ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
  • CR: 5.17
  • Drosophila
  • GPS
  • Springer  (219)
  • Elsevier  (23)
  • American Association for the Advancement of Science (AAAS)  (14)
  • Blackwell Publishing  (1)
  • Blackwell Publishing Ltd  (1)
  • American Society of Hematology
  • Elsevier B.V.
  • Nature Publishing Group
  • 2005-2009  (41)
  • 1980-1984  (218)
  • 1965-1969
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atwood, Harold L -- New York, N.Y. -- Science. 2006 May 19;312(5776):1008-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. h.atwood@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/metabolism ; Drosophila ; Drosophila Proteins/*physiology ; Nerve Tissue Proteins/*physiology ; Presynaptic Terminals/metabolism/ultrastructure ; Synapses/*physiology/ultrastructure ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-02-17
    Description: The adult Drosophila midgut contains multipotent intestinal stem cells (ISCs) scattered along its basement membrane that have been shown by lineage analysis to generate both enterocytes and enteroendocrine cells. ISCs containing high levels of cytoplasmic Delta-rich vesicles activate the canonical Notch pathway and down-regulate Delta within their daughters, a process that programs these daughters to become enterocytes. ISCs that express little vesiculate Delta, or are genetically impaired in Notch signaling, specify their daughters to become enteroendocrine cells. Thus, ISCs control daughter cell fate by modulating Notch signaling over time. Our studies suggest that ISCs actively coordinate cell production with local tissue requirements by this mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohlstein, Benjamin -- Spradling, Allan -- R56 DK090078/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):988-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*physiology ; Clone Cells ; Drosophila ; Drosophila Proteins/genetics/*metabolism ; Enterocytes/cytology ; Enteroendocrine Cells/cytology ; Intestines/cytology ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/metabolism ; Mitosis ; Multipotent Stem Cells/*cytology/metabolism ; Receptors, Notch/genetics/*metabolism ; *Signal Transduction/genetics ; Spindle Apparatus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-01-08
    Description: Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayntz, David -- Raubenheimer, David -- Salomon, Mor -- Toft, Soren -- Simpson, Stephen J -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):111-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. david.mayntz@zoology.oxford.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637278" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beetles/*physiology ; Diet ; Dietary Proteins/administration & dosage ; Drosophila ; Feeding Behavior ; Female ; Food ; Grasshoppers ; Lipids/administration & dosage ; Male ; Nutritional Physiological Phenomena ; Predatory Behavior ; Spiders/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-04-09
    Description: We used fluorescence imaging with one nanometer accuracy (FIONA) to analyze organelle movement by conventional kinesin and cytoplasmic dynein in a cell. We located a green fluorescence protein (GFP)-tagged peroxisome in cultured Drosophila S2 cells to within 1.5 nanometers in 1.1 milliseconds, a 400-fold improvement in temporal resolution, sufficient to determine the average step size to be approximately 8 nanometers for both dynein and kinesin. Furthermore, we found that dynein and kinesin do not work against each other in vivo during peroxisome transport. Rather, multiple kinesins or multiple dyneins work together, producing up to 10 times the in vitro speed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kural, Comert -- Kim, Hwajin -- Syed, Sheyum -- Goshima, Gohta -- Gelfand, Vladimir I -- Selvin, Paul R -- AR44420/AR/NIAMS NIH HHS/ -- GM 068625/GM/NIGMS NIH HHS/ -- GM52111/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 3;308(5727):1469-72. Epub 2005 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Center, University of Illinois, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15817813" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Transport ; Cell Line ; Drosophila ; Dyneins/*physiology ; Fluorescence ; Green Fluorescent Proteins ; Kinesin/*physiology ; Molecular Motor Proteins/*physiology ; Peroxisomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-24
    Description: Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson's disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1983366/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1983366/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Antony A -- Gitler, Aaron D -- Cashikar, Anil -- Haynes, Cole M -- Hill, Kathryn J -- Bhullar, Bhupinder -- Liu, Kangning -- Xu, Kexiang -- Strathearn, Katherine E -- Liu, Fang -- Cao, Songsong -- Caldwell, Kim A -- Caldwell, Guy A -- Marsischky, Gerald -- Kolodner, Richard D -- Labaer, Joshua -- Rochet, Jean-Christophe -- Bonini, Nancy M -- Lindquist, Susan -- P50 NS038372/NS/NINDS NIH HHS/ -- R01-HG002923/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):324-8. Epub 2006 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans ; Cell Survival ; Cells, Cultured ; Disease Models, Animal ; Dopamine/physiology ; Drosophila ; Endoplasmic Reticulum/*metabolism ; Gene Expression ; Gene Library ; Golgi Apparatus/*metabolism ; Humans ; Mice ; Nerve Degeneration ; Neurons/cytology/*physiology ; Parkinsonian Disorders/metabolism/pathology/*physiopathology ; Proteasome Endopeptidase Complex/metabolism ; Protein Folding ; *Protein Transport ; Proteins/chemistry/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; alpha-Synuclein/chemistry/genetics/*metabolism ; rab GTP-Binding Proteins/genetics/metabolism ; rab1 GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-04-15
    Description: The molecular organization of presynaptic active zones during calcium influx-triggered neurotransmitter release is the focus of intense investigation. The Drosophila coiled-coil domain protein Bruchpilot (BRP) was observed in donut-shaped structures centered at active zones of neuromuscular synapses by using subdiffraction resolution STED (stimulated emission depletion) fluorescence microscopy. At brp mutant active zones, electron-dense projections (T-bars) were entirely lost, Ca2+ channels were reduced in density, evoked vesicle release was depressed, and short-term plasticity was altered. BRP-like proteins seem to establish proximity between Ca2+ channels and vesicles to allow efficient transmitter release and patterned synaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kittel, Robert J -- Wichmann, Carolin -- Rasse, Tobias M -- Fouquet, Wernher -- Schmidt, Manuela -- Schmid, Andreas -- Wagh, Dhananjay A -- Pawlu, Christian -- Kellner, Robert R -- Willig, Katrin I -- Hell, Stefan W -- Buchner, Erich -- Heckmann, Manfred -- Sigrist, Stephan J -- New York, N.Y. -- Science. 2006 May 19;312(5776):1051-4. Epub 2006 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Neuroscience Institute Gottingen, Grisebachstrasse 5, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614170" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium Channels/*metabolism ; Drosophila ; Drosophila Proteins/genetics/*physiology ; Female ; Larva ; Male ; Models, Neurological ; Mutation ; Nerve Tissue Proteins/metabolism/*physiology ; Presynaptic Terminals/metabolism ; Synapses/metabolism/*physiology/ultrastructure ; Synaptic Vesicles/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-06-26
    Description: Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakal, Chris -- Aach, John -- Church, George -- Perrimon, Norbert -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1753-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Movement/genetics/physiology ; Cell Shape/*genetics/physiology ; Drosophila ; Green Fluorescent Proteins ; Metabolic Networks and Pathways/*genetics ; Phenotype ; RNA Interference ; Signal Transduction/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-06-16
    Description: Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilic, Josipa -- Huang, Ya-Lin -- Davidson, Gary -- Zimmermann, Timo -- Cruciat, Cristina-Maria -- Bienz, Mariann -- Niehrs, Christof -- MC_U105192713/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1619-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569865" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Axin Protein ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Centrifugation, Density Gradient ; Cytoplasm/metabolism ; Drosophila ; Glycogen Synthase Kinase 3/analysis/metabolism ; HeLa Cells ; Humans ; LDL-Receptor Related Proteins/analysis/genetics/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphoproteins/*metabolism ; Phosphorylation ; Repressor Proteins/analysis/metabolism ; *Signal Transduction ; Transfection ; Wnt Proteins/*metabolism ; Wnt3 Protein ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: Small noncoding RNAs have emerged as potent regulators of gene expression at both transcriptional and posttranscriptional levels. Recently, a class of small RNAs that interact with Piwi proteins has been discovered in the mammalian germ line and Drosophila. These Piwi-interacting RNAs (piRNAs) represent a distinct small RNA pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Haifan -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA. haifan.lin@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446387" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Drosophila ; Drosophila Proteins/metabolism ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Germ Cells/cytology/*metabolism ; Mice ; Peptide Initiation Factors/metabolism ; Protein Biosynthesis ; Proteins/*metabolism ; RNA Stability ; RNA, Untranslated/genetics/*metabolism ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-22
    Description: It is unknown why females mate with multiple males when mating is frequently costly and a single copulation often provides enough sperm to fertilize all a female's eggs. One possibility is that remating increases the fitness of offspring, because fertilization success is biased toward the sperm of high-fitness males. We show that female Drosophila pseudoobscura evolved increased remating rates when exposed to the risk of mating with males carrying a deleterious sex ratio-distorting gene that also reduces sperm competitive ability. Because selfish genetic elements that reduce sperm competitive ability are generally associated with low genetic fitness, they may represent a common driver of the evolution of polyandry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Price, T A R -- Hodgson, D J -- Lewis, Z -- Hurst, G D D -- Wedell, N -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1241-3. doi: 10.1126/science.1163766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Drosophila ; Female ; Male ; *Repetitive Sequences, Nucleic Acid ; *Sexual Behavior, Animal ; Sperm Count
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...