ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean bottom  (18)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (21)
  • 2005-2009  (21)
  • 1975-1979
  • 1950-1954
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2002
    Description: Sound propagation in shallow water is highly dependent on the interaction of the sound field with the bottom. In order to fully understand this problem, it is necessary to obtain reliable estimates of bottom geoacoustic properties that can be used in acoustic propagation codes. In this thesis, perturbative inversion methods and exact inverse methods are discussed as a means for inferring geoacoustic properties of the bottom. For each of these methods, the input data to the inversion is the horizontal wavenumber spectrum of a point-source acoustic field. The main thrust of the thesis work concerns extracting horizontal wavenumber content for fully three-dimensionally varying waveguide environments. In this context, a high-resolution autoregressive (AR) spectral estimator was applied to determine wavenumber content for short aperture data. As part of this work, the AR estimator was examined for its ability to detect discrete wavenumbers in the presence of noise and also to resolve closely spaced wavenumbers for short aperture data. As part of a geoacoustic inversion workshop, the estimator was applied to extract horizontal wavenumber content for synthetic pressure field data with range-varying geoacoustic properties in the sediment. The resulting wavenumber content was used as input data to a perturbative inverse algorithm to determine the sound speed profile in the sediment. It was shown using the high-resolution wavenumber estimator that both the shape and location of the range-variability in the sediment could be determined. The estimator was also applied to determine wavenumbers for synthetic data where the water column sound speed contained temporal variations due to the presence of internal waves. It was shown that reliable estimates of horizontal wavenumbers could be obtained that are consistent with the boundary conditions of the waveguide. The Modal Mapping Experiment (MOMAX), an experimental method for measuring the full spatial variability of a propagating sound field and its corresponding modal content in two-dimensions, is also discussed. The AR estimator is applied to extract modal content from the real data and interpreted with respect to source/receiver motion and geometry. For a moving source, it is shown that the wavenumber content is Doppler shifted. A method is then described that allows the direct measure of modal group velocities from Doppler shifted wavenumber spectra. Finally, numerical studies are presented addressing the practical issues associated with using MOMAX type data in the exact inversion method of Gelfand-Levitan.
    Description: I am especially grateful to ONR for providing the funding for me to do this work.
    Keywords: Underwater acoustics ; Ocean bottom ; Marine sediments ; Inversion ; High resolution spectroscopy
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy and the Woods Hole Oceanographic Institution February 1982
    Description: In this thesis, seismic waves generated by sources ranging from 2.7 kg shots of TNT to magnitude 5 earthquakes are studied in order to determine the seismic activity and crustal structure of the Orozco transform fault. Most of the data were collected by a network of 29 ocean bottom seismometers (OBS) and hydrophones (OBH) which were deployed as part of project ROSE (Rivera Ocean Seismic Experiment). Additional information is provided by magnetic anomaly and bathymetric data collected during and prior to ROSE and by teleseismic earthquakes recorded by the WWSSN (Worldwide Seismic Station Network). In Chapter II, the tectonic setting, bathymetry and teleseismic history of the Orozco Fracture Zone are summarized. Covering an area of 90 x 90 km which includes ridges and troughs trending both parallel and perpendicular to the present spreading direction (approximately east-west), the bathymetry of the transform portion of the fracture zone does not resemble that of other transform faults which have been studied in detail. A detailed study of one of the largest teleseismic earthquakes (mb=5.1) indicates right lateral strike-slip faulting with a strike parallel to the present spreading direction and a focal depth of less than 5 km. The moment sum from teleseismic earthquakes suggests an average fault width of at most a few kilometers. Because the teleseismic earthquake locations are too imprecise to define the present plate boundary and the magnetic anomaly data are too sparse to resolve the recent tectonic history, more questions are raised than are answered by the results in this chapter. These questions provide the focus for the study of the ROSE data. Chapter III contains an examination of the transfer function between seafloor motion and data recorded by the MIT OBS. The response of the recording system is determined and the coupling of the OBS to the seafloor during tests at two nearshore sites is analysed. Applying these results to the ROSE data, we conclude that the ground motion in the absence of the instrument can be adequately determined for at least one of the MIT OBS deployed during ROSE. Hypocentral parameters for 70 earthquakes, calculated for an assumed laterally homogeneous velocity structure which was adapted from the results of several refraction surveys in the area, are presented in Chapter IV. Because of the large number of stations in the ROSE network, the epicentral locations, focal depths and source mechanisms are determined with a precision unprecedented in marine microseismic work. Relative to the assumed model, most horizontal errors are less than ±1 km; vertical errors are somewhat larger. All epicenters are within the transform region of the Orozco Fracture Zone. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough which forms the northern boundary of the transform zone (region 1). Most well determined depths are very shallow (〈4km) and no shallowing of activity is observed as the rise-transform intersection is approached. In fact, the deepest depths (4-10km) are for earthquakes within 10 km of the intersection; these apparent depth differences are supported by the waveforms recorded a t the MIT OBS. First motion polarities for all but two of the earthquakes in region 1 are compatible with right lateral strike-slip faulting along a nearly vertical plane striking parallel to the spreading direct ion. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity is more scattered than for the first group and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. No difference can be resolved between the stress drops or b values in the two regions. In Chapter V, lateral variations in the crustal structure within the transform region are determined and the effect of these structures on the results of the previous chapter is evaluated. Several data sources provide information on different aspects of the crustal structure. Incident angles and azimuths of body waves from shots and earthquakes measured at one of the MIT OSS show systematic deflections from the angles expected for a laterally homogeneous structure. The effect of various factors on the observed angles and azimuths is discussed and it is concluded that at least some of the deflection reflects regional lateral velocity heterogeneity. Structures which can explain the observations are found by tracing rays through three dimensional velocity grids. High velocities are inferred at upper mantle depths beneath a shallow, north-south trending ridge to the west of the OBS, suggesting that the crust under the ridge is no thicker, and perhaps thinner, than the surrounding crust. Observations from sources in region 2 suggest the presence of a low velocity zone in the central transform between the sources and the receiver. That the presence of such a body provides answers to several of the questions raised in Chapter IV about the hypocenters and mechanisms of earthquakes in region 2 is circumstantial evidence supporting this model. These proposed structures do not significantly affect the hypocenters and fault plane solutions for sources in region 1. The crustal velocity structure beneath the north-south trending ridges in the central transform and outside of the transform zone is determined by travel time and amplitude modeling of the data from several lines of small shots recorded at WHOI OBH. Outside of the transform zone, a velocity-depth structure typical of oceanic crust throughout the world oceans is found from three unreversed profiles: a 1 to 2 km thick layer in which the velocity increases from about 3 to 6.7 km/sec overlies a 4 to 4.5 km thick layer with a nearly constant velocity of 6.8 km/sec. A reversed profile over one of the north-south trending ridges, on the other hand, indicates an anomalous velocity structure with a gradient of 0.5 sec-1 throughout most of the crust ( from 5.25 km/sec to 7.15 km/sec over 3.5 km). A decrease in the gradient at the base of the crust to about 0.1 sec-1 and a thin, higher gradient layer in the upper few hundred meters are also required to fit the travel time and amplitude data. A total crustal thickness of about 5.4 km is obtained. An upper mantle velocity of 8.0 to 8.13 km/sec throughout much of the transform zone is determined from travel times of large shots of TNT recorded at MIT and WHOI instruments. "Relocations" of the large shots relative to the velocity model assumed in Chapter IV support the conclusion from the ray tracing that results from region 2 may be systematically biased because of lateral velocity heterogeneity whereas results from region 1 are not affected. In the last chapter, the results on crustal structure and seismicity are combined in order to define the present plate boundary and to speculate on the history of the present configuration.
    Description: This research was supported by the Office of Naval Research, under contracts N00014-75-C-0291 and N00014-80-C-0273
    Keywords: Seismic waves ; Ocean bottom ; Faults
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1978
    Description: This thesis consists of three papers examining problems related to the crustal structure, isostasy and subsidence history of aseismic ridges and mid-plate island chains. Analysis of gravity and bathymetry data across the Ninetyeast and eastern Walvis Ridges indicates these features are locally compensated by an over thickening of the oceanic crust. Maximum crustal thicknesses are 15-30 km. The western Walvis Ridge is also compensated by crustal thickening; however, the isostasy of this part of the ridge is best explained by a plate model of compensation with elastic plate thicknesses of 5-8 km. These results are consistent with the formation of the Ninetyeast and Walvis Ridges near spreading centers on young lithosphere with flexural rigidities at least an order of magnitude less than those typically determined from flexural studies in older parts of the ocean basins. As the lithosphere cools and thickens, its rigidity increases, explaining the differences in isostasy between aseismic ridges and mid-plate island chains. The long-term subsidence of aseismic ridges and island/ seamount chains can also be explained entirely by lithospheric cooling. Aseismic ridges form near ridge crests and subside at nearly the same rate as normal oceanic crust Mid-plate island chains subside at slower rates because they are built on older crust. However, some island chains have subsided faster than expected based on the age of the surrounding sea floor, probably because of lithospheric thinning over midplate hot spots, like Hawaii. This lithospheric thinning model has major implications both for lithospheric and mantle convection studies as well as the origin of continental rift systems.
    Keywords: Coral reefs and islands ; Sea-floor spreading ; Plate tectonics ; Ocean bottom ; Submarine geology ; Marine geophysics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007
    Description: I provide constraints on mantle convection through observations of the rheology and composition of the oceanic upper mantle. Convection cannot be directly observed, yet is a fundamental part of the plate tectonic cycle. Relative motion among plates is accommodated by localized deformation at their boundaries. I demonstrate that in the ductile regime, strain localization occurs when different mineral phases are mixed together, limiting grain annealing. Upper mantle flow is by dislocation creep, resulting in seismic anisotropy due to mineral alignment. I use a shear zone in the Josephine Peridotite to quantify the relationship between mineral orientation and shear strain, providing an improved framework for the interpretation of seismic anisotropy. The upper mantle is generally assumed to be homogeneous in composition. From detailed isotopic and chemical analyses of abyssal peridotites from the Southwest Indian Ridge, I show that the mantle is heterogeneous at a range of length-scales. Abyssal peridotites recovered at ocean ridges are generally interpreted as the depleted residues of melt extraction. I find that melt-rock reaction is a significant part of the melt extraction process, modifying the composition of the lithospheric mantle. The generation of heterogeneous lithosphere provides a source for asthenospheric heterogeneity, via subduction and mantle convection.
    Description: This work has been supported financially by a variety of sources, including a Hollister Fellowship from WHOI, the Richard Vanstone Fund at WHOI and student travel assistance funds at both WHOI and MIT. Funding from the National Science Foundation was provided by grants OCE-0526905 and OCE-0624408 to H.J.B.D., EAR-0230267, EAR- 0405709 and EAR-0409609 to G.H., and EAR-0115433 and EAR-0106578 to N.S. Research at ISEI, Japan, was supported by COE-21 funding to E.N.
    Keywords: Ocean bottom ; Core-mantle boundary ; Melville (Ship) Cruise Vancouver Expedition Leg 7 ; Islas Orcadas (Ship) Cruise IO11/76 ; Agulhas (Ship) Cruise AG22 ; Polarstern (Ship) Cruise PS86 ; Knorr (Ship : 1970-) Cruise KN162
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Electrical Engineer at the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology June 1979
    Description: For a spherical acoustic wave incident on a horizontally stratified ocean bottom, the reflected pressure field and the plane-wave reflection coefficient are related through a two-dimensional spatial-wavenumber Fourier transform. An algorithm is proposed to evaluate the plane-wave reflection coefficient from the bottom reflected field as a function of angle of incidencè. The algorithm is based on the "Projection-Slice" theorem associated with the two-dimensional Fourier transform. This technique is implemented to evaluate the plane-wave reflection coefficient for a perfectly reflecting ocean bottom and for an isovelocity-low speed ocean bottom model.
    Keywords: Ocean bottom ; Reflectance ; Fourier transformations ; Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1983
    Description: The lateral homogeneity of oceanic crust on the scale of a seismic experiment is a condition that most methods of seismic interpretation depend on. Whether this condition is in fact true is largely unknown and only recently have efforts been made to test this hypothesis. This thesis is part of that effort and is focussed on determining with as much resolution as possible the seismic structure of upper oceanic crust, i.e. Layer 1 and the uppermost part of Layer 2. This portion of the crust is of interest, because of the effect of the sediment-basement interface on the transmission and conversion of seismic energy, also because of the possibility of detecting lateral heterogeneities in upper Layer 2 caused by faulting, hydrothermal circulation etc. The data employed are a set of wide-angle reflections from oceanic crust 130 m.y. old in the western North Atlantic Ocean southwest of Bermuda. First, the sedimentary structure is determined by stacking the data along hyperbolae and interpreting the stacking velocities and two-way normal incidence travel-times for interval velocities. This method has not been applied to deep sea marine data before; it gives a more detailed velocity structure of the sediments than does a traditional study of the basement reflections' travel-times. Second, the same data are mapped into tau-p space in order to measure the velocity gradient in oceanic basement; unfortunately the scatter in the tau-p picks caused by the topography of the basement reflector combine with the properties of the tau-sum inversion to make such a measurement impossible. Third, the amplitudes of the basement reflections observed on three seismic lines are modelled by synthetic seismograms; each can be matched by velocity-depth models which contain a transition zone between the sediments and the basement. The different thicknesses of this transition zone near the three receivers is an indication that the top few hundred meters of Layer 2 are laterally heterogeneous on a scale of 3 to 8 km.
    Description: This work was supported by NSF Grant OCE-7909464 and partia1 support was supplied by a fellowship from the Phillips Petroleum Foundation.
    Keywords: Ocean bottom ; Marine geophysics ; Knorr (Ship : 1970-) Cruise KN92
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1983
    Description: The plane wave reflection coefficient is an important geometry independent mean of specifying the acoustic response of a horizontally stratified ocean bottom. It is an integral step in the inversion of acoustic field measurements to obtain parameters of the bottom and it is used to characterize an environment for purposes of acoustic imaging. This thesis studies both the generation of synthetic pressure fields through the plane wave reflection coefficient and the inversion of measured pressure fields to estimate the plane wave reflection coefficient. These are related though the Sommerfeld integral which is in the form of a Hankel transform. The Hankel transform is extensively studied in this thesis and both theoretical properties and numerical implementations are considered. These results have broad applications. When we apply them to the generation of synthetic data, we obtain hybrid numerical-analytical algorithms which provide extremely accurate synthetic fields without sacrifising computational speed. These algorithms can accurately incorporate the effects of trapped modes guided by slow speed layers in the bottom. We also apply these tools to study the inversion of measured pressure field data for the plane wave reflection coefficient. We address practical issues associated with the inversion procedure including removal of the source field, sampling, field measurements over a finite range, and uncontrolled variations in source-height. A phase unwrapping and associated interpolation scheme is developed to handle improperly spaced data. A preliminary inversion of real pressure field data is performed. In parallel, an inversion of a synthetically generated field for similar bottom parameters is also performed and the results of processing the real and synthetic data are compared. The estimate for the depth dependent Green's function obtained from the real data shares many features with the depth dependent Green's function estimated from the synthetic data, suggesting that the total inversion to obtain the plane wave reflection coefficient will soon be possible. Errors in the present estimate of the plane wave reflection coefficient are associated with uncontrolled source-height variations during the acquisition of data.
    Keywords: Ocean bottom ; Hankel functions
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1982
    Description: Seismic stratigraphic evidence from the western and northern North Atlantic indicates that a major change in abyssal circulation occurred in the latest Eocene to earliest Oligocene. In the northern North Atlantic, the widely-distributed reflector R4 correlates with an unconformity that can be traced to its correlative conformity near the top of the Eocene. This horizon reflects a change from weakly circulating (Eocene) to vigorously circulating bottom water (early Oligocene). Sediment distribution patterns provide evidence for strong contour-following bottom water flow beginning at reflector R4 time; this suggests a northern source for this bottom water, probably from the Arctic via the Norwegian-Greenland Sea and Faeroe-Shetland Channel. Erosion and current-controlled sedimentation continued through the Oligocene; however, above reflector R3 (middle to upper Oligocene), the intensity of abyssal currents decreased. Above reflector R2 (upper lower Miocene) current-controlled sedimentation became more coherent and a major phase of sedimentary drift development began. This resulted from further reduction in speeds and stabilization of abyssal currents. Paleontological and stable isotopic data support these interpretations. In the Bay of Biscay/Goban Spur regions, a major δ180 increase began at -38 Ma (late Eocene), culminating in a rapid (〈0.5 my) increase in δ180 just above the Eocene/Oligocene boundary (-36.5 Ma). A rapid δ13C increase also occurs at -36.5 Ma in these sites. Major changes in benthic foraminiferal assemblages also occurred between the middle Eocene and the earliest Oligocene: 1) In the Labrador Sea, a predominantly agglutinated assemblage was replaced by a calcareous assemblage between the middle Eocene and early Oligocene; 2) In the abyssal (〉 3km) Bay of Biscay, an indigenous Eocene calcareous fauna including Nuttallides truempyi, Clinapertina spp., Abyssammina spp., Aragonia spp., and Alabamina dissonata became extinct between the middle Eocene and earliest Oligocene; 3) In shallower sites (〈 3km paleodepth) throughout the Atlantic, a Nuttallides truempyi-dominated assemblage was replaced by a Globocassidulina subglobosa--Gyroidinoides-Cibicidoides ungerianus-Oridorsalis assemblage in the early late Eocene (-40-38.5 Ma). These faunal and isotopic changes represent the transition from warm, old, corrosive Eocene bottom waters to colder, younger (lower C02 and higher pH, hence less corrosive) early Oligocene bottom waters.
    Description: I was supported in this work by the United States Navy, Office of Naval Research under contract N00014-79-C-0071 and a graduate fellowship from PHILLIPS Petroleum and the Woods Hole Oceanographic Institution Education Office.
    Keywords: Ocean bottom ; Stratigraphic geology ; Eocene ; Oligocene
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1975
    Description: Erosion processes involving fine-grained marine sediments were studied by using an in situ flume to erode undisturbed bottom sediments on the sea floor in Buzzards Bay, a shallow marine embayment off the Massachusetts coast. Tte muddy sea floor in that area is characterized by a deposit-feeding infauna that reworks the sediments. Observations made with the in situ flume suggest that erosion resistance of compacted bottom sediments is up to twice as great as the erosion resistance of biogenically reworked sediments. Estimates of erosional bed shear stress from the in situ flume experiments are similar to estimates made during this study of bed shear stress developed in near-bottom tidal currents. It is inferred that erosion by the in situ flume produces reasonable estimates of bed shear stress necessary to erode undisturbed bottom sediments on the sea floor. Buzzards Bay muds were redeposited in a laboratory flume and eroded after various periods of reworking by the deposit-feeding organisms contained in them. Other Buzzards Bay mud samples were treated to remove organic matter, and the erosion resistance of flat beds of these sediments was also investigated in a laboratory flume. The surface of a biogenically reworked bed after two months was covered with mounds, burrows, trails, and aggregates composed of sediments and organic material. This bed was similar in appearance to many of the beds eroded by the in situ flume. The two month bed eroded at an erosional shear stress similar to the erosional shear stress necessary to erode the in situ Buzzards Bay muds (0.8 dynes/cm2 ) . Beds biogenically reworked for shorter periods had high values of erosional shear stress, up to twice that of the two month bed. The bed shear stress necessary to erode flat beds of Buzzards Bay sediments increased as the concentration of organic matter in the sediments increased. Deposit-feeders were absent in these beds, and the mode of deposition was kept uniform, so the increase of erosion resistance with increase in organic content is considered a reliable indication of sediment behavior, and not an artifact of experimental conditions. During the in situ experiments, lee drifts were created behind resistant roughness elements on the sea floor. A brief study of lee drift formation in the laboratory suggests that the formation of lee drifts from fine-grained sediments can be predicted to take place when the body Reynolds number of the resistant roughness elements is below a critical value.
    Description: The Office of Naval Research supported this research and provided salary support through grants to the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology.
    Keywords: Marine sediments ; Ocean bottom ; Erosion
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007
    Description: This thesis presents three studies which apply geophysical tools to the task of better understanding mantle melting phenomena at the upper and lower boundaries of the mantle. The first study uses seafloor bathymetry and small variations in the gravitational acceleration over the Hawaii-Emperor seamount chain to constrain the changes in the igneous production of the hot spot melting in the mantle which has created these structures over the past 80 My. The second study uses multichannel seismic reflection data to constrain the location and depth of axial magma chambers at the Endeavour Segment of the Juan de Fuca spreading ridge, and then correlates these magma chamber locations with features of the hydrothermal heat extraction system in the upper crust such as microseismicity caused by thermal cracking and high temperature hydrothermal vent systems observed on the seafloor. The third study uses two-dimensional global pseudospectral seismic wave propagation modeling to characterize the sensitivity of the SPdKS seismic phase to two-dimensional, finite-width ultra-low velocity zones (ULVZs) at the core-mantle boundary. Together these three studies highlight the dynamic complexities of melting in the mantle while offering new tools to understand that complexity.
    Description: This thesis was funded by a National Science Foundation Graduate Research Fellowship, NSF grant OCE-0002551 to theWoods Hole Oceanographic Institution (WHOI), the WHOI Academic Programs Office, the Earth, Atmospheric, and Planetary Science Department at MIT, and by the WHOI Deep Ocean Exploration Institute.
    Keywords: Ocean bottom ; Core-mantle boundary ; Maurice Ewing (Ship) Cruise EW0207
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February, 1983
    Description: Altimetric, gravimetric and oceanographic data over the North Atlantic are combined -using techniques of optimum estimation- to infer the surface expression of the time averaged circulation (ζ) and to estimate the marine geoid (γ), both in the wavelength band 100 km-2000 km. Optimum inverse methods in geophysics are reviewed. They are then used to analyze the estimation of the geoid from gravity data, emphasizing the wavenumber spectrum of resolution functions. It is found that accurate bandpassed versions of the geoid can be recovered from restricted data sets. The accuracy and distribution of publicly available gravity data are shown to define an estimate γ whose expected errors, σγ, range between 30 and 260 cm, assuming the Wagner and Colombo (1978) spectrum describes the average geoid behaviour. The σγ underestimate the actual differences between 'y and an altimetric surface (s) derived from Seasat, but the spatial variation of σγ follows closely the differences s-γ. The discrepancy is attributable to a partial failure of the spectral model at short wavelengths. The differences s-γ are dominated by geoid error that masks much of the signal ζ. The main North Atlantic gyre emerges clearly only after the σγ and the simplest model for ζ -as a spatially uncorrelated process with (30 cm)2 variance- are taken into account. To obtain a corrected geoid, a hydrographic estimate of ζ is combined with sand γ, and their expected errors.
    Description: NASA's research Grant NAG6-9 funded this work
    Keywords: Submarine topography ; Ocean bottom
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1978
    Description: The design and operation of a unique flow measuring instrument for bottom boundary layer studies in the marine environment is documented. The effectiveness of the instrument in acquiring data with which models of near bottom flows in the ocean can be tested is demonstrated by the results of a field experiment in Vineyard Sound. The instrument uses four sensors which measure the mean and fluctuating parts of the three components of the velocity vector at four heights above the sea bed. The sensors employ the acoustic travel time difference technique, and are designed to minimize sensor-induced flow disturbances. BASS, an acronym for Benthic Acoustic Stress Sensor, has a resolution of .033 cm/sec per least bit, a range of ±62 cm/sec, noise of .07 cm/sec in 10 sec, and an estimated accuracy of ±.5 cm/sec, referred to an in situ zero point. A complete set of velocity measurements is made every .750 seconds, each measurement being the vector component averaged over 15 cm. The data is internally recorded on digital cassette tape. Eight hours of continuous data can be recorded. BASS was deployed in a tidal flow in Vineyard Sound at a depth of 10 m where a time series of u, v, and w velocities at 26 cm, 46 cm, 96 cm, and 210 cm above the bottom was recorded. The mean velocity was determined by fitting each 6 hour series with a sixth order polynomial and the deviations from the polynomial, the fluctuating velocity components, were correlated to produce Reynolds stress profiles. The stress series shows very few negative stress events while the dominant positive events have an average duration of 5 seconds and exceed 30 dynes/cm2. Zero offset was removed from the mean by assuming a log profile at maximum ebb. Deviations from a log profile developed when the current dropped below 40% of maximum, i.e., when the flow could no longer be considered steady. A break in the Reynolds stress profile at 1 m suggested a larger length scale than the 1 cm bottom roughness was present in the flow. A value of u* was determined by using the quadratic drag law (u* = 1.56 cm/sec), the log profile method (u* = 1.60 cm/sec), and the eddy correlation method (u* = 1.91 cm/sec). Integral length scales of 5 m cross-stream, and 2.5 m vertically were identified by correlation calculations. Two length scales were present in the downstream direction, 5 m within 1 meter of the wall and 8 m further from the wall.
    Description: Support from the National Science Foundation is acknowledged.
    Keywords: Remote sensing ; Oceanographic instruments ; Boundary layer ; Turbulence ; Turbulent boundary layer ; Ocean bottom
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements of the degree Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007
    Description: Grain size is an important material property that has significant effects on the viscosity, dominant deformation mechanism, attenuation, and shear wave velocity of the oceanic upper mantle. Several studies have investigated the kinetics of grain size evolution, but have yet to incorporate these evolution equations into large-scale flow models of the oceanic upper mantle. We construct self-consistent 1.5-D steady-state Couette flow models for the oceanic upper mantle to constrain how grain size evolves with depth assuming a composite diffusion-dislocation creep rheology. We investigate the importance of water content by examining end-member models for a dry, wet, and dehydrated mantle (with dehydration above ~60-70 km depth). We find that grain size increases with depth, and varies with both plate age and water content. Specifically, the dehydration model predicts a grain size of ~11 mm at a depth of 150 km for 75 Myr-old oceanic mantle. This results in a viscosity of ~1019 Pa s, consistent with estimates from geoid and glacial rebound studies. We also find that deformation is dominated by dislocation creep beneath ~60-70 km depth, in agreement with observations of seismic anisotropy in the oceanic upper mantle. The calculated grain size profiles are input into a Burger's model system to calculate seismic quality factor (Q) and shear wave velocity (Vs). For ages older than 50 Myrs, we find that Q and Vs predicted by the dehydration case best match seismic reference models for Q and the low seismic shear wave velocity zone (LVZ) observed in the oceanic upper mantle.
    Keywords: Ocean bottom ; Structural geology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1979
    Description: Bathymetric profiles of mid-ocean ridges show that the morphology of ridge crests and the roughness of sea-floor relief created there is commonly related to the spreading rate. To study the creation of fine-scale sea-floor relief at mid-ocean ridges, detailed bathymetric profiles of mid-ocean rid£es collected with the deep tow instrument package were compiled. Tectonic features were identified in order to provide an estimate of the zone over which tectonic relief is created. The results suggest the age of the sea-floor to which tectonism is active is considerably greater at the slow spreading Mid-Atlantic Ridge though not noticeably variable among faster spreading centers. The roughness of sea-floor relief was measured using longer deep tow profiles. Surprisingly, the sea-floor relief created at slow spreading centers is not noticeably rougher than that created at faster spreading centers, contrary to the often noted inverse relationship between sea-floor roughness and spreading rate. It is postulated that the apparent smooth sea-floor relief created at fast spreading centers is due to the inability of typical surface ship profiling systems to resolve the small amplitude/ short wavelength relief created there. Surface ship bathymetric profiles of mid-ocean ridges were also compiled to better define the relationships between the dimensions of median rifts or central highs at spreading centers and the roughness of sea-floor relief as seen by surface ship profiling systems with spreading rate. The measurement of ridge crest dimensions shows that though the slow spreading Mid-Atlantic Ridge commonly does have medium rifts and the fast spreading East Pacific Rise has central highs, when ridge crest dimensions are plotted versus spreading rate, no clear correlation can be seen in the individual oceans. The roughness of sea-floor relief was measured using the compiled surface ship profiles. A good inverse correlation between roughness and spreading rate can be seen in the Atlantic but not in the Pacific. The hypothesis that the roughness of sea-floor relief created at spreading centers is related to the ability of the lithosphere to support relief within the zone of relief formation was considered. The strength of the lithosphere at spreading centers was estimated from measured strengths of rocks and theoretical thermal models of the lithosphere near spreading axes. The load imposed on the lithosphere by sea-floor relief was estimated using deep tow bathymetric profiles. The calculations show the lithosphere should achieve much higher strengths within the zone of relief formation at slow spreading centers compared to fast spreading centers. Furthermore, the calculated lithospheric strengths within the zone of relief formation increase exponentially for spreading centers of lower spreading rates. This can explain why an inverse correlation between sea-floor roughness and spreading rate could be seen along the slow spreading Mid-Atlantic Ridge but not along the fast spreading East Pacific Rise. Finally, the extent of tectonism, or the width of the zone of relief formation, at spreading centers is suggested to be controlled by the width of magma chambers at faster spreading centers and the extent of viscous forces at deeply rifted slow spreading centers.
    Description: Work was funded by the Woods Hole Oceanographic Institution Research Fellowship, the Navy/Office of Naval Research Contract N00014-75-C-0291, and NSF Grant Number OCE77-20224.
    Keywords: Mid-ocean ridges ; Ocean bottom ; Submarine topography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: The measurements of the heat flow field of the Galapagos Spreading Center in an area of about 570 km2 reveal the planform of the conductive flux and permit the first truly areal estimate of the near-axis heat flux for comparison with theoretical plate cooling models. The intrusion process and associated hydrothermal circulation dominate the surface heat flow pattern, with circulation apparently continuing beyond the limits of our survey. The areal average of the conductive heat flux is 7.1 ± .8 HFU (295± 33 mW/m2), about one-third the heat flux predicted by plate models. The remaining heat is apparently removed by venting of hydrothermal waters at the spreading axis and through basalt outcrops and hydrothermal mounds off-axis. The pattern of surface heat flux is lineated parallel to the axis and the strongly lineated topography. Sharp lateral gradients in heat flow, greater than 10 HFU/km near escarpments and commonly expressed as high heat flow at the tops of scarps and lower heat flow in the valleys, may indicate a local concentration of the circulation by surface fault systems and/or variable sediment thickness. The mounds of the Galapagos Rift are spectacular hydrothermal features. Their internal temperatures have been mesured at up to 13°C above the bottom water temperature and total heat flow (conducted plus convected) can be several hundred times the normal oceanic value. Fluids, when they discharge from the mound, do so at a very slow rate and at temperatures probably quite near the bottom water temperature. The mounds are principally composed of iron silicates intermixed and encrusted with lesser amounts of manganese oxides. They are generally found in rows, in a uniformly sedimented area above faults or fractures in the crustal rocks which permit fluids to escape from a deep hydrothermal aquifer. The mounds field, covering an area of at least 200 square kilometers and consisting of thousands of individual mounds, is probably less than 300,000 years old; and many of the mounds may be only a few tens of thousands of years old or less. Numerical modeling of two-dimensional convection within the oceanic crust is constrained by these observations of the detailed heat flow field. By comparing the estimated heat and mass flow rates with model flows, the maximum permeability-depth distribution is limited to no greater than .1 mD (10-12 cm2) at depths greater than 2 km. The bulk permeability of the upper 2 km appears constrained to greater than 1.0 mD (10-11 cm2); bulk permeabilities in excess of 5. mD are limited to the uppermost km. One major consequence of the convection is the reduction of the overall temperature of the upper crust relative to conductive models. We found that convection with variable fluid properties responds to thermal forcing in a predictable fashion based on the dimensionless Rayleigh number evaluated at elevated temperature. Correlation of model fluxes and comparison to results for slow spreading rate models indicates a depth of fluid penetration shallower for the Galapagos than other ridges. The heat input at the ridge axis forces the wavelength of the resulting circulation to reflect the depth of strong circulation at the axis, and indicates 60% or more of the "missing" heat flux near mid-ocean ridges is removed by hydrothermal upwelling at the axis of spreading.
    Keywords: Geothermal resources ; Hydrothermal deposits ; Sea-floor spreading ; Heat budget ; Ocean bottom ; Knorr (Ship : 1970-) Cruise KN64
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted to the Joint Program in Physical Oceanography in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
    Description: Ocean surface infragravity waves (periods from 20 to 200 s) observed along the southern California coast are shown to be sensitive to the bottom topography of the shelf region, where propagation is linear, and of the nearshore region, where nonlinearity is important. Infragravity waves exchange energy with swell and wind waves (periods from 5 to 20 s) via conservative nonlinear interactions that approach resonance with decreasing water depth. Consistent with previous results, it is shown here that as waves shoal into water less than a few meters deep, energy is transfered from swell to infragravity waves. In addition, it is shown here that the apparent dissipation of infragravity energy observed in the surfzone is the result of nonlinear energy transfers from infragravity waves back to swell and wind waves. The energy transfers are sensitive to the shallow water bottom topography. On nonplanar beach profiles the transfers, and thus the amount of infragravity energy available for reflection from the shoreline, change with the tide, resulting in the tidal modulation of infragravity energy observed in bottom-pressure records on the continental shelf. The observed wave propagation over the shelf topography is dominated by refraction, and the observed partial reflection from, and transmission across, a steep-walled submarine canyon is consistent with long-wave theory. A generalized regional model incorporating these results predicts the observed infragravity wave amplitudes over variable bottom topography.
    Description: Support from the Office of Naval Research (Coastal Geosciences Program, N00014-02-10145), the National Science Foundation (Physical Oceanography, OCE-0115850),
    Keywords: Waves ; Ocean bottom
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 3634207 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
    Description: Recent studies have shown that the presence of sand ripples on the seabed improves sonar detection of buried mines at sub-critical angles. Sidescan sonar data of ripples on the west Florida shelf were collected as part of ONR's Ripples Departmental Research Initiative (DRI) September 26-29th and November 7-9th, 2004. Hurricane Ivan, the strongest storm of the 2004 hurricane season, passed over the experiment site a week before the first data collection. This study focuses on the ripples created by Ivan. Average relict ripple wavelengths left after the storm were found to increase with water depth (50 cm, 62 cm, and 83 cm in 20, 30, and 50 meter water depths) despite the fact that orbital diameter decreases with water depth. Ripple prediction requires information about surface gravity waves and sediment grain size. The most reliable offshore wave field available was created with Wavewatch III by Naval Postgraduate School scientists. These waves were inputted into Delft3D WAVE, incorporating the nearshore wave model SWAN to predict waves at the locations where ripples were measured. Orbital motions at the seabed and grain size were inputted into a time-dependent ripple model with varying dissipation parameters to estimate sand ripples created by Hurricane Ivan. Ripple wavelength was found to be more strongly dependent on grain size than wave dissipation.
    Description: Funding from the Oceanographer of the Navy and the Rear Admiral Richard F. Pittenger, USN (Ret) Fellowship.
    Keywords: Ocean bottom ; Sand ; Acoustic properties
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October, 1975
    Description: A geomagnetic variation study on mature oceanic lithosphere in the North Atlantic just south of Bermuda has revealed the presence of at least one layer of low electrical resistivity. The low resistivity layer of approximately 10 ohm-m has been found at three widely spaced seafloor sites with crustal ages of 85, 110 and 150 million years. There is also evidence that the resistivity increases to greater than 20 ohm-m below about 100 km. Apparent resistivity and phase versus period are calculated using the vertical gradient of the horizontal magnetic field variations to estimate the seafloor electric field. The vertical gradient method assumes that the seasurface magnetic variations can be estimated from a nearby land station and that no local magnetic induction occurs at either reference or seafloor site. Both assumptions are critically evaluated during the analysis. Seafloor observations are modeled using the Monte Carlo technique. Estimates of the smoothed resistivity structure as well as the resolution and precision of the estimates are made using the Backus-Gilbert method. Models are shown to be severely data limited. Resolution is found to be poor in the upper 30-40 km of the lithosphere due to the lack of reliable data at periods shorter than 30 minutes. The uncertainty involved in estimating the magnetic field at the seasurface and the large error estimates combine to give low overall precision. The diurnal results do not agree with the continuum results if the continuum is corrected for latitudinal variations of the source field between the reference station and seafloor sites. Data at periods as short as 10 minutes are required to resolve structures in the upper 30 km of the mantle. Artificial source fields may be necessary to obtain periods short enough to resolve crustal features. Periods longer than diurnal will be required to study sub-lithospheric resistivity variations.
    Description: Most of this work was supported through the National Science Foundation Grants GA 42651 and DES74-l2730, Office of Naval Research Contracts N00014-66-C-0241; NR 083-004 and N00014-77-C-0262; NR 083-004, and the Education Office of the Woods Hole Oceanographic Institution.
    Keywords: Earth resistance ; Geomagnetism ; Ocean bottom
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 3010882 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...