ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Broadband acoustic scattering  (1)
  • Climate  (1)
  • Decision-support tools  (1)
  • Nonlinear waves  (1)
  • Annual Reviews  (2)
  • Oxford University Press  (2)
  • Institute of Physics
  • 2005-2009  (4)
  • 1985-1989
  • 1980-1984
  • 1950-1954
Collection
  • Articles  (4)
Years
  • 2005-2009  (4)
  • 1985-1989
  • 1980-1984
  • 1950-1954
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Annual Reviews, 2003. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Environment and Resources 28 (2003): 521-558, doi:10.1146/annurev.energy.28.011503.163443.
    Description: Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere and may lead to changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These are summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement in the scientific capabilities available for measurement as well as for policy needs. The specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This review focuses on the current knowledge of the carbon cycle, carbon measurement capabilities (with an emphasis on the continental scale) and the relevance of carbon cycle science to carbon sequestration goals.
    Description: The National Center for Atmospheric Research is supported by the National Science Foundation.
    Keywords: Carbon sequestration ; Measurement techniques ; Climate ; Kyoto protocol
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 406392 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Annual Reviews
    Publication Date: 2022-05-25
    Description: Author Posting. © Annual Reviews, 2006. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Fluid Mechanics 38 (2006): 395-425, doi:10.1146/annurev.fluid.38.050304.092129.
    Description: Over the past four decades, the combination of in situ and remote sensing observations has demonstrated that long nonlinear internal solitary-like waves are ubiquitous features of coastal oceans. The following provides an overview of the properties of steady internal solitary waves and the transient processes of wave generation and evolution, primarily from the point of view of weakly nonlinear theory, of which the Korteweg-de Vries equation is the most frequently used example. However, the oceanographically important processes of wave instability and breaking, generally inaccessible with these models, are also discussed. Furthermore, observations often show strongly nonlinear waves whose properties can only be explained with fully nonlinear models.
    Description: KRH acknowledges support from NSF and ONR and an Independent Study Award from the Woods Hole Oceanographic Institution. WKM acknowledges support from NSF and ONR, which has made his work in this area possible, in close collaboration with former graduate students at Scripps Institution of Oceanography and MIT.
    Keywords: Solitary waves ; Nonlinear waves ; Stratified flow ; Physical Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1034976 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 379-394, doi:10.1093/icesjms/fsp242.
    Description: In principle, measurements of high-frequency acoustic scattering from oceanic microstructure and zooplankton across a broad range of frequencies can reduce the ambiguities typically associated with the interpretation of acoustic scattering at a single frequency or a limited number of discrete narrowband frequencies. With this motivation, a high-frequency broadband scattering system has been developed for investigating zooplankton and microstructure, involving custom modifications of a commercially available system, with almost complete acoustic coverage spanning the frequency range 150–600 kHz. This frequency range spans the Rayleigh-to-geometric scattering transition for some zooplankton, as well as the diffusive roll-off in the spectrum for scattering from turbulent temperature microstructure. The system has been used to measure scattering from zooplankton and microstructure in regions of non-linear internal waves. The broadband capabilities of the system provide a continuous frequency response of the scattering over a wide frequency band, and improved range resolution and signal-to-noise ratios through pulse-compression signal-processing techniques. System specifications and calibration procedures are outlined and the system performance is assessed. The results point to the utility of high-frequency broadband scattering techniques in the detection, classification, and under certain circumstances, quantification of zooplankton and microstructure.
    Description: The work was supported by the US Office of Naval Research (Grant # N000140210359).
    Keywords: Broadband acoustic scattering ; Internal waves ; Oceanic microstructure ; Zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 1-9, doi:10.1093/icesjms/fsp221.
    Description: Effective marine ecosystem-based management (EBM) requires understanding the key processes and relationships controlling the aspects of biodiversity, productivity, and resilience to perturbations. Unfortunately, the scales, complexity, and non-linear dynamics that characterize marine ecosystems often confound managing for these properties. Nevertheless, scientifically derived decision-support tools (DSTs) are needed to account for impacts resulting from a variety of simultaneous human activities. Three possible methodologies for revealing mechanisms necessary to develop DSTs for EBM are: (i) controlled experimentation, (ii) iterative programmes of observation and modelling ("learning by doing"), and (iii) comparative ecosystem analysis. We have seen that controlled experiments are limited in capturing the complexity necessary to develop models of marine ecosystem dynamics with sufficient realism at appropriate scales. Iterative programmes of observation, model building, and assessment are useful for specific ecosystem issues but rarely lead to generally transferable products. Comparative ecosystem analyses may be the most effective, building on the first two by inferring ecosystem processes based on comparisons and contrasts of ecosystem response to human-induced factors. We propose a hierarchical system of ecosystem comparisons to include within-ecosystem comparisons (utilizing temporal and spatial changes in relation to human activities), within-ecosystem-type comparisons (e.g. coral reefs, temperate continental shelves, upwelling areas), and cross-ecosystem-type comparisons (e.g. coral reefs vs. boreal, terrestrial vs. marine ecosystems). Such a hierarchical comparative approach should lead to better understanding of the processes controlling biodiversity, productivity, and the resilience of marine ecosystems. In turn, better understanding of these processes will lead to the development of increasingly general laws, hypotheses, functional forms, governing equations, and broad interpretations of ecosystem responses to human activities, ultimately improving DSTs in support of EBM.
    Keywords: Comparative marine ecosystem analysis ; Decision-support tools ; EAM ; EBM ; Ecological modelling ; Ecosystem approaches to management ; Ecosystem-based management
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...