ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GPS  (4)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
  • Terra Antartica Publication  (2)
  • Blackwell Publishing  (1)
  • Blackwell Publishing Ltd  (1)
  • American Society of Hematology
  • Elsevier B.V.
  • Nature Publishing Group
  • 2005-2009  (5)
  • 1980-1984
  • 1965-1969
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: In this work, we show the results of 12 years of continuous and survey-mode GPS measurements carried out along the western part of the Calabro-Peloritano Arc, from 1996 until the more recent acquisitions in 2008. The results highlight that a NW-SE-oriented ~0.15 microstrain/yr extension across the Messina Strait and the Aeolian-Tindari-Letojanni fault system is active. Moreover, a N-S compressive strain-rate (~0.65 microstrain/yr) is acting across Vulcano and Lipari Islands coupled with an extensional strain-rate of ~0.15 microstrain/yr in the E-W direction. Finally, taking into account the observed horizontal velocity field, an analytical inversion was performed to obtain a reliable model of deformation of the investigated area. The main results are consistent both with focal mechanism solutions and the current structural setting of the investigated area.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 528-537
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Strain-Rate ; Calabro-Peloritano Arc ; Modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Ice divide-dome migration is a key parameter in mass balance studies and in the interpretation of ice cores. The stability of the dome and position of the ice divide must be known to accurately interpret ice core records and to complete mass balance studies. Models of depth-age relationships for deep ice cores are sensitive to migration of the dome position (Anandakrishnan et al., 1994). The evolution of an ice divide is driven by the accumulation-rate history, its spatial pattern and conditions at ice-sheet boundaries (e.g. Frezzotti et al., 2004; Hindmarsh, 1996; Nereson et al., 1998). Ice divide migration is also important in determining the input parameter of large Antarctic drainage basins. Due to the very low slope (less than a decimetre per km) of East Antarctic domes and to surface morphology (e.g. sastrugi), it is very difficult to determine the summit point of a dome and its migration in time. In 2004 a new ice coring project, TALDICE (Talos Dome Ice Core Project), started at TD to recover 1550 m of ice spanning the last 120 000 years (Frezzotti et al., 2004). This paper discusses preliminary findings on the present and past morphology of Talos Dome based on detailed snow accumulation data, radar-derived isochrons and ice velocity measurements in the last 10 years.
    Description: Published
    Description: 51-54
    Description: 3.8. Geofisica per l'ambiente
    Description: N/A or not JCR
    Description: open
    Keywords: Ice Dome ; GPR ; GPS ; Mass Balance ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Determining snow accumulation is one of the principal challenges in mass balance studies and in the interpretation of ice core records. Accurate knowledge of the spatial distribution of snow accumulation is fundamental for understanding the present mass balance and its implication on sea level change, for reliable numerical simulation of past and future ice sheet dynamics, and for creating atmospheric climate models. Depth-age models for deep ice cores require knowledge of the temporal variability of snow accumulation. Accumulation of snow principally results from precipitation of snow and its redistribution/ablation by wind at the surface (Frezzotti et al., 2004a). Chemical and isotopic analysis of ice cores reveals seasonal and annual signals. However, these signals may not be representative of annual snow accumulation or of the annual chemical/isotopic composition of snow. Talos Dome (TD, 72°48’S; 159°06’E, 2316 m, T -41.0 °C) is an ice dome on the edge of the East Antarctic plateau, about 290 km from the Southern Ocean and 250 km from the Ross Sea (Fig. 1). An ice core is currently being drilled at this site (Frezzotti et al., 2004b) within the framework of the Talos Dome Ice Core Project (TALDICE). In order to provide detailed information on the temporal and spatial variability of snow accumulation, research was conducted at Talos Dome and along a North-South transect (GV7-GV5-TD-31DPT) in the framework of the ITASE programme. The 400 km-long transect follows the ice divide from the Southern Ocean to Talos Dome, and then continues in a southward direction towards Taylor Dome. Stake network measurements, ice core analysis and snow radar surveys along the transect have provided detailed information for reconstructing the temporal (annual) and spatial (meter scale) variability of snow accumulation over the last 200 years at the km scale.
    Description: Published
    Description: 21-25
    Description: 3.8. Geofisica per l'ambiente
    Description: N/A or not JCR
    Description: open
    Keywords: Ice Dome ; Mass Balance ; GPR ; GPS ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The tectonic deformation of the Lipari-Vulcano complex, one of the most important active volcanic areas of Mediterranean region, is studied here through the analysis of ten years (1996-2006) of GPS data from both 3 permanent and 13 non-permanent stations. This area can be considered crucial for the understanding of the Eurasia-Africa plates interaction in the Mediterranean area, and, in general, this work emphasize a methodological approach, already applied in other areas worldwide (e.g. Shen et al., 1996, El-Fiki and Kato, 1999) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari-Vulcano complex. In particular, the observed deformation pattern can be described by a mix between 1) the main N-S regional compression and 2) a NNE-SSW compression with a small right-lateral strike slip component acting along a tectonic structure N°40W trending located between the two islands. This pattern was inspected through a simplified synthetic model.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 370–377
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Aeolian Islands ; strain ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: A mixed-polarity zone, representing alternations between remagnetized and non-remagnetized strata, has been documented within the lower few metres of the CRP-1 core (Ross Sea, Antarctica). Detailed rock magnetic investigation of this interval indicates that the normal polarity remagnetization is carried by magnetostatically interacting single-domain particles of a ferrimagnetic iron sulphide mineral, while the reversed-polarity magnetization of non-remagnetized strata is carried by magnetite with a broad range of grain sizes and negligible magnetostatic interactions. Scanning electron microscope observations of polished sections indicate that the ferrimagnetic iron sulphide mineral is greigite (Fe3S4). Based on microtextural relationships, it is not possible to determine the relative timing of formation for much of the greigite. However, a significant proportion of the greigite has grown on the surface of authigenic siderite (FeCO3) grains that occur as microconcretions and as cement surrounding detrital matrix grains. In such cases, microtextural relationships indicate that siderite post-dates early diagenetic pyrite and that greigite post-dates the siderite. Siderite usually forms in environments with abundant dissolved iron and carbonate, but without dissolved pore water H2S. This set of geochemical conditions occurs in methanic settings below the sulphate reduction zone (in which early diagenetic pyrite forms).We interpret the observed remagnetization of the lower part of the CRP-1 core as due to a late diagenetic pore water migration event where abundant iron on the surface of siderite grains reacted with fluids containing limited dissolved sulphide, thereby causing precipitation of greigite. The distribution of siderite (and associated greigite) in the lower part of the CRP-1 core is patchy, which accounts for the apparent alternation of polarities. This study is part of a growing catalogue of remagnetizations involving greigite, which suggests that occurrences of greigite should be treated with caution in palaeomagnetic and environmental magnetic studies.
    Description: Published
    Description: 89-100
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctica ; diagenesis ; greigite ; iron carbonate ; iron sulphide ; remagnetization ; siderite ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...