ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (3)
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (2)
  • Ca2+ uptake
  • OGS  (4)
  • Blackwell Publishing Ltd
  • 2005-2009  (5)
  • 1980-1984
Collection
Years
  • 2005-2009  (5)
  • 1980-1984
Year
  • 1
    Publication Date: 2020-12-01
    Description: The supposed b-value spatial variability is the central topic of many scientific works dealing with forecasting modeling applications or geological correlations. If used for seismicity rates determination, the b-value plays an important role in probabilistic seismic hazard assessment, but how much does it influence PSHA? In the logic tree approach used for the new probabilistic seismic hazard map of Italy, named MPS04 (MPS Working Group, 2004), one of the sources of epistemic uncertainty considered was the procedure for computing seismicity rates. Two alternatives were adopted: 1) compute the activity rates for each binned magnitude class and 2) compute a Gutenberg-Richter (1944) distribution. In the logic tree branches where Gutenberg-Richter distribution was adopted, the corresponding bvalue was evaluated for each seismogenic zone: it spans between 0.63 and 2.01. After analysing the b-value variability in the Italian region, this work evaluates the impact of setting the b-value equal to 1 on the results of seismic hazard assessment in terms of PGA and energy release compared to the choices adopted for MPS04 (MPS Working Group, 2004).
    Description: Published
    Description: 59-76
    Description: 4T. Sismicità dell'Italia
    Description: N/A or not JCR
    Description: open
    Keywords: Seismic hazard ; Italy ; G-R distribution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A dense network of Very High Resolution seismic profiles along the Gondola Fault Zone (GFZ), in the Adriatic foreland (Italy), reveals the geometry and Middle Pleistocene-Holocene activity of this inherited, E-W, strike-slip fault system. The GFZ is 〉50 km long and includes two parallel fault sets, characterized by subvertical planes displaying a vertical component of motion, associated with two main anticlines. The northern fault set is organized in three branches, whereas the southern one includes two branches. The overall geometry of the GFZ suggests dextral slip. The distribution of the vertical displacement is bell-shaped, suggesting a long-term behavior as a single structure. However, individual branches show different deformation histories, implying that they can slip independently. The vertical slip rates, calculated for late Middle Pleistocene to Holocene intervals, are consistently small within a limited range (0-0.19 mm/a).
    Description: Published
    Description: CNR, P.le Aldo Moro 5, Roma, Italia
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: VHR seismics ; Fault displacement ; Active fault ; Adriatic Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this work, we infer the 1D shear-wave velocity model at Solfatara volcano using the dispersion properties of Rayleigh waves generated by artificial explosions. The groupvelocity dispersion curves are retrieved by applying the Multiple Filter Technique to single-station recordings of air-gun sea shots. Seismic signals are filtered in different frequency bands and the dispersion curves are obtained by evaluating the arrival times of the envelope maxima of the filtered signals. Fundamental and higher modes are carefully recognized and separated by using a Phase Matched Filter. The dispersion curves obtained indicate Rayleigh-wave fundamental-mode group velocities ranging from about 0.8 to 0.6 km/s over the 2-12 Hz frequency band. These group velocity dispersion curves are then inverted to infer a shallow shear-wave velocity model down to a depth of about 250 m. The shear-wave velocities thus obtained are compatible with those derived both from cross- and down-hole measurements in neighbouring wells and from laboratory experiments. These data are eventually interpreted in the light of the geological setting of the area. Using the velocity model obtained, we calculate the theoretical ground response to a vertically-incident S-wave getting two, main amplification peaks centered at frequencies of 2.2 and 5.4 Hz. The transfer function was compared to those obtained experimentally from the application of Nakamura’s technique to microtremor data, artificial explosions and local earthquakes. Agreement among the experimental and theoretical transfer functions is observed for the amplification peak of frequency 5.4 Hz.
    Description: Published
    Description: 89-103
    Description: open
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5549532 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In eastern Elba Island (Tuscany, Italy), a shallow crustal level felsic, tourmaline-bearing, dyke-sill swarm of Late Miocene age is associated with abundant tourmaline-quartz hydrothermal veins and metasomatic masses. Development of these veins and masses in the host rocks demonstrates multiple hydro-fracturing by magmatic, boron-rich saline fluid. Tourmalines in felsic dykes are schorl, whereas in veins and metasomatic masses, tourmaline composition ranges from schorl-dravite through dravite to uvite. This compositional shift is evidence for an increasing contribution to the magmatic boron-rich fluids by a Mg-Ca-Ti-rich external component represented by biotite-rich and amphibolite host rocks. This system can be envisaged as an exposed proxy of the high temperature hydrothermal system presently active in the deepest part of the Larderello-Travale geothermal field (Tuscany).
    Description: Published
    Description: 318-326
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Hydro-fractures ; geothermal systems ; Magmatism ; southern Tuscany ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-29
    Description: The paper discusses the seismogenic characteristics of NE Italy related to earthquakes with Mw≥5.5, and the geometry of the related sources re-drawn by following the DISS standard procedure. Therefore, this paper represents an update of a previous work which investigated the Prealpine area between the Lessini Mountains and the Italian-Slovenian border, and defined the seismogenic sources potentially responsible for earthquakes with Mw≥6 within the GNDT-2000 project. For inclusion in the DISS, the sources of that previous work have been processed following a 3-step process, which is a routine procedure used each time the parameters of a seismogenic source are taken from published works. The first step was a consistency check of the source dimensions (aspect ratio, from length/width relationships and according to the fault type), of their position and geometry (minimum and maximum depth and dip), and of some seismological parameters of the expected/associated earthquakes (slip, Mw from both Wells and Coppersmith’s and Hanks and Kanamori’s relationships, and seismic moment). All these parameters were verified by using the Fault Studio software. The second step involved the inclusion of seismological information, such as the measured stress drop, to infer slip on the fault plane and rupture area and to compare these parameters with the rupture area hypothesised on the basis of the geological information. The third step of the data processing deals with the analysis of the intermediate size historical seismicity (5.5≤Mw≤6.0) and the possible association with faults belonging to the identified active thrust systems of the eastern Southalpine Chain front or to more internal faults (both thrust and strike-slip faults) not included in the data set of the previous work.
    Description: The present research was developed in the framework of the activities of the project “Damage scenarios in the Veneto-Friuli area” financed by the National Group for the Defence against Earthquakes (GNDT).
    Description: Published
    Description: 301-313
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: partially_open
    Keywords: Seismogenic Sources ; Large Historical earthquakes ; Large Instrumental earthquakes ; North-eastern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...