ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sediment transport  (8)
  • AERODYNAMICS
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (10)
  • U. S. Geol. Surv.  (3)
  • 2005-2009  (10)
  • 1975-1979  (3)
  • 1950-1954
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1983
    Description: A simple model for the bottom boundary layer on the continental shelf is presented. The governing equations are developed for a stratified, turbulent Ekman layer in a combined wave and current flow over a moveable sediment bed. An eddy diffusivity closure scheme that includes the effect of suspended sediment, temperature, and salinity induced stratification on the vertical turbulent diffusion of mass and momentum couples the resulting unsteady conservation equations for fluid momentum, fluid mass, and suspended sediment mass. The wave velocity, current velocity, and suspended sediment concentration profiles predicted by the simultaneous solution of the conservation equations require the physical bottom roughness and a sediment reference concentrati on to be specified as boundary conditions. The physical bottom roughness associated with biologically generated bedforms, wave generated ripples, and near bed sediment transport are calculated as functions of the flow and sediment conditions. Using expressions for the height of sediment transporting layer and the sediment velocity, an expression for the sediment reference concentration is developed by matching laboratory measurements of sediment transport rates in oscillatory flow. The model predicts that the bottom flow field is highly dependent on (1) the nonlinear wave and current interaction, which increases the boundary shear stress and enhances vertical turbulent diffusion, (2) the effect of the boundary shear stress on a moveable sediment bed, which determines the physical bottom roughness and the amount of sediment in suspension, and (3) the effect of stable stratification, which inhibits vertical turbulent transport and couples the flow to the suspended sediment and fluid density profiles. The validity of the theoretical approach is supported by model predictions that are in excellent agreement with high quality data collected during two continental shelf bottom boundary layer experiments for a wide range of flow and bottom conditions.
    Description: Funding for the work resulting in this Thesis has been provided by the American Gas Association (Project No. PR-153-126), the National Science Foundation (Grant No. OCE~8014930), and NOAA-Sea Grant (NA-79AA-D-0010l; NA 79AA-D-00102).
    Keywords: Boundary layer ; Sediment transport ; Stratified flow
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2002
    Description: Predictions of deposition rate are integral to the transport of many constituents including contaminants, organic matter, and larvae. Review of the literature demonstrates a general appreciation for the potential control of deposition by bed roughness, but no direct tests involving flat sediment beds. Understanding the mechanisms at work for flat sediment beds would provide the basis for exploring more complicated bed conditions and the incorporation of other transport processes, such as bioturbation and bedload transport. Generally, fine particle deposition rates are assumed to be equivalent to the suspension settling velocity, therefore, deposition rates in excess of settling are considered enhanced. Flume observations of deposition were made using treatments that covered a wide range of flow, particle, and bed conditions. Specific treatments demonstrated large enhancements (up to eight times settling). Delivery of particles to the interface is important, but models based on delivery alone failed to predict the observed enhancement. This necessitated the development of a new model based on a balance between delivery and filtration in the bed. Interfacial diffusion was chosen as a model for particle delivery. Filtration of particles by the bed is a useful framework for retention, but the shear in the interstitial flow may introduce additional factors not included in traditional filtration experiments. The model performed well in prediction of flow conditions, but there remained a discrepancy between predictions and observed deposition rate, especially for treatments with significant enhancement. Fluid flow predictions by the model,; such as slip at the sediment water interface and fluid penetration into the sediment, appeared to be supported by flume experiments. Therefore, failure to predict the magnitude of enhancement was attributed to far greater filtration efficiencies for the sediment water interface than those measured in sediment columns. Emerging techniques to directly measure fluid and particle motion at the interface could reveal these mechanisms. The observation of enhanced deposition to flat sediment beds reinforces the importance of permeable sediments to the mediation of transport from the water column to the sediment bed.
    Description: The Education Office at the Woods Hole Oceanographic Institution coordinated and provided funding for much of my time here. Additional support has been provided by the Andrew W. Mellon Foundation, the Cooperative Institute for Climate and Ocean Research (CICOR), and the Offce of Naval Research under grant numbers N00014-97-1-0556 (STRATAFORM Plume Study Moored Observations: Data Analysis and Modeling), N00014-96-1-0953 (Graduate Student Training in Engineering: Instrumenting the Continental Shelf Wave Bottom Boundary Layer), and N00014-94-1-0713 (Coupled Biological, Geological and Hydrodynamical Processes Associated with Fine-Particle Transport & Accumulation in the Coastal Ocean).
    Keywords: Sediment transport ; Marine sediments
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2003
    Description: This thesis examines the evolution of a mud-dominated coastal sedimentary system on multiple time scales. Fine-grained systems exhibit different properties and behavior from sandy coasts, and have received relatively little research attention to date. Evidence is presented for shoreline accretion under energetic conditions associated with storms and winter cold fronts. The identification of energetic events as agents of coastal accretion stands in contrast to the traditional assumption that low-energy conditions are required for deposition of fine-grained sediment. Mudflat accretion is proposed to depend upon the presence of an unconsolidated mud sea floor immediately offshore, proximity to a fluvial sediment source, onshore winds, which generate waves that resuspend sediment and advect it shoreward, and a low tidal range. This study constrains the present influence of the Atchafalaya River on stratigraphic evolution of the inner continental shelf in western Louisiana. Sedimentary and acoustic data are used to identify the western limit of the distal Atchafalaya prodelta and to estimate the proportion of Atchafalaya River sediment that accumulates on the inner shelf seaward of Louisiana's chenier plain coast. The results demonstrate a link between sedimentary facies distribution on the inner shelf and patterns of accretion and shoreline retreat on the chenier plain coast.
    Description: Among my funding sources was a two-year fellowship from the Clare Booth Luce Foundation. I have received research grants from the Geological Society of America Foundation (Grant 6873-01) and the American Association of Petroleum Geologists (Kenneth H. Crandall Memorial grant).
    Keywords: Marine sediments ; Sediment transport ; Coast changes ; Pelican (Ship) Cruise ; Eugenie (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1982
    Description: Velocity and temperature time series from Hudson Submarine Canyon and hydrographic surveys of seven canyons of the Middle Atlantic Bight indicate that the effects of storms, tides, and incoming internal waves are intensified in submarine canyons. Storms with strong eastward and westward wind stress were found to cause strong upwelling and downwelling through the upper layers of Hudson Canyon. Storm-forced upwelling also caused strong down-canyon flows at the canyon floor. Internal waves were found to be concentrated in the canyon head and near the floor, in agreement with theoretical predictions. Slope water apparently circulates slowly through the outer part of the canyon and is mixed in near-floor layers which could be caused by breaking internal waves. Internal tides are generated at the floor in the central part of the canyon. Oscillations at tidal frequencies dominate the near-floor velocity field below the thermocline, and are accompanied by high-frequency spikes that may be nonlinear interface waves propagating on the top of the bottom mixed layer. A numerical model was used to calculate mixing in the canyon's bottom boundary layer caused by an unstable density gradient during flood tide. Energetic internal wave activity is apparently responsible for sediment sorting in the canyon head; the internal waves become more energetic as the sediment grain size increases. Below the thermocline, the tidal oscillations vary in amplitude with the phases of the moon; the observed deposition of mud can easily occur during weeks of low velocity.
    Description: Foundation graduate fellowship and by the Office of Naval Research under Contracts N00014-75-C-029l and N00014-80-C-0273.
    Keywords: Ocean circulation ; Submarine valleys ; Internal waves ; Sediment transport ; Oceanus (Ship : 1975-) Cruise OC34
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2004
    Description: Onshore sediment transport and sandbar migration are important to the morphological evolution of beaches, but are not understood well. Here, a new model that accounts for accelerations of wave-orbital velocities predicts onshore sandbar migration observed on an ocean beach. In both the observations and the model, the location of the maximum acceleration-induced transport moves shoreward with the sandbar, resulting in feedback between waves and morphology that drives the bar shoreward until conditions change. A model that combines the effects of transport by waves and mean currents simulates both onshore and offshore bar migration observed over a 45-day period. A stochastic nonlinear Boussinesq model for the evolution of waves in shallow water is coupled with the wave-acceleration-driven sediment transport model to predict observed onshore sediment transport and sandbar migration given observations of the offshore wave field and initial bathymetry. The Boussinesq-wave model has skill in predicting wave spectra, as well as velocity and acceleration statistics across the surfzone, but it underpredicts acceleration skewness on top of the sandbar. As a result, the coupled wave-sediment transport model underpredicts sediment transport, and thus fails to move the sandbar onshore. Although the coupled wave and sediment model can be tuned to yield skillful predictions of onshore sandbar migration, in general, closer agreement between observed and modeled statistics of the wave field is essential for the successful application of wave models to predict sediment transport.
    Description: Financial support was provided by the Army Research Office (DAAD1999-1-0250 and DAAD19-03-10072); the Office of Naval Research, Coastal Dynamics and Coastal Geosciences Programs (N00014-02-10145); the National Ocean Partnership Program (B- 428260); the National Science Foundation, Physical Oceanography (OCE-01l5850); and fellowships from Conselho Nacional de Desenvolvimento Cientifico (CNPq) - Brazil (201085/97-6), and from the Academic Programs Offce of the Woods Hole Oceanographic Institution.
    Keywords: Sediment transport ; Marine sediments
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October, 1977.
    Description: Sediment traps designed to yield quantitative data of particulate fluxes have been deployed and successfully recovered on four moorings in the deep sea. The traps were designed after extensive calibration of different shapes of containers. Further intercalibration of trap design was made in field experiments over a range of current velocities. Experiments with Niskin bottles showed that concentrations of suspended particulate matter obtained with standard filtration methods were low and had to be increased by an average factor of 1.5 to correct for particles settling below the sampling spigot. The trap arrays were designed to sample the particulate fluxes both immediately above and within the nepheloid layer. The data derived from the traps have been used to estimate vertical fluxes of particles including, for the first time, an attempt to distinguish between the flux of material settling from the upper water column (the "primary flux") and material which has been resuspended from some region of the sea floor (resuspension flux). From these data and measurements of the net nepheloid standing crop of particles one can also estimate a residence time for particles resuspended in the nepheloid layer. This residence time appears to be on the order of days to weeks in the bottom 15 m of the water column and weeks to months in the bottom 100 m. Between 80% and 90% of the particles collected in the six traps where particle size was measured were less than 63 μm. The mean size of particles collected in the nepheloid layer was about 20 μm, and above the nepheloid layer the mean was 11 μm. Less than 3% of the organic carbon produced in the photic zone at the trap sites was collected as primary flux 500 m above the sea floor. The primary flux measured at two sites was enough to supply 75% on the upper Rise and 160% on the mid Rise of the organic carbon needed for respiration and for burial in the accumulating sediments. From an intercomparison of the composition of particles falling rapidly (collected in traps), falling slowly or not at all (collected in water bottles), and resting on the sea floor (from a core top), it was determined that elements associated with biogenic matter, such as Ca, Sr, Cu, and I, were carried preferentially by the particles falling rapidly. Once the particles reached the bottom, the concentration of those elements was decreased through decomposition, respiration, or dissolution. Dissolution appears rapid in the vicinity of the sea floor, because despite an abundance of radiolarians, diatoms, and juvenile foraminifera collected in all traps, these forms were rare in core samples. The dynamic nature of thenepheloid layer makes it possible for particles to be resuspended many times before they are finally buried. This enables sediment to be carried long distances from its origin. The recycling of particles near the sea floor may increase dissolution of silicious and carbonate matter.
    Description: Financial aid was provided in the form of a research assistantship from the Office of Naval Research through MIT and WHOI.
    Keywords: Marine sediments ; Sediment transport ; Particles ; Particle size determination ; Oceanus (Ship : 1975-) Cruise OC6 ; Knorr (Ship : 1970-) Cruise KN58
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1970
    Description: A series of laboratory experiments were conducted in a glass wave tank to investigate the propagation of internal gravity waves up a sloping bottom in a fluid with constant Brunt-Vaisala frequency. Measurements of the wave motion in the fluid interior were primarily taken with electrical conductivity probes; measurements in the boundary layer were made with dye streaks and neutrally buoyant particles. The results indicate that, outside of the breaking zone, the amplitude and horizontal wave number of the high-frequency waves increase lineariy with decreasing depth; this is shown to agree with existing linear, inviscid solutions. A zone of breaking or runup is induced by these high-frequency waves well upslope. Shadowgraph observations show that, if the wave characteristics are coincident, or nearly so, with the bottom slope, the upslope propagation of the low-frequency waves causes a line of regularly spaced vortices to form along the slope. Subsequent mixing in the vortex cells creates thin horizontal laminae that are more homogeneous than the adjacent layers. These laminae slowly penetrate the fluid interior, creating a step-like vertical density structure. Available linear theoretical solutions for the velocity in the viscous boundary layer, determined to be valid for certain experimental conditions, are used to develop a criterion for incipient motion of bottom sediment induced by shoaling internal waves. The maximum sediment sizes that can be placed into motion, according to this criterion, are larger than certain mean sediment sizes on the continental margin off New England. This suggests that internal waves might induce initial sediment movement. Speculation about the geological effects of breaking and vortex instabilities is also given. These processes, not definitely measured in the field as yet, might also be conducive to sediment movement.
    Description: This work was supported by the Office of Naval Research.
    Keywords: Sediment transport ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 9729705 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    U. S. Geol. Surv.
    In:  Prof. Paper, Menlo Park, California, U. S. Geol. Surv., vol. 1034, no. 77-3, pp. 1-74, (ISBN 3-933346-037)
    Publication Date: 1979
    Keywords: Deep seismic sounding (espec. cont. crust) ; Velocity depth profile ; USGS ; USA ; Seismics (controlled source seismology) ; Seismology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    U. S. Geol. Surv.
    In:  Open-File Report, Houston, U. S. Geol. Surv., vol. C 560, 183 pp., no. 79-431, pp. 1-57, (ISBN 3-933346-037)
    Publication Date: 1979
    Keywords: Source parameters ; Seismology ; Magnitude ; Hypocentral depth ; Location ; software ; USGS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    U. S. Geol. Surv.
    In:  Open-File Report, Hannover, U. S. Geol. Surv., vol. C 560, 183 pp., no. 78-694, pp. 1-113, (ISBN 3-933346-037)
    Publication Date: 1978
    Keywords: Seismology ; Location ; Hypocentral depth ; software ; USGS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...