generated using the internally developed codes GridEX[6] for meshing the surfaces and inviscid regions of the domain, and for CAD access; and MesherX[7] for meshing the viscous regions. Grid spacing in on the surfaces and in the inviscid regions are indirectly controlled by specifying sources. The viscous layers are generated using an advancing layer technique. MeshersX allows the user to control the spatial variation of the first step off the surface, growth rates, and the termination criterion by providing small problem dependent subroutines.
    Keywords: Aerodynamics
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 2.6.1 - 2.6.5; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-11
    Description: Currently, International Space Station (ISS) crews use a laptop computer to display procedures for performing onboard maintenance tasks. This approach has been determined to be suboptimal. A heuristic evaluation and two studies have been completed to test commercial off-the-shelf (COTS) "near-eye" heads up displays (HUDs) for support of these types of maintenance tasks. In both studies, subjects worked through electronic procedures to perform simple maintenance tasks. As a result of the Phase I study, three HUDs were down-selected to one. In the Phase II study, the HUD was compared against two other electronic display devices - a laptop computer and an e-book reader. Results suggested that adjustability and stability of the HUD display were the most significant acceptability factors to consider for near-eye displays. The Phase II study uncovered a number of advantages and disadvantages of the HUD relative to the laptop and e-book reader for interacting with electronic procedures.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-11
    Description: We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: In January 2006, the Stardust spacecraft returned the first in situ collection of samples from a comet, and the first samples of contemporary interstellar dust. Stardust is the first US sample return mission from a planetary body since Apollo, and the first ever from beyond the moon. This handbook is a basic reference source for allocation procedures and policies for Stardust samples. These samples consist of particles and particle residues in aerogel collectors, in aluminum foil, and in spacecraft components. Contamination control samples and unflown collection media are also available for allocation.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-11
    Description: This chapter reviews the past and current projects on artificial gravity during space missions. The idea of a rotating wheel-like space station providing artificial gravity goes back in the writings of Tsiolkovsky, Noordung, and Wernher von Braun. Its most famous fictional representation is in the film 2001: A Space Odyssey, which also depicts spin-generated artificial gravity aboard a space station and a spaceship bound for Jupiter. The O Neill-type space colony provides another classic illustration of this technique. A more realistic approach to rotating the space station is to provide astronauts with a smaller centrifuge contained within a spacecraft. The astronauts would go into it for a workout, and get their gravity therapeutic dose for a certain period of time, daily or a few times a week. This simpler concept is current being tested during ground-based studies in several laboratories around the world.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: Thermal protection systems (TPS) insulate planetary probes and Earth re-entry vehicles from the aerothermal heating experienced during hypersonic deceleration to the planet s surface. The systems are typically designed with some additional capability to compensate for both variations in the TPS material and for uncertainties in the heating environment. This additional capability, or robustness, also provides a surge capability for operating under abnormal severe conditions for a short period of time, and for unexpected events, such as meteoroid impact damage, that would detract from the nominal performance. Strategies and approaches to developing robust designs must also minimize mass because an extra kilogram of TPS displaces one kilogram of payload. Because aircraft structures must be optimized for minimum mass, reliability-based design approaches for mechanical components exist that minimize mass. Adapting these existing approaches to TPS component design takes advantage of the extensive work, knowledge, and experience from nearly fifty years of reliability-based design of mechanical components. A Non-Dimensional Load Interference (NDLI) method for calculating the thermal reliability of TPS components is presented in this lecture and applied to several examples. A sensitivity analysis from an existing numerical simulation of a carbon phenolic TPS provides insight into the effects of the various design parameters, and is used to demonstrate how sensitivity analysis may be used with NDLI to develop reliability-based designs of TPS components.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Critical Technologies for Hypersonic Vehicle Development; 13-1 - 13-28; RTO-EN-AVT-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-28
    Description: An important element of the Space Shuttle Orbiter safety improvement plan is the improved understanding of its aerodynamic performance so as to minimize the "black zones" in the contingency abort trajectories [1]. These zones are regions in the launch trajectory where it is predicted that, due to vehicle limitations, the Orbiter will be unable to return to the launch site in a two or three engine-out scenario. Reduction of these zones requires accurate knowledge of the aerodynamic forces and moments to better assess the structural capability of the vehicle. An interesting aspect of the contingency abort trajectories is that the Orbiter would need to achieve angles of attack as high as 60deg. Such steep attitudes are much higher than those for a nominal flight trajectory. The Orbiter is currently flight certified only up to an angle of attack of 44deg at high Mach numbers and has never flown at angles of attack larger than this limit. Contingency abort trajectories are generated using the data in the Space Shuttle Operational Aerodynamic Data Book (OADB) [2]. The OADB, a detailed document of the aerodynamic environment of the current Orbiter, is primarily based on wind-tunnel measurements (over a wide Mach number and angle-of-attack range) extrapolated to flight conditions using available theories and correlations, and updated with flight data where available. For nominal flight conditions, i.e., angles of attack of less than 45deg, the fidelity of the OADB is excellent due to the availability of flight data. However, at the off-nominal conditions, such as would be encountered on contingency abort trajectories, the fidelity of the OADB is less certain. The primary aims of a recent collaborative effort (completed in the year 2001) between NASA and Boeing were to determine: 1) accurate distributions of pressure and shear loads on the Orbiter at select points in the contingency abort trajectory space; and 2) integrated aerodynamic forces and moments for the entire vehicle and the control surfaces (body flap, speed brake, and elevons). The latter served the useful purpose of verification of the aerodynamic characteristics that went into the generation of the abort trajectories.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Critical Technologies for Hypersonic Vehicle Development; 11-1 - DP-17; RTO-EN-AVT-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: NASA explores for answers that power our future by building a new space exploration vehicle that will become America s human spacecraft workhorse after the shuttle is retired in 2010. The new spacecraft is called Orion. Orion is part of the Constellation Program to send human explorers back to the Moon and beyond
    Keywords: Spacecraft Design, Testing and Performance
    Type: 2007 NASA Seal/Secondary Air System Workshop; 25-39; NASA/CP-2008-215263/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-12
    Description: The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 39th Aerospace Mechanisms Symposium; 303-316; NASA/CP-2008-215252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-12
    Description: Surface Thermal Profiles of Eagle Picher rabbit-ear 50Ah NiH2 and of Saft 40 Ah Li-ion cylindrical cells have been studied using ThermCAM S60 FLIR Systems. Popping Phenomenon in NiH2 cell is demonstrated Temperature gradient in NiH2 is slightly higher than normally considered, for example. Middle of stack to top or bottom is about 12.9 C compared to 〈7 C (may be due to passive cooling). Less than 1 C thermal gradient on the Li-Ion cell vessel surface. Significantly lower heat generation in Li-Ion cell compared to NiH2 cell. -May be due to a favorable charge method used for Li-Ion cell.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-12
    Description: Rechargeable Lithium-ion batteries have been operating successfully on both Spirit and Opportunity rovers for the last two years, which includes six months of Assembly Launch and Test Operations (ATLO), seven months of cruise and about eleven months of surface operations. The Battery Control Boards designed and fabricated in-house would protect cells against overcharge and over-discharge and provide cell balance. Their performance has thus far been quite satisfactory. The ground data o the mission simulation battery project little capacity loss of less than 3% during cruise and 180 sols. Batteries are poised to extend the mission beyond six months, if not a couple of years.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-12
    Description: AEA selection and successful Interim Design Review for AHPS proves maturity of small cell approach for very large batteries. Cells show excellent opportunity for battery mass reduction for AHPS and other low cycle applications. Lack of cycle and extended calendar life make EOL battery performance difficult (AHPS 8 year mission). Preliminary design, AEA retained SONY 18650HC cell as baseline: a) Well characterized performance; b) Wealth of safety test data.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-12
    Description: Positive Temperature Coefficient (PTC) provides adequate sustained hard short protection for AEA batteries with up to 8 cells in series. PTC cannot protect against sustained hard short in AEA batteries with 10 cells or more in series. Protective fused connector is a proven way to protect larger batteries from hard short damage: a) Hard short not credible in unmanned missions; b) However, recommended during ground handling; c) Inexpensive item. Preliminary diode protection scheme has passed manned space safety requirements for high voltage batteries. SCM confirmed fused connector did not affect battery health, however, this affect of hard short on the its long calendar and cycle life performance needs to be verified.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; 1-23; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-12
    Description: Need for technology verification for aerospace applications. Structure flexible program that will allow assessment of current technology capabilities. Provide information about various vendors. Provide for assessment of technology developments. Developed statistical DOE to interpret relationships in data and to address program test goals and resource limitations. Data will be used to develop a model to predict life of cells as a function of DOD, temperature, and EOCV.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-12
    Description: Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-12
    Description: A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-12
    Description: Tests approx.8 yrs ago showed Sony HC do not imbalance. AEA developed a theory (ESPC 2002): a) Self-discharge (SD) decreases with state-of-charge (SOC); b) Cells diverge to a state of dynamic equilibrium; c) Equilibrium spread depends on cell SD uniformity. Balancing model verified against test data. Short-term measures of SD difficult in Sony cells and very small values, depends on technique. Long-term evidence supports lower SD at low SD. Battery testing best proof of performance, typically mission specific tests.
    Keywords: Space Sciences (General)
    Type: The 2004 NASA Aerospace Battery Workshop; NASA/CP-2006-214599
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-12
    Description: Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-12
    Description: Development of Liquid Rocket Engines is expensive. Extensive testing at large scales usually required. In order to verify engine lifetime, large number of tests required. Limited Resources available for development. Sub-scale cold-flow and hot-fire testing is extremely cost effective. Could be a necessary (but not sufficient) condition for long engine lifetime. Reduces overall costs and risk of large scale testing. Goal: Determine knowledge that can be gained from sub-scale cold-flow and hot-fire evaluations of LRE injectors. Determine relationships between cold-flow and hot-fire data.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-12
    Description: Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-12
    Description: The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-12
    Description: Contents include the following: SLI initiated under NASA Research Announcement (NRA) 8-30. Strategic Objectives. Make spaceflight safer (1 in 10000 mission LOV). Make spaceflight cheaper ($1000/lb payload). Two prototype LOX/LH2 engine systems funded under Cycle-1 of NRA8-30. COBRA (Pratt & Whitney / Aerojet). RS-83 (Rocketdyne).
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-12
    Description: A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-12
    Description: The future human lunar missions are expected to undertake far more ambitious activities than those of the Apollo program with the possibility of some missions lasting up to several months. Such extended missions require the use of large-size lunar outposts to accommodate living quarters for the astronauts as well as indoor laboratory facilities. The greatest obstacle to the prolonged human presence on the Moon is the threat posed by the harsh lunar environment that is plagued with multi-source high-energy radiation exposure as well as frequent barrage of meteoroids. Hence, for such extended missions to succeed, it is vital that the future lunar outposts be designed to provide a safe habitat for the astronauts. Over the past few years, a variety of ideas and concepts for future lunar outposts and bases have been proposed. With shielding as the primary concern, some have suggested the use of natural structures such as lava tubes while others have taken a more industrial approach and suggested the construction of fixed structures in the form of inflatable, inflatable with rigid elements, and tent-style membrane. For evaluation of these structural design concepts, Drake and Richter1 have proposed a rating system based on such factors as effectiveness, importance, and timing. While all of these designs, in general, benefit from in-situ resource utilization (i.e., lunar regolith) for shielding, they share a common disadvantage of being fixed to one particular location that would limit exploration to the region in close proximity of the outpost.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXIV-1 - XXXIV-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-12
    Description: Solar Sailcraft, the stuff of dreams of the H.G. Wells generation, is now a rapidly maturing reality. The promise of unlimited propulsive power by harnessing stellar radiation is close to realization. Currently, efforts are underway to build, prototype and test two configurations. These sails are designed to meet a 20m sail requirement, under guidance of the In-Space Propulsion (ISP) technology program office at MSFC. While these sails will not fly , they are the first steps in improving our understanding of the processes and phenomena at work. As part of the New Millennium Program (NMP) the ST9 technology validation mission hopes to launch and fly a solar sail by 2010 or sooner. Though the Solar Sail community has been studying and validating various concepts over two decades, it was not until recent breakthroughs in structural and material technology, has made possible to build sails that could be launched. With real sails that can be tested (albeit under earth conditions), the real task of engineering a viable spacecraft has finally commenced. Since it is not possible to accurately or practically recreate the actual operating conditions of the sailcraft (zero-G, vacuum and extremely low temperatures), much of the work has focused on developing accurate models that can be used to predict behavior in space, and for sails that are 6-10 times the size of currently existing sails. Since these models can be validated only with real test data under "earth" conditions, the process of modeling and the identification of uncertainty due to model assumptions and scope need to be closely considered. Sailcraft models that exist currently, are primarily focused on detailed physical representations at the component level, these are intended to support prototyping efforts. System level models that cut across different sail configurations and control concepts while maintaining a consistent approach are non-existent. Much effort has been focused on the areas of thrust performance, solar radiation prediction, and sail membrane behavior vis-a-vis their reflective geometry, such as wrinkling/folding/furling as it pertains to thrust prediction. A parallel effort has been conducted on developing usable models for developing attitude control systems (ACS), for different sail configurations in different regimes. There has been very little by way of a system wide exploration of the impact of the various control schemes, thrust prediction models for different sail configurations being considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXVII-1 - XXXVII-6; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XLIV-1 - XLIV-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-12
    Description: It is well known that under some operating conditions, rocket engines (using solid or liquid fuels) exhibit unstable modes of operation that can lead to engine malfunction and shutdown. The sources of these instabilities are diverse and are dependent on fuel, chamber geometry and various upstream sources such as pumps, valves and injection mechanism. It is believed that combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system [1, 2]. Giammar and Putnam [3] performed a comprehensive study of noise generated by gasfired industrial burners and made several key observations; flow noise was sometimes more intense than combustion roar, which tended to have a characteristic frequency spectrum. Turbulence was amplified by the flame. The noise power varied directly with combustion intensity and also with the product of pressure drop and heat release rate. Karchmer [4] correlated the noise emitted from a turbofan jet engine with that in the combustion chamber. This is important, since it quantified how much of the noise from an engine originates in the combustor. A physical interpretation of the interchange of energy between sound waves and unsteady heat release rates was given by Rayleigh [5] for inviscid, linear perturbations. Bloxidge et al [6] extended Rayleigh s criterion to describe the interaction of unsteady combustion with one-dimensional acoustic waves in a duct. Solutions to the mass, momentum and energy conservation equations in the pre- and post-flame zones were matched by making several assumptions about the combustion process. They concluded that changes in boundary conditions affect the energy balance of acoustic waves in the combustor. Abouseif et al [7] also solved the one-dimensional flow equations, but they used a onestep reaction to evaluate the unsteady heat release rate by relating it to temperature and velocity perturbations. Their analysis showed that oscillations arise from coupling between entropy waves produced at the flame and pressure waves originating from the nozzle. Yang and Culick [8] assumed a thin flame sheet, which is distorted by velocity and pressure oscillations. Conservation equations were expressed in integral form and solutions for the acoustic wave equations and complex frequencies were obtained. The imaginary part of the frequency indicated stability regions of the flame. Activation energy asymptotics together with a one-step reaction were used by McIntosh [9] to study the effects of acoustic forcing and feedback on unsteady, one-dimensional flames. He found that the flame stability was altered by the upstream acoustic feedback. Shyy et al [10] used a high-accuracy TVD scheme to simulate unsteady, one-dimensional longitudinal, combustion instabilities. However, numerical diffusion was not completely eliminated. Recently, Prasad [11] investigated numerically the interactions of pressure perturbations with premixed flames. He used complex chemistry to study responses of pressure perturbations in one-dimensional combustors. His results indicated that reflected and transmitted waves differed significantly from incident waves.
    Keywords: Spacecraft Propulsion and Power
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XV-1 - XV-24; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-12
    Description: Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle interiors fabricated from carbon phenolic composite exhibit "ply lift" when hot fired. The composite surface is smooth when fabricated, but the individual plies separate and lift away from the surface when exposed to high temperature and high-pressure exhaust gas. It shows a cross section of a post-fired composite in which ply lift is evident as dark fissures. Surface charring is also visible as a darker band about 0.2 inches thick. Charring is normal, but ply lift is not desirable since the fissures could possibly initiate an abnormal exhaust path from the RSRM. The underlying mechanisms of ply lift are under investigation as part of the Shuttle Return-To-Flight Program.
    Keywords: Spacecraft Propulsion and Power
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XII-1 - XII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-12
    Description: Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the extendibility question of the analytical models. In operation, rapid temperature changes can be induced in solar sails as they transition from day to night and vice versa. This generates time dependent thermally induced forces, which may in turn create oscillation in structural members such as booms. Such oscillations have an adverse effect on system operations, precise pointing of instruments and antennas and can lead to self excited vibrations of increasing amplitude. The latter phenomenon is known as thermal flutter and can lead to the catastrophic failure of structural systems. To remedy this problem, an active vibration suppression system has been developed. It was shown that piezoelectric actuators used in conjunction with a Proportional Feedback Control (PFC) law (or Velocity Feedback Control (VFC) law) can induce moments that can suppress structural vibrations and prevent flutter instability in spacecraft booms. In this study, we will investigate control strategies using piezoelectric transducers in active, passive, and/or hybrid control configurations. Advantages and disadvantages of each configuration will be studied and experiments to determine their capabilities and limitations will be planned. In particular, special attention will be given to the hybrid control, also known as energy recycling, configuration due to its unique characteristics.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXIII-1 - XXIII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-12
    Description: Planning is underway for new NASA missions to the moon and to MARS. These missions carry a great deal of risk, as the Challenger and Columbia accidents demonstrate. In order to minimize the risks to the crew and the mission, risk reduction must be done at every stage, not only in quality manufacturing, but also in design. It is necessary, therefore, to be able to compare the risks posed in different launch vehicle designs. Further, these designs have not yet been implemented, so it is necessary to compare these risks without being able to test the vehicles themselves. This paper will discuss some of the issues involved in this type of comparison. It will start with a general discussion of reliability estimation. It will continue with a short look at some software designed to make this estimation easier and faster. It will conclude with a few recommendations for future tools.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; V-1 - V-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-12
    Description: When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.
    Keywords: Spacecraft Propulsion and Power
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXIV-1 - XXIV-7; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-12
    Description: Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; X-1 - X-8; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Exposure to ionizing radiation during long-duration space missions is expected to cause short-term illness and increase long-term risk of cancer for astronauts. Radiation-induced free radicals overload the antioxidant defense mechanisms and lead to cellular damage at the membrane, enzyme, and chromosome levels. A large number of radioprotective agents were screened, but most had significant side effects. But there is increasing evidence that significant radioprotective benefit is achieved by increasing the dietary intake of foods with high antioxidant potential. Early plant-growing systems for space missions will be limited in both size and volume to minimize power and mass requirements. These systems will be well suited to producing plants containing high concentrations of bioprotective antioxidants. This project explored whether the production of bioprotective compounds could be increased by altering the lighting system, without increasing the space or power requirements for production, and evaluated the effects of environmental conditions (light quantity, light quality, and carbon dioxide [CO2] concentration) on the production of bioprotective compounds in lettuce, which provide a biological countermeasure for radiation exposure. The specific deliverables were to develop a database of bioprotectant compounds in plants that are suitable for use on longduration space missions, develop protocols for maintaining and increasing bioprotectant production under light emitting diodes (LEDs), recommend lighting requirements to produce dietary countermeasures of radiation, and publish results in the Journal of the American Society for Horticultural Science.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 90-91; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 68-69/70; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-11
    Description: Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a method of relating the helium mass flow to measured air flow data was obtained. This analysis showed that the highest uncertainty in flow occurred in the vicinity of the choking pressure ratio, as would be expected. In addition, analysis of typical flow pulses showed that most of the helium flow occurred either well below or well above this uncertain area. The final result is the ability to provide postlaunch estimates of helium mass flows that are within 1.5 percent of the actual value.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 72-73; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 66-67; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-11
    Description: In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to be within an order of magnitude of small-scale terrestrial experiments but could not be tested more quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not tested. We observed in the Apollo landing videos that the ejection angles of particles streaming out from individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that particle aerodynamics dominate. We modified Roberts theory in two ways. First, we used ad hoc the ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method. Second, we integrated Roberts equations over the lunar-particle size distribution and obtained a compact expression that could be implemented in a numerical code. We also added a material damage model that predicts the number and size of divots which the impinging particles will cause in hardware surrounding the landing rocket. Then, we performed a long-range ballistics analysis for the ejected particulates.
    Keywords: Space Sciences (General)
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 40-41; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-11
    Description: The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (~1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.
    Keywords: Space Sciences (General)
    Type: Journal of Geophysical Research - Atmospheres (ISSN 0148-0227); Volume 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This slide presentation shows several case studies for fault protection. The cases involve a discovery-class mission to excavate material from a comet, rendezvous with two asteroids and develop a prototype system for a next-generation Deep Space Network consisting of ndca large array of small antennas.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-11
    Description: This viewgraph presentation reviews the Orion Crew Exploration vehicle (CEV) and its usage in the exploration of the moon and subsequent travel to Mars. Schedules for development and testing of the CEV are shown. Also displayed are various high level design views of the CEV, the launch abort system, the Atlas Docking adapter, and the service module.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-11
    Description: In this paper, we will describe the electronic propulsion technologies of interest and our role in developing and interjecting these technologies into JPL missions.
    Keywords: Spacecraft Propulsion and Power
    Type: 2005 AIAA Joint Propulsion Conference; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This Final Report serves as an executive summary of the Prometheus Project's activities and deliverables from November 2002 through September 2005. It focuses on the challenges from a technical and management perspective, what was different and innovative about this project, and identifies the major options, decisions, and accomplishments of the Project team as a whole. However, the details of the activities performed by DOE NR and its contractors will be documented separately in accordance with closeout requirements of the DOE NR and consistent with agreements between NASA and NR.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-11
    Description: A bismuth feed system was developed for the VHITAL Program to deliver 8-12 mg/s of bismuth vapor at a few Torr to the VHITAL-160. A carbon vaporizer developed to control vapor flow rates to the thruster.
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference 2005
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This study has advanced state-of-the-art dishcarge modeling and revealed important aspects of discharge plasma processes.
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-11
    Description: The power, Isp and thrust of ion thrusters are constrained by ther fixed grid gap in the ion accellerator, which limits performance and life to a limited range in Isp and thrust.
    Keywords: Spacecraft Propulsion and Power
    Type: 2005 AIAA Joint Propulsion Conference; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-11
    Keywords: Spacecraft Design, Testing and Performance
    Type: 5th IAA Symposium on Small Satellites for Earth Observation; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Most ongoing US activities related to space nuclear power and propulsion are sponsored by NASA. NASA-spons0red space nuclear work is currently focused on evaluating potential fission surface power (FSP) systems and on radioisotope power systems (RPS). In addition, significant efforts related to nuclear thermal propulsion (NTP) systems have been completed and will provide a starting point for potential future NTP work.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-12
    Description: This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.
    Keywords: Spacecraft Propulsion and Power
    Type: 2007 Space Nuclear Conference
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-12
    Description: With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used to get propellants off the ground to be burned later. A modem launch vehicle is usually able to put no more than 1.5%-3% of its total liftoff weight into low earth orbit.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-12
    Description: Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-12
    Description: Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: There is no doubt that the awareness of the often long history and its principal players of a scientific specialty is disappearing among present-day researchers. The reason is the inexorable rise of specialization, in which scientists are expected to keep pace with publications in their own field, not to mention the inevitable round of writing grant proposals and teaching and other mundane responsibilities. The authors of this small book had the intention of rectifying this for solar and stellar physics, disciplines which are still broad enough to embrace fields as diverse as nuclear fusion, magnetohydrodynamics, and the dynamic theory of gas spheres. They take the reader on a journey from ancient Greek and middle Eastern astronomy to the late 1990s, one which has an emphasis very much on a theoretical point of view. For the authors, it is the ideas that are central, not the observations.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H2CO3) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. Results are compared to literature values. We report, for the first time, measurements of carbonic acid's vapor pressure and its heat of sublimation. We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the ~ physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: The ST5 payload, part of NASA s New Millennium Program headquartered at JPL, consisted of three micro satellites (approx. 30 kg each) deployed into orbit from the Pegasus XL launch. ST5 was a technology demonstration mission, intended to test new technologies for potential use for future missions. In order to meet the launch date schedule of ST 5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The I&T phase was planned for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 in tandem. A team of engineers and technicians planned and executed the integration of all three spacecraft emphasizing versatility and commonality. They increased their knowledge and efficiency through spacecraft #1 integration and testing and utilized their experience and knowledge to safely execute I&T for spacecraft #2 and #3. Each integration team member could perform many different roles and functions and thus better support activities on any of the three spacecraft. The I&T campaign was completed with STS s successful launch on March 22,2006
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-06
    Description: The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.
    Keywords: Space Sciences (General)
    Type: The 2005 HST Calibration Workshop Hubble After the Transition to Two-Gyro Mode; 21-30; NASA/CP-2006-214134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-06
    Description: The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.
    Keywords: Space Sciences (General)
    Type: Oral Presentation Given for Invited Colloquium at NCSU requesting to Post Webcast on Colloquium Series WebSite
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-06
    Description: I compare the burst detection sensitivity of CGRO's BATSE, Swift's BAT, the GLAST Burst Monitor (GBM) and EXIST as a function of a burst s spectrum and duration. A detector's overall burst sensitivity depends on its energy sensitivity and set of accumulations times (Delta)t; these two factors shape the detected burst population. For example, relative to BATSE, the BAT s softer energy band decreases the detection rate of short, hard bursts, while the BAT s longer accumulation times increase the detection rate of long, soft bursts. Consequently, Swift is detecting long, low fluence bursts (2-3 x fainter than BATSE).
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-06
    Description: In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-06
    Description: The launching by the Soviet Union of the Sputnik satellite in 19457 was an impetuous to the United States. The Intercontinental ballistic Missile (ICBM) that launched the Earth's first satellite, could have been armed with a nuclear warhead, that could destroy an American city. The primary intelligence requirement that the US had was to determine the actual size of the Soviet missile program. To this end, a covert, high-risk photoreconnaissance satellite was developed. The code name of this program was "Corona." This article describes the trials and eventual successes of the Corona program.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ITEA Journal; Volume 28; No. 4; 135-137
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-06
    Description: The prediction of separation bubbles on NACA 65-213 and NACA 0012 using a modified Chen-Thyson transition model is presented. The contents include: 1) Background; 2) Analysis of NACA 65-213 separation bubble using cebeci's viscous-inviscid interaction method; 3) Analysis of NACA 0012 separation bubble using navier-stokes method; and 4) Comparison with experiment.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 269-281; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...