ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean circulation  (23)
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Meteorology and Climatology
  • Seismology
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (26)
  • 2005-2009  (26)
  • 1955-1959
  • 1950-1954
  • 1945-1949
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1990
    Description: Theory and observations of deep circulation in the near-equatorial Atlantic, Indian and Pacific Oceans are reviewed. Flow of deep and bottom water in the near-equatorial Indian and Pacific oceans, the two oceans with only a southern source of bottom water, is described through analysis of recent CTD data. Zero-velocity surfaces are chosen through use of water-mass properties and transports are estimated. Effects of basin geometry, bottom bathymetry and vertical diffusivity as well as a model meridional inertial current on a sloping bottom near the equator are all discussed in conjunction with the flow patterns inferred from observations. In the western equatorial Indian Ocean, repeat CTD surveys in the Somali Basin at the height of subsequent northeast and southwest monsoons show only small differences in the strength of the circulation of the bottom water (potential temperature θ ≤1.2°C). A deep western boundary current (DWBC) carrying about 4x106 m3 s-1 of this water is observed moving north along the continental rise of Africa at 3°S. The cross-equatorial sections suggest that the current turns eastward at the equator. The northern sections show a large mass of the coldest water in the interior east of the Chain Ridge, augmenting the evidence that the DWBC observed south of the equator turns east at the equator rather than remaining on the boundary, and feeds the interior circulation in the northern part of the basin from the equator. The circulation of deep water (1.2°C〈 θ ≤ 1.7°C) in the Somali and Arabian Basins is also analyzed. A DWBC flowing southward along the Carlsberg ridge in the Arabian Basin is described. In the central equatorial Pacific Ocean a recent zonal CTD section at 10°N, allows estimation that 5.0x106 m3 s-1 of Lower Circumpolar Water (LCPW, θ ≤ 1.2°C) moves northward as a DWBC along the Caroline Seamounts in the East Mariana Basin. In the Central Pacific Basin, 8.1x106 m3 s-1 of LCPW is estimated to move northward along the Marshal Seamounts as a DWBC at this latitude. An estimated 4.7x106 m3 s-1 of the LCPW moves back southward across 10°N in the Northeast Pacific Basin along the western flank of the East Pacific Rise and an equatorial jet is observed to flow westward from 138°W to 148°W shifting south of the Line Islands at 2.5°S, 159°W. The net northward flow of LCPW across 10°N in the Pacific Ocean is estimated at 8.4x106 m3 s-I. The net southward flow of the silica-rich North Pacific Deep Water (NPDW, 1.2 〈 θ ≤ 2.0°C) in the central Pacific Ocean estimated at 2.7x106 m3 s-1 is also discussed. In the Indian Ocean, the eastward equatorial flow in the the bottom water of the Somali Basin differs from the prediction of a flat-bottom uniform-upwelling Stommel-Arons calculation with realistic basin geometry and source location. The behavior of a uniform potential vorticity meridional jet on a sloping bottom is examined in an attempt to explain the observed behavior at the equator. The inertial jet does not cross the equator in a physically plausible fashion owing to the constraint of conservation of potential vorticity. Mass and heat budgets for the bottom water of the Somali Basin are of interest with respect to the equatorial feature. Upwelling through the θ = 1.2°C surface is estimated at 12±4x10-5 cm s-1 and a rough heat budget for the deep Somali Basin results in an estimate of vertical diffusivity of 9±5 cm2 s-1 at 3800 m. Numerical model results indicate that large vertical diffusivities result in eastward jets in the bottom water at the equator. In the Pacific Ocean the DWBC observed flowing northward south of the equator crosses the equator with transport nearly intact, albeit split into two at 10°N by the tortuous bathymetry. However the southward flow along the East Pacific Rise in the Northeast Pacific Basin and the westward equatorial jet this flow feeds are puzzling. The basin depth decreases equatorward and eastward, which may allow some southeastward flow in the Stommel-Arons framework. However, the equatorial jet is still unexplained. The estimated vertical velocity and diffusivity at 3600 db of 2±2x10-5 cm s-1 and 4±3 cm2 s-1 for the area between 12°8 and 10°N are much smaller than estimates in the Somali Basin. Thus the two oceans, similar in their single southern source of bottom water, have DWBC's which behave remarkably differently near the equator. In the Somali Basin of the Indian Ocean the DWBC appears to turn eastward at the equator, with large vertical upwelling velocity and large vertical diffusivity estimates for the bottom water of the basin. In the Pacific Ocean the DWBC appears to cross the equator, but there is a puzzling westward flowing equatorial jet in the bottom water of the Northeast Pacific Basin.
    Description: The author began this research in the M.I.T.-W.H.O.I Joint Program while supported by the U. S. Offce of Naval Research through a Secretary of the Navy Graduate Fellowship in Oceanography. Support for collection and analysis of the data taken during R.R.S. Charles Darwin cruises 86-19 and 87-25 was provided by the U. S. National Science Foundation under grants OCE8800135 and OCE8513825 to D. B. Olson at the University of Miami and by the U. S. Offce of Naval Research under contract N00014-87-K-0001, NR083-004 and grant N00014-89-J-1076 to B. A. Warren at W.H.O.I. Collection of data taken during R.Y. Moana Wave cruise 89- 3 was supp6rted by the U. S. National Science Foundation under grant OCE881691O to H. L. Bryden and J. M. Toole at W.H.O.I. Collection of data taken during the U.S.-P.R.C. Toga cruises was supported by N.O.A.A. under grant NA85AA-DACU7.
    Keywords: Ocean circulation ; Moana Wave (Ship) Cruise MW89-3 ; Charles Darwin (Ship) Cruise CD86-19 ; Charles Darwin (Ship) Cruise CD87-25
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2009
    Description: My thesis covers two general circulation problems that involve the stability of largescale oceanic flows and the importance of non-local effects. The first problem examines the stability of meridional boundary currents, which are found on both sides of most ocean basins because of the presence of continents. A linear stability analysis of a meridional boundary current on the beta-plane is performed using a quasi-geostrophic model in order to determine the existence of radiating instabilities, a type of instability that propagates energy away from its origin region by exciting Rossby waves and can thus act as a source of eddy energy for the ocean interior. It is found that radiating instabilities are commonly found in both eastern and western boundary currents. However, there are some significant differences that make eastern boundary currents more interesting from a radiation point of view. They possess a larger number of radiating modes, characterized by horizontal wavenumbers which would make them appear like zonal jets as they propagate into the ocean interior. The second problem examines the circulation in a nonlinear thermally-forced two-layer quasi-geostrophic ocean. The only driving force for the circulation in the model is a cross-isopycnal flux parameterized as interface relaxation. This forcing is similar to the radiative damping used commonly in atmospheric models, except that it is applied to the ocean circulation in a closed basin and is meant to represent the large-scale thermal forcing acting on the oceans. It is found that in the strongly nonlinear regime a substantial, not directly thermally-driven barotropic circulation is generated. Its variability in the limit of weak bottom drag is dominated by high-frequency barotropic basin modes. It is demonstrated that the excitation of basin normal modes has significant consequences for the mean state of the system and its variability, conclusions that are likely to apply for any other system whose variability is dominated by basin modes, no matter the forcing. A linear stability analysis performed on a wind- and a thermally-forced double-gyre circulation reveals that under certain conditions the basin modes can arise from local instabilities of the flow.
    Description: I was supported through a graduate research assistantship from the National Science Foundation Grant OCE-0423975 and the Woods Hole Oceanographic Institution Academic Programs Office.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007.
    Description: The water circulation and evolution of water temperature over the inner continental shelf are investigated using observations of water velocity, temperature, density, and bottom pressure; surface gravity waves; wind stress; and heat flux between the ocean and atmosphere during 2001-2007. When waves are small, cross-shelf wind stress is the dominant mechanism driving cross-shelf circulation. The along-shelf wind stress does not drive a substantial cross-shelf circulation. The response to a given wind stress is stronger in summer than winter. The cross-shelf transport in the surface layer during winter agrees with a two-dimensional, unstratified model. During large waves and onshore winds the cross-shelf velocity is nearly vertically uniform, because the wind- and wave-driven shears cancel. During large waves and offshore winds the velocity is strongly vertically sheared because the wind- and wave-driven shears have the same sign. The subtidal, depth-average cross-shelf momentum balance is a combination of geostrophic balance and a coastal set-up and set-down balance driven by the cross-shelf wind stress. The estimated wave radiation stress gradient is also large. The dominant along-shelf momentum balance is between the wind stress and pressure gradient, but the bottom stress, acceleration, Coriolis, Hasselmann wave stress, and nonlinear advection are not negligible. The fluctuating along-shelf pressure gradient is a local sea level response to wind forcing, not a remotely generated pressure gradient. In summer, the water is persistently cooled due to a mean upwelling circulation. The cross-shelf heat flux nearly balances the strong surface heating throughout midsummer, so the water temperature is almost constant. The along-shelf heat flux divergence is apparently small. In winter, the change in water temperature is closer to that expected due to the surface cooling. Heat transport due to surface gravity waves is substantial.
    Description: My last three years of thesis work were supported by National Aeronautics and Space Administration Headquarters under the Earth System Science Fellowship Grant NNG04GQ14H, and by WHOI Academic Programs Fellowship Funds. I also benefited from the freedom of a Clare Boothe Luce Fellowship during my first year in the Joint Program, which allowed me more time than is usual to explore different research topics before choosing an advisor. This research was also funded by the National Aeronautics and Space Administration under grant NNG04GL03G and the Ocean Sciences Division of the National Science Foundation under grants OCE-0241292 and OCE-0548961. The Martha's Vineyard Coastal Observatory is partly funded by the Woods Hole Oceanographic Institution and the Jewett/EDUC/Harrison Foundation. The ADCP deployments at CBLAST site F were funded by National Science Foundation Small Grant for Exploratory Research OCE-0337892. Ship time for deployment and recovery of the F ADCP was provided by Robert Weller through Office of Naval Research contracts N00014-01-1-0029 and N00014-05-10090 for the Low-Wind Component of the Coupled Boundary Layers Air-Sea Transfer Experiment.
    Keywords: Ocean circulation ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1980
    Description: Observational evidence of seasonal variability below the main thermocline in the eastern North Atlantic is described, and a theoretical model of oceanic response to seasonally varying windstress forcing is constructed to assist in the interpretation of the observations. The observations are historical conductivity-temperature-depth data from the Bay of Biscay region (2° to 20°W, 42° to 52°N), a series of eleven cruises over the three years 1972 through 1974, spaced approximately three months apart. The analysis of the observations utilizes a new technique for identifying the adiabatically leveled density field corresponding to the observed density field. The distribution of salinity anomaly along the leveled surfaces is examined, as are the vertical displacements of observed density surfaces from the leveled reference surfaces, and the available potential energy. Seasonal variations in salinity anomaly and vertical displacement occur as westward propagating disturbances with zonal wavelength 390 (±50) km, phase 71 (±30) days from 1 January, and maximum amplitudes of ±30 ppm and ±20 db respectively. The leveled density field varies seasonally with an amplitude corresponding to a thermocline displacement of ±15 db. The observations are consistent with the predictions of a model in which an ocean of variable stratification with a surface mixed layer and an eastern boundary is forced by seasonal changes in a sinusoidal windstress pattern, when windstress parameters calculated from the observations of Bunker and Worthington (1976) are applied.
    Description: This work was supported by the Office of Naval Research under contract N00014~76-C-197, NR 083-400.
    Keywords: Oceanography ; Ocean-atmosphere interaction ; Ocean circulation ; Energy budget (Geophysics)
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1982
    Description: Mean long-isobath drift of the order 5 cm/sec has been observed on several continental shelves, e.g. in the Middle Atlantic Bight and in the Weddell Sea. A theoretical model is developed to explore the driving mechanism of this mean circulation. In the model, the velocity field is decomposed into a depth-independent bottom geostrophic component and a thermohaline component relative to the bottom. The latter can be calculated from the density field, and the former is described by a parabolic equation which expresses the tendency-to balance vorticity between bottom stress curl and vortex stretching. The near-bottom flow field is studied both analytically and numerically under forcing by wind, deep ocean flow, and long-isobath density differences. Model solutions are derived for circulations over a shelf/slope topography driven by wind stress, wind stress curl, and deep ocean currents. The resulting flow patterns show strong dependence on the topography. Over the continental slope, large bottom depth variation suppresses the flow driven by local forcing and insulates the slope region from circulations on the shelf and in the deep-ocean. Geochemical observations on the continental shelf and slope support the argument that the flow on the upper slope below the thermocline is weak. Under the condition of a vertically homogeneous layer below the thermocline, near-bottom density advection is mainly caused by the bottom geostrophic velocity field. Using the parabolic vorticity equation together with a density equation, circulations driven by coastal buoyancy flux and surface cooling are investigated. In the mid-shelf region, away from the coast and the shelf break, the density field is governed by Burgers' equation, which shows longshore self-advection of density perturbations and the formation of front with strong density gradient in the longshore direction. A dense water blob moves in the direction of Kelvin wave propagation. The direction is reversed for the movement of a light water blob. In the near-shore region, the light river water bottom is also self-advected in the direction of Kelvin wave propagation. For a heavy density anomaly at the coast, the initial movement is offshore, and the accumulation of dense water in the mid-shelf region leads to long-isobath propagation of density perturbations, similar to the case of a dense water blob. This theory sheds light on the bottom water movements in the Adriatic Sea, the Antarctic Continent, and the Middle Atlantic Bight. The model solutions are applied to the flow on the western North Atlantic shelf. Southwestward flow is produced near the coast by the self-advection of river water in winter and spring. The southwestward long-isobath propagation of thermal fronts caused by winter cooling contributes significantly to the mean circulation over the mid-shelf. It is suggested that density-driven current is an important component of the near-bottom mean circulation in the Middle Atlantic Bight in spring and summer.
    Description: This work was supported by the Department of Energy through contract entitled Coastal-Shelf Transport and Diffusion.
    Keywords: Ocean circulation ; Ocean currents ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008
    Description: The mid-to-deep Arctic Ocean is generally characterized by a cyclonic circulation, contained along shelves and ridges. Here we analyze the general Arctic circulation using an idealized numerical model consisting of a circular basin with two channels acting as inflow and outflow. We analyze the circulation (direction, strength and sensitivity) for wind forcing with and without bathymetry (ridges), and with and without stratification. We find that the circulation is modified drastically by both bathymetry and wind direction, where an altered wind field can change both the direction of the horizontal basin circulation as well as the strength of the inflow and outflow. The idealized circulations imply that the Arctic circulation, and the associated export of freshwater, can easily switch states in a changing climate.
    Keywords: Ocean circulation ; Computer simulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2003
    Description: Pathways of exchange between the shelf and slope in the Mid-Atlantic Bight were investigated using a combination of radiochemical tracer and hydrographic measurements. The motivation was to provide evidence of transport routes for shelfwater that could be important to the balance of shelf-slope exchange, as well as to the biogeochemical fluxes across this crucial ocean boundary. The four radium isotopes, with half-lives of 4 days to 1600 years, a coastal source, and conservative properties in seawater, were used as coastal water mass tracers. The final study was comprised of data from 5 cruises, with a total of 8 cross-shelfbreak transects. Two areas were studied, a northern Mid-Atlantic Bight transect south of Nantucket Shoals, and a southern Mid-Atlantic Bight series of transects off the coast of Delaware. In addition, data were collected from the shelfbreak at Cape Hatteras crossing the western wall of the Gulf Stream to help determine sources of anomalous 224Ra enrichment which was observed on several of the shelfbreak transects. Combined with the hydrographic data, radium measurements suggested a pathway for exchange in the Mid- Atlantic Bight that was not a direct advection of shelf water toward the slope. Rather, the evidence suggested limited direct exchange of surface shelf water across the shelfbreak front. This provides observational evidence that is consistent with models (e.g., Gawarkiewicz and Chapman, 1991) which predict the shelfbreak front will impede exchange. Furthermore, 224Ra activity on the upper slope points to a rapid transport pathway for bottom water from the Cape Hatteras shelf via the Gulf Stream onto the Mid-Atlantic Bight slope. The radiochemical and hydrographic evidence suggests that recirculation around the slope sea gyre may be a more important pathway than direct cross-shelf transport.
    Description: This work was supported by funding from the Woods Hole Oceanographic Institution Academic Programs office, the Woods Hole Oceanographic Institution Ocean Ventues Fund, National Science Foundation grant OCE-0097232, and Civilian Research and Development Foundation grant UGI-2432-SE-02.
    Keywords: Mid-Atlantic Bight ; Ocean circulation ; Radium ; Isotopes ; Radioactive tracers in oceanography ; Cape Hatteras (Ship) Cruise CH2300 ; Oceanus (Ship : 1975-) Cruise OC349 ; Endeavor (Ship: 1976-) Cruise EN335 ; Endeavor (Ship: 1976-) Cruise EN348 ; Knorr (Ship : 1970-) Cruise KN164
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1982
    Description: Velocity and temperature time series from Hudson Submarine Canyon and hydrographic surveys of seven canyons of the Middle Atlantic Bight indicate that the effects of storms, tides, and incoming internal waves are intensified in submarine canyons. Storms with strong eastward and westward wind stress were found to cause strong upwelling and downwelling through the upper layers of Hudson Canyon. Storm-forced upwelling also caused strong down-canyon flows at the canyon floor. Internal waves were found to be concentrated in the canyon head and near the floor, in agreement with theoretical predictions. Slope water apparently circulates slowly through the outer part of the canyon and is mixed in near-floor layers which could be caused by breaking internal waves. Internal tides are generated at the floor in the central part of the canyon. Oscillations at tidal frequencies dominate the near-floor velocity field below the thermocline, and are accompanied by high-frequency spikes that may be nonlinear interface waves propagating on the top of the bottom mixed layer. A numerical model was used to calculate mixing in the canyon's bottom boundary layer caused by an unstable density gradient during flood tide. Energetic internal wave activity is apparently responsible for sediment sorting in the canyon head; the internal waves become more energetic as the sediment grain size increases. Below the thermocline, the tidal oscillations vary in amplitude with the phases of the moon; the observed deposition of mud can easily occur during weeks of low velocity.
    Description: Foundation graduate fellowship and by the Office of Naval Research under Contracts N00014-75-C-029l and N00014-80-C-0273.
    Keywords: Ocean circulation ; Submarine valleys ; Internal waves ; Sediment transport ; Oceanus (Ship : 1975-) Cruise OC34
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007
    Description: Observations of current velocity, temperature, salinity and pressure from a 2-year moored array deployment and four hydrographic cruises conducted by the United States Southern Ocean GLOBEC program on the western Antarctic Peninsula continental shelf are used to characterize the ocean circulation and its connection to fresh water and heat fluxes on the shelf. Mean velocities on the shelf are of the order of 5 cm/s or less. Tidal motions are dominated by the M2 and S2 semi-diurnal tides and the O1 and K1 diurnal tides, although the tidal velocities are typically less than 2 cm/s. Near-inertial motions are relatively large, with current velocities as high as 26 cm/s. It is shown that Marguerite Trough, a large bathymetric feature connecting the shelf-break to Marguerite Bay, plays a critical role in determining the circulation. The mean flow is strongly steered in the along-slope direction, and the tidal currents also show increasing current polarization at depth in Marguerite Trough. At timescales of 5 to 20 days, the observations show bottom-intensified motion in Marguerite Trough consistent with bottom-trapped topographic Rossby waves. The subtidal circulation in the trough has a significant wind-driven component in Marguerite Trough, with downwelling-favorable winds forcing cross-shelf flow on the northern side of the trough and along the shore on the outer shelf. Upwelling-favorable winds force roughly the opposite circulation. The cyclonic circulation on the trough helps advect blobs of salty, warm and nutrient-rich water across the shelf. These intrusions are small (≈4 km) and frequent (4 events/month). Also, the Antarctic Peninsula Coastal Current (APCC), a coastal buoyant current which is described for the first time here. The APCC is a seasonal current which is only present during the ice-free season and is forced by freshwater fluxes associated with large glacier melt and precipitation rates in the region.
    Description: Thanks goes to the agencies who made this thesis possible: the National Science Foundation Office of Polar programs through U.S. Southern Ocean GLOBEC grants OPP 99-10092 and 06-23223, the Chilean government through its Presidential Fellowship program and the Coastal Ocean Institute and the Cooperative Institute for Climate and Ocean Research.
    Keywords: Ocean circulation ; Ocean-atmosphere interaction ; Laurence M. Gould (Ship) Cruise LMG01-03 ; Laurence M. Gould (Ship) Cruise LMG02-1A ; Laurence M. Gould (Ship) Cruise LMG03-02 ; Nathaniel B. Palmer (Ship) Cruise NBP01-03 ; Nathaniel B. Palmer (Ship) Cruise NBP01-04 ; Nathaniel B. Palmer (Ship) Cruise NBP02-02 ; Nathaniel B. Palmer (Ship) Cruise NBP02-04
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Description: Nonlinear quasigeostrophic flows in two layers over a topographic slope are considered. The evolution depends on the size of two parameters which indicate the degree of nonlinearity at depth. The first measures the importance of relative vorticity advection and the second of stretching vorticity. Two types of isolated vortex are used to examine the parameter dependence. An initially barotropic vortex remains barotropic only when the first parameter is large, otherwise topographic waves dominate at depth. An Initially surface-trapped vortex larger than deformation scale is baroclinically unstable when the second is large, but is stabilized by the slope otherwise. Both parameters are also relevant to cascading geostrophic turbulence. If the stretching parameter is large, a "barotropic cascade" occurs at the deformation radius (Rhines, 1977) and the cascade "arrests" when the relative vorticity parameter is order unity. If small, layer coupling is hindered and the cascade is arrested at the deformation scale, with the flow dominated by isotropic surface vortices. In both cases, the distinction between vortices and waves is transparent when viewing potential vorticity. It is more difficult to identify waves and vortices from the streamfunction fields, because the waves are present in both layers.
    Description: Funding for this research was provided by Office of Naval Research Coastal Science Code, grants N00014-92-J-1643 and N00014-92-J-1528.
    Keywords: Rossby waves ; Eddies ; Ocean circulation ; Turbulence ; Submarine topography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2003
    Description: The capability of transient tracers to constrain the ocean circulation in the North Atlantic is explored. Study of an idealized tracer shows that inferences of circulation properties from transient state distributions are impacted by uncertainties in the time-varying boundary conditions and sparse data coverage. Comparison of CFC, tritium, temperature and salinity (T-S) observations with model results in the North Atlantic shows that regions of important model-data disagreements in the transient tracer fields can also be readily identified in the T-S distributions. In the model, excessive vertical penetration of convective adjustment, leads to problematic production and outflow of the NADW, again appearing in both transient tracer and T-S fields. Sensitivities of the model fields are determined using the adjoint model. In the dual solutions, CFC-ll, CFC-ll/CFC-12 ratio age, and T - (ß/α)S (α and ß are thermal and haline expansion coefficients, respectively) exhibit the major ventilation pathways and the associated timescales, in the model. High sensitivity fields are candidates for providing the most powerful constraints in the corresponding inverse problems. Assimilation of both CFC and tritium data, with different input histories, sampling distributions, and radioactive decay constants, shows that by adjusting only initial-boundary conditions of CFCs and tritium, a 1° x 1° offline model and the transient tracer data can be brought into near-consistency, in the domain between 4.5°S and 39.5°N of the North Atlantic. Constraining a GCM with transient tracers is thus fully practical. However, the large uncertainties in the time-varying boundary conditions of transient tracer concentrations, and in their interior distributions, renders the transient tracers less-effective in determining the circulation than are more conventional steady tracers, and known oceanic dynamics.
    Description: This work was supported by NSF Award #OCE-9730071 (A Synthesis Of The Global WOCE Observation), #OCE-9617570 (Estimating The Climatological Annual Cycle), and by NASA Award #NAG5-7857 and #NAG5-11933 (A Synthesis Of The Global WOCE Observation).
    Keywords: Ocean circulation ; Trace elements in water ; Chlorofluorocarbons ; Tritium content ; Radioactive tracers in oceanography ; Chemical oceanography ; Oceanus (Ship : 1975-) Cruise OC202 ; Oceanus (Ship : 1975-) Cruise OC134 ; Endeavor (Ship: 1976-) Cruise EN214 ; Endeavor (Ship: 1976-) Cruise EN223 ; Charles Darwin (Ship) Cruise CD62 ; Meteor (Ship) Cruise M393
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008
    Description: A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence to the state estimate solution is carried out by systematically adjusting the control variables (atmospheric state and initial conditions) using the adjoint model. A cost function compares the model state to in situ observations (Argo float profiles, CTD synoptic sections, SEaOS instrument mounted seal profiles, and XBTs), altimetric observations (ENVISAT, GEOSAT, Jason, TOPEX/Poseidon), and other data sets (e.g. infrared and microwave radiometer observed sea surface temperature and NSIDC sea-ice concentration). Costs attributed to control variable perturbations ensure a physically realistic solution. The state estimate is found to be largely consistent with the individual observations, as well as with integrated fluxes inferred from previous static inverse models. The transformed Eulerian mean formulation is an elegant way to theorize about the Southern Ocean. Current researchers utilizing this framework, however, have been making assumptions that render their theories largely irrelevant to the actual ocean. It is shown that theories of the overturning circulation must include the effect of pressure forcing. This is true in the most buoyant waters, where pressure forcing overcomes eddy and wind forcing to balance a poleward geostrophic transport and allows the buoyancy budget to be closed. Pressure forcing is also lowest order at depth. Indeed, the Southern Ocean’s characteristic multiple cell overturning is primarily in geostrophic balance. Several other aspects of the Southern Ocean circulation are also investigated in the thesis, including an analysis of the magnitude and variability of heat, salt, and volume inter-basin transports.
    Description: This work was supported by CalTech - Jet Propulsion Lab contract #1205624 (Global Oceans Dynamics and Transports). Support for my first 2 years in the MITWHOI Joint Program came from NSF awards #OCE-9901654 (Research in Linear and Nonlinear Waves and Ocean Circulation Theory). I was also supported for two months by NSF awards #OCE-0223434.
    Keywords: Ocean circulation ; Ocean temperature
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2002
    Description: A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOC act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOC are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves. These waves cause a poleward temperature flux which steepens the isotherms which in turn generates are geostrophically balanced zonal flow. In the eastern part of the basin this zonal flow feeds the southeastward flow of the equatorial gyre.
    Description: NASA and ONR ~ho generously funded me with their respective grants NAG5- 7194 and N00014-98-10881.
    Keywords: Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1981
    Description: This thesis consists of three loosely related theoretical studies. In chapters 1 - 3 the physical mechanisms which determine the three dimensional structure of the currents in the Sverdrup interior of a wind-driven gyre are discussed. A variety of simple analytic models suggest that the subsurface geostrophic contours in a wind gyre are closed and so the flow in these regions is not determined by lateral boundary conditions. Instead a turbulent, quasigeostrophic extension of the Batchelor-Prandtl theorem suggests that the potential vorticity is uniform inside these laterally isolated regions. The requirement that the potential vorticity be uniform leads simply and directly to predictions of the shape and extent of the wind gyre and the vertical structure of the currents within it. In chapter 4 the propogation of Rossby wave trains through slowly varying forced mean flows is examined by solving the linearized potential vorticity equation using the WKB method. If the mean flow is forced the action defined by Bretherton and Garrett (1968) is not conserved. Surprisingly, there is another quadratic wave property which is conserved, the wave enstrophy. In chapter 5 shear dispersion in an oscillatory velocity field, similar to that of an inertial oscillation, is discussed. The goal of this section is to develop intuition about the role of internal waves in horizontal ocean mixing. The problem is examined using a variety of models and techniques. The most important result is (23.2) which is an expression for the effective horizontal diffusivity produced by the interaction of vertical diffusivity and oscillatory vertical shear. Given an empirical velocity shear spectrum and an estimate of the vertical diffusivity this result could be used to calculate a horizontal eddy diffusivity which parameterizes the horizontal mixing due to the internal wave field.
    Description: NSF Grant OCE-78-25692 has supported me throughout my stay in the Joint Program.
    Keywords: Ocean circulation ; Ocean currents ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1978
    Description: A two-layer linear analytic model is used to study the response of the mid-latitude ocean to the seasonal variation of the windstress. The most important component of the response is a barotropic quasi-steady Sverdrup balance. A meridional ridge such as the Antilles Arc is modeled as an infinitely thin meridional barrier that blocks the lower layer but does not protrude into the upper layer. It is found that such a barrier has little effect on the upper layer flow across the barrier. This result is obtained provided the frequency of the motion is low enough so that free short Rossby waves are essentially nondivergent. In this case there is little coupling between the layers for energy propagating to the east away from the barrier. A study of the dynamics of flow over a sloping bottom is made and the results are used to determine the effect on seasonal oscillations of eastern boundary slopes and triangular ridges. It is found that the presence of a slope at the eastern boundary has little effect. A meridional ridge that does not reach the interface may cause substantial scattering of free Rossby waves, but unless the ridge is steep its effect on the quasi-steady Sverdrup balance is minimal. However, if the ridge height is a substantial fraction of the lower layer depth and the width is comparable to the scale of free short Rossby waves, the ridge will tend to block flow in the lower layer, acting like the infinitely thin barrier. The theory suggests that the Antilles Arc should have the effect of a thin barrier, while the Mid-Atlantic Ridge should have little effect on the response of the ocean to seasonal wind variations.
    Description: For three and a half years of generous financial support I am grateful to the John and Fannie Hertz Foundation, from which I received a Graduate Fellowship. Research money and other support were provided by the National Science Foundation under contract OCE 77 15600.
    Keywords: Ocean circulation ; Ocean currents ; Ocean-atmosphere interaction ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1977
    Description: Stimulated by new evidence from both "in situ" oceanic observations and results from numerical modelling, a laboratory study of quasigeostrophic flow and turbulence in a rotating homogeneous fluid has been undertaken. Two dimensional turbulence driven by a uniform distribution of sources and sinks which oscillate in time, can be fairly well reproduced in this context. Inertial time scales are about ten times smaller than Ekman spinup time, and typical Reynolds numbers read 2000. The observations emphasize the spectral tendency of the energy containing eddies. The case of no topography is first discussed. In steadily forced turbulence, it is observed that the energy containing scale is significantly larger than the forcing scale. In the decaying stage the red cascade is observed and rates of interaction are measured. Theoretical arguments for both behaviors are presented; the former concerning the forced turbulence case is believed to be new. The forcing is next applied over various large scale topographies, modelling the geophysical beta effect. The polar beta plane geometry preserves the above spectral characteristics but at the same time introduces anisotropy into the flow pattern. A broad westward mean flow develops in the north and is surrounded by a belt of cyclones lying on its southward side. The calculated second-order Eulerian mean flows induced by steadily and uniformly forced Rossby waves in a long zonal channel, exhibit much of the same momentum distribution in the inertial regime. In contrast, the "sliced cylinder" geometry which possesses no closed geostrophic contours drastically modifies the above picture. Both mean flow production and a large scale tendency for the eddies are inhibited. The geographical distribution of the eddy intensities and scales is now wildly inhomogeneous. The second aspect of this work is a study of the interaction of Rossby waves with mean flows. A zonally traveling, forced wave is generated near the southern boundary of a polar beta plane. Due to energy radiation in the free interior and (or) potential vorticity mixing by the finite amplitude waves, a westward zonal flow develops. The effect of the mean flow upon the forced steady waves is to weaken the anticyclones and intensify the cyclones. Pressure time series reveal a growth of harmonics and general spectral broadening as the waves travel freely inwards, suggesting active nonlinear interactions. An experimental test of Rhines' (1977) potential vorticity mixing theory is also presented at free latitudes. The decay period when the driving is suppressed shows that a net transfer from the waves to the mean flow kinetic energy occurs. Connection with hydrodynamic stability theory is discussed. Interaction of Rossby waves with an externally generated westward mean flow allows one to make a controlled study of the critical layer problem. For small amplitude waves, the mean flow is accelerated in the entire region between the forcing and the critical latitude which acts as a wall for mean wave momentum. In nonlinear runs the steady profile of the westward flow indicates that an accelerating force is acting everywhere, revealing the increasing transmission of wave momentum through the critical layer. At the same time, pressure measurements near the critical point show considerable fine structure developing over a long time scale. The third part deals with steady isolated source-sink flows in the sliced cylinder geometry. The response of the fluid to a meridionally oriented steady dipole extends exclusively westward of the forcing. The viscously balanced solutions are discussed and relevance to oceanic abyssal circulation is emphasized. With strong driving, the combination of a cyclone to the north and an anticyclone to the south is absolutely stable although the reverse configuration is not. A connection with a certain class of free, steady, isolated, inertial solutions developed recently by Stern (1976) is made.
    Description: The DGRST . (FRACE) and the Joint Program in Oceanography, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution offered a fellowship for the first two years. The National Science Foundation under Grant OCE75-2l 674 and the Office of Naval Research under Contract N00014-74-C0262-NR-083-004 supported this study for the final two years.
    Keywords: Ocean circulation ; Turbulence ; Rotating masses of fluid ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows are a major source of the dense water of the global deep ocean, originating from only a few marginal seas. They enter the open ocean as dense gravity currents down a continental slope and play a crucial role in the deep ocean circulation. To understand the dynamics of these overflows, previous studies simplified their dynamics by treating the overlying ocean as inactive. This simplification may be a first approximation for the overflow but not for the overlying ocean. The Mediterranean overflow, for example, entrains about 2 Sv of overlying Atlantic water when it enters the Atlantic through Gibraltar Strait. The upper ocean must balance the mass loss and vortex stretching associated with entrainment. Thus for the upper ocean, overflows represent a localized region of intense mass and PV forcing. The simulations in this study show that in the upper layer, entrainment forces a cyclonic circulation along bathymetric contours. This is a topographic β-plume and its transport depends on the entrainment region size and the topographic slope. Baroclinic instability also develops and creates eddy thickness flux to the in-shore direction, forcing a double gyre topographic β-plume near the strait due to eddy PV flux convergence on the in-shore side of the continental slope and divergence on the offshore side. When the upper oceanic response to overflows is examined specifically for the Mediterranean overflow, the upper ocean is found to establish two trans-Atlantic zonal jets, analogous to the Azores current and the Azores Counter current. These two zonal jets are an extension of the topographic β-plume driven by the overflow. Because the eddies in the steep slope region near Cape St. Vincent drive a mean flow across the slope, the topographic β-plume connects to the Atlantic Ocean to become a basin scale flow. This thesis shows that overflows can induce a significant circulation in the upper ocean, and for the Mediterranean overflow, this circulation is a basin scale flow.
    Description: This work was supported by the National Science Foundation Grant OCE-0424741.
    Keywords: Ocean circulation ; Computer simulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January, 1978
    Description: Many of the small-scale topographic features (dimensions of centimeters to kilometers) found on the Blake-Bahama Outer Ridge (western North Atiantic, water depth greater than 4000 m) and in the Rockall Trough (northeastern North Atlantic, water depth greater than 2000 m) have been formed as bed forms of deep currents. These bed forms, all developed in cohesive sediments, include current ripples (spacings of tens of centimeters, formed transverse to the flow), longitudinal triangular ripples (spacings of meters, formed in sandy muds and parallel to the flow), furrows (spacings of tens to 100's of meters, formed parallel to the flow and presently either erosional or depositional), and regular sediment waves (spacings of a few kilometers, now found oblique to the flow and migrating either upstream or downstream). The local distribution of any given bed form is influenced by the presence of larger features. Bed forms are often found in zones which strike parallel to the regional contours. Debris flows, affecting areas of 1000's to 10,000's of square kilometers, are also present in these areas. A debris flow studied in the Rockall Trough is erosional at its shallowest depths and depositional at greater depths. Gravitational flows strike perpendicular to the contours. Pockmarks (tens of meters in diameter, marking fluid seeps) are also found on the Blake-Bahama Outer Ridge. The larger topographic features (greater than several meters) with steep slopes (greater than about 20°) can be observed on surface echo-sounding profiles either as fields of regular hyperbolic echoes (e.g., echoes from regularly spaced furrows), fields of irregularly spaced, dissimilar hyperbolae (e.g., echoes from blocks, ridges, and folds in debris flows), or as regular features whose structure is often obscured by side echoes (e.g., echoes from sediment waves). Although near-bottom investigations are required to describe the features, the nature of the sea floor can often be inferred from the character of the echo-sounding profile. Similar echo-sounding records in different areas of the ocean indicate the presence of similar sea-floor features. The morphology of the bed forms studied and the current and temperature structure of the overlying water column lead to conclusions about bed form origin and present-day interactions with deep currents. Furrows form as erosional bed forms during high-velocity (〉20? cm/sec) current events by large, helical secondary circulations in the bottom boundary layer. Once formed, furrows may develop into depositional features, or they may continue as erosional ones, depending on the local currents and the sediment supply. Large, regular sediment waves may be formed at current speeds of 5 to 10 cm/sec by lee waves generated by topographic irregularities on the sea floor, such as submarine canyons, or by instabilities in the flow of deep, contour-following currents. Sediment waves develop where there is an abundant supply of sediment and steady mean currents. Waves appear to migrate upstream where tidal current fluctuations are smaller than the mean velocity, and downstream where they are larger. Near-bottom currents appear to be faster on the downstream side of upstream-migrating sediment waves than on their upstream side. The resulting variations in bed shear stress lead to higher sedimentation rates on the upstream side and bed form migration in that direction.
    Description: This research was made possible by National Science Foundation grants DES 73-06657 and OCE 76-22152, and Office of Naval Research contract N00014-74-C-0262; NR083-004 to Woods Hole Oceanographic Institution, NSF grant OCE 74-01671 to Lamont-Doherty Geological Observatory, and numerous NSF grants and ONR contracts to Scripps Institution of Oceanography.
    Keywords: Marine sediments ; Submarine topography ; Ocean circulation ; Knorr (Ship : 1970-) Cruise KN31 ; Knorr (Ship : 1970-) Cruise KN51 ; Robert D. Conrad (Ship) Cruise RC18 ; Point Loma (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1977
    Description: A 37 day long field program was carried out in March 1974 on the New England continental shelf break to study the current and hydrographic structure and variability on the shelf and in the shelf/slope front. A second experiment was conducted in the shelf break region for one week in January 1975 to study frontal exchange processes. The mean currents during the March 1974 experiment all had a westward alongshore component, increasing in magnitude progressing offshore from ~5 cm/sec to a maximum at the nearshore edge of the shelf/slope front of between 10 and 20 cm/ sec, and decreasing in magnitude with depth. The current structure was such that the velocity vector rotated clockwise with depth in the shelf waters inside the front. The mean alongshore transport of shelf water was on the order of 0.4 Sverdrups through a cross-shelf transect south of Block Island. About 30% of the transport occurred in the wedge-shaped region offshore of the 100 m isobath and inshore of the front. Comparison of the observed mean currents with those predicted by the steady frictional boundary layer model of Csanady (1976) indicates that the model captures most of the essential features of the shelf circulation. The low frequency currents contain approximately 30% of the total current variance. An empirical orthogonal modal analysis indicates that for low frequency alongshore motions the whole shelf together with the water above the front moves as a unit and that the on- offshore currents are characterized by opposing flows at surface and bottom. The alongshore wind stress component is the dominant forcing term for these low frequency motions and for the subsurface pressure field as well. For motion with periods longer than 33 hours, the time derivative term in the cross-shelf momentum balance is comparable with the Coriolis term while the advective terms are 2 to 10 times smaller, on the average. The semi-diurnal tide is barotropic over the shelf with current magnitudes that increase almost by a factor of two between the shelf break and the inshore mooring 70 km shoreward. At the shelf break one-dimensional continuity gives the correct relation between the surface tide and the semi-diurnal currents. The semi-diurnal tide is clockwise polarized. The diurnal tide is baroclinic, increasing somewhat toward the bottom, is less clockwise polarized than the semi-diurnal, and has tidal ellipses aligned with the isobaths. The diurnal tidal energy decreases toward shore. Inertial energy in the frontal zone is equal to the semi-diurnal tidal energy near the surface. The inertial energy decreases with depth and is an order of magnitude smaller further on the shelf. The inertial oscillations are shown to be highly correlated with the wind stress record, arising and decaying on a time scale of 3 to 4 days. The inertial oscillations are shown to be preferentially forced by wind stress events that have a large amount of clockwise energy at near inertial periods. The frontal zone is shown to be in near geostrophic balance with an anticipated vertical shear across the front of the order of 5 to 8 cm/sec. Thus, there is a wedge-shaped region of velocity deficit that is confined directly under the front and above ~200 m. Outside of this region the velocity is alongshore to the west. Low frequency motion of the front is shown to exist on time scales from 3 to 10 days although the complete nature of the motions is not known. An oscillation of the front about its mid-depth position at periods of 3 1/2 to 4 days was caused initially by an eastward wind stress event forcing the front offshore near surface and onshore along the bottom. This was accompanied by large temperature oscillations near the bottom at midshelf and current oscillations confined to those current meters near the front. The internal wave band is most energetic in the center of the front, is about half as energetic above the front where it is subject to variations associated with the wind stress, and is smaller and nearly constant below the front. The internal wave energy decreases shoreward reflecting the decreasing stratification shoreward of the wintertime hydrography. Linear internal wave theory seems to break down in the conditions of the frontal zone. A stability analysis of the front to small perturbations is carried out by extending the model of Margules frontal stability of Orlanski (1968) to include the steep bottom topography of the shelf break region. The study covers the parameter range pertinent to the New England continental shelf break region and indicates that the front is indeed unstable; however, the associated growth rates are so slow that baroclinic instability does not seem to be a viable explanation for the observed frontal motions. Application of the theory to the nearly flat topography of the shelf itself shows that the front would be at least 20 times more unstable there suggesting that the front would migrate offshore to the shelf break region until a stable equilibrium was established between frictional dissipation and the instabilities.
    Description: Funds for 'the field program and the data analysis of the New England Shelf Dynamics Experiment have been provided by the National Science Foundation through grants GA-4l075 and DES 74-03001.
    Keywords: Ocean currents ; Continental shelf ; Fronts ; Ocean circulation ; Dallas (Ship) Cruise ; A.E. Verrill (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology October 1979
    Description: An investigation was carried out to observe the geologic effects of steady bottom currents on sediments of East Katla Ridge on the southern insular rise of Iceland. Near-bottom southwest to west-flowing currents exceeded 20 cm sec-1 for two weeks over a 25-kilometer wide section of the ridge flank between approximately 1400 and 1800 meters water depth; maximum density and minimum temperature were observed at 1800 meters. Total transport of Iceland-Scotland Overflow Water was calculated to be 5.0 x 106 m3 sec-1; suspended sediment transport is approximately 0.4 x 106 grams sec-1, with a net deposition of 10 to 15 cm/1000 years estimated from the flux difference in and out of the station array. Sediment distribution patterns indicate that the current axis, where flow exceeds approximately 15 cm sec-1, is a site of erosion and winnowing (sand layer formation) while the current margin is a site of rapid accumulation (from observed Holocene rates of 25 to 35 cm per 1000 yr to estimated rates of greater than 100 cm/1000 yr based on 3.5 kHz echo-sounder records). Holocene silty turbidites are locally thick in a sub-marine channel; sandy turbidites and current-winnowed 'sandy contourites' are present in the axis of the major submarine canyon. ‘ Sandy contourite' deposits beneath the axis of the Iceland-Scotland Overflow Current are very poorly sorted muddy sands lacking primary sedimentary structures. Bioturbation is inferred to cause the unique characteristics of these deposits, as well as the absence of fine silt laminae in 'muddy contourites' at the current margin.
    Description: Financial support for shipboard operations and most of the post-cruise data analysis was provided by NSF Grant OCE76-Sl49l to Dr. Charles Hollister. Sediment trap and hydrocast operations received partial support under ONR Contract N00014-74-C-0262.
    Keywords: Marine sediments ; Sedimentation and deposition ; Ocean currents ; Submarine geology ; Ocean circulation ; Atlantis II (Ship : 1963-) Cruise AII94-1
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1976
    Description: The temporal and spatial variability of low frequency moored temperature and velocity observations, obtained as part of the Mid-Ocean Dynamics Experiment (MODE), are analyzed to study the kinematics and energetics of mesoscale eddies in the ocean. The temporal variability of the low frequency motions is characterized by three regimes: very low frequencies with periods greater than 200 days, an eddy energy containing band of 80 to 120 day periods, and high frequencies wìth periods less than 30 days. At very low frequencies, the zonal kinetic energy exceeds the meridional at all depths. In the thermocline, the very low frequency zonal flow dominates the total kinetic energy. The greatest contribution to the kinetic and potential energy in the MODE region, except for the thermocline zonal flow, is from an eddy energy containing band of 80 to 120 day periods. Eddy scale kinetic energy spatial variations are confined to this band. At high frequencies, the kinetic and potential energy scale with frequency as ω-2.5 and with depth in the WKB sense. Energy at high frequencies is partitioned evenly between zonal kinetic, meridional kinetic and potential energy and is homogeneous over 100 km. Using the technique of empirical orthogonal expansion, the vertical structure of the energetically dominant eddies is described by a few modes. The displacement is dominated by a mode with a thermocline maximum and in phase displacements with depth, while the kinetic energy is dominated by an equivalent barotropic mode. A smaller portion of the kinetic and potential energy is associated with out of phase thermocline and deep water currents and displacements. The dynamics of the mesoscale eddies are very nonlinear. Using the vertical veering of the current at MODE Center, the estimated horizontal advection of heat contributes significantly to the low frequency thermal balance. The observed very low frequency anisotropic flow is consistent with the nonlinear eddy spindown models, dominated by cascades of vorticity and energy. At high frequencies, the spectral similarity is consistent with advected geostrophic turbulence.
    Description: The National Science Foundation supported the work through grants GX29034 and IDO-75-03998 and a graduate fellowship.
    Keywords: Ocean currents ; Ocean circulation ; Ocean temperature
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 7112504 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Physical Oceanography, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
    Description: A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence toward the state estimate solution is carried out by systematically adjusting the control variables (prescribed atmospheric state, initial conditions, and open northern boundary at 24.7°S) using the adjoint method. A cost function compares the model state to data from CTD synoptic sections, hydrographic climatology, satellite altimetry, and XBTs. Costs attributed to control variable perturbations ensure a physically realistic solution. An optimized solution is determined by the weights placed on the cost function terms. The state estimation procedure, along with the weights used, is described. A significant result is that the adjoint method is shown to work at eddy-permitting resolution in the highly-energetic Southern Ocean. At the time of the writing of this thesis the state estimate was not fully consistent with the observations. An analysis of the remaining misfit, as well as the mass transport in the preliminary state, is presented.
    Keywords: Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 4999959 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: During the past four years a deliberate effort has been made at the Woods Hole Oceanographic Institution to devise methods of kinematic observation generally suited to the needs of oceanographers. One result of this work, the electromagnetic method, has been brought from the experimental stage to one of useful maturity. Many of the theoretical potentialities of the method are still to be explored and developed. Nevertheless it seems likely that this remaining work may be done more soundly if present developments of the theory and instrumentation are made available for use and evaluation by, others. These studies in methods of kinematic observation have been supported mainly under the provisions of Bureau of Ships Contract NObs-2083, and Office of Naval Research Contract N6onr-277-1. This support and the assistance of the Naval Ordnance Laboratory, the Hydrographic Office (Oceanographic Division), the United States Coast Guard, and the David Taylor Model Basin of the United States Navy is gratefully acknowledged.
    Keywords: Ocean circulation ; Ocean currents ; Tides ; Water current meters ; Oceanographic instruments ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Format: 4668471 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...