ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (6,597)
  • Man/System Technology and Life Support
  • 2005-2009  (1,596)
  • 1995-1999  (3,836)
  • 1990-1994  (3,347)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: A model based on an input process and outcome conceptualisation is suggested to address safety-relevant factors in emergency medicine. As shown in other dynamic and demanding environments, human factors play a decisive role in attaining high quality service. Attitudes held by health-care providers, organisational shells and work-cultural parameters determine communication, conflict resolution and workload distribution within and between teams. These factors should be taken into account to improve outcomes such as operational integrity, job satisfaction and morale.
    Keywords: Man/System Technology and Life Support
    Type: Resuscitation (ISSN 0300-9572); Volume 28; 3; 221-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: To study the potential aftereffects of virtual environments (VE), tests of visually guided behavior and felt limb position (pointing with eyes open and closed) along with self-reports of motion sickness-like discomfort were administered before and after 30 min exposure of 34 subjects. When post- discomfort was compared to a pre-baseline, the participants reported more sickness afterward (p 〈 0.03). The change in felt limb position resulted in subjects pointing higher (p 〈 0.038) and slightly to the left, although the latter difference was not statistically significant (p = 0.08). When findings from a second study using a different VE system were compared, they essentially replicated the results of the first study with higher sickness afterward (p 〈 0.001) and post- pointing errors were also up (p 〈 0.001) and to the left (p 〈 0.001). While alternative explanations (e.g. learning, fatigue, boredom, habituation, etc.) of these outcomes cannot be ruled out, the consistency of the post- effects on felt limb position changes in the two VE implies that these recalibrations may linger once interaction with the VE has concluded, rendering users potentially physiologically maladapted for the real world when they return. This suggests there may be safety concerns following VE exposures until pre-exposure functioning has been regained. The results of this study emphasize the need for developing and using objective measures of post-VE exposure aftereffects in order to systematically determine under what conditions these effects may occur.
    Keywords: Man/System Technology and Life Support
    Type: Applied ergonomics (ISSN 0003-6870); Volume 30; 1; 27-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The uses of virtual environment technology in the space program are examined with emphasis on training for the Hubble Space Telescope Repair and Maintenance Mission in 1993. Project ScienceSpace at the Virtual Environment Technology Lab is discussed.
    Keywords: Man/System Technology and Life Support
    Type: Computer graphics (ISSN 0097-8930); Volume 30; 4; 33-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Permanent human presence in space beyond low Earth orbit (LEO) is now technically feasible. To achieve this goal several requirements must be met, which can be summarized as: technologies, facilities, organization, vision, and will. This paper describes a recently published NASA Reference Publication, "Designing for Human Presence in Space: An Introduction to Environmental Control and Life Support Systems" that addresses how to achieve the goal of permanent human presence in space, specifically, how to design and develop environmental control and life support systems (ECLSS) for space habitats. This includes the technologies that perform the required functions, the facilities where the systems will be developed, and the organization necessary to perform the numerous tasks efficiently.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 1; 1; 49-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.
    Keywords: Man/System Technology and Life Support
    Type: American potato journal (ISSN 0003-0589); Volume 67; 177-87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 27; 7; 764-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The physical state of food components affects their properties during processing, storage, and consumption. Removal of water by evaporation or by freezing often results in formation of an amorphous state (Parks et al., 1928; Troy and Sharp, 1930; Kauzmann, 1948; Bushill et al., 1965; White and Cakebread, 1966; Slade and Levine, 1991). Amorphous foods are also produced from carbohydrate melts by rapid cooling after extrusion or in the manufacturing of hard sugar candies and coatings (Herrington and Branfield, 1984). Formation of the amorphous state and its relation to equilibrium conditions are shown in Fig. 1 [see text]. The most important change, characteristic of the amorphous state, is noticed at the glass transition temperature (Tg), which involves transition from a solid "glassy" to a liquid-like "rubbery" state. The main consequence of glass transition is an increase of molecular mobility and free volume above Tg, which may result in physical and physico-chemical deteriorative changes (White and Cakebread, 1966; Slade and Levine, 1991). We have conducted studies on phase transitions of amorphous food materials and related Tg to composition, viscosity, stickiness, collapse, recrystallization, and ice formation. We have also proposed that some diffusion-limited deteriorative reactions are controlled by the physical state in the vicinity of Tg (Roos and Karel, 1990, 1991a, b, c). The results are summarized in this article, with state diagrams based on experimental and calculated data to characterize the relevant water content, temperature, and time-dependent phenomena of amorphous food components.
    Keywords: Man/System Technology and Life Support
    Type: Food technology (ISSN 0015-6639); Volume 45; 12; 66, 68-71, 107
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: This study was designed to characterize the growth responses of potato (Solanum tuberosum L.) to diurnal temperature fluctuations. Potato plants of two cultivars, Norland and Denali, were grown for 90 days under 12 hr photoperiod in walk-in growth rooms at the University of Wisconsin Biotron. The alternating temperature was 22 C light/14 C dark and compared to a constant 18 C as control. At all temperature regimes vapor pressure deficit was maintained at 0.62 kPa (70% relative humidity [correction of humdidity] at 18 C). Plant height, plant dry weight, tuber dry weight, and harvest index were overall greater under the warm light/cool dark alternating temperatures than under the constant temperature. The differences between temperature treatments were greater for Denali than for Norland. Alternating temperatures increased Denali tuber weights by 25%, but no significant increase was found with Norland. Also the total plant weight was increased over 20% with Denali, but increased with Norland in only one of the two replications of the experiment. This study documents that alternating temperatures are a benefit to some cultivars but may not be of benefit to all cultivars.
    Keywords: Man/System Technology and Life Support
    Type: American potato journal (ISSN 0003-0589); Volume 68; 2; 81-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 27; 5; 427-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: A system was developed in which nutrient flow to plant roots is controlled by a thin (0.98 or 1.18 mm) porous (0.2 or 0.5 microns) stainless steel sheet membrane. The flow of nutrient solution through the membrane is controlled by adjusting the relative negative pressure on the nutrient solution side of the membrane. Thus, the nutrient solution is contained by the membrane and cannot escape from the compartment even under microgravity conditions if the appropriate pressure gradient across the membrane is maintained. Plant roots grow directly on the top surface of the membrane and pull the nutrient solution through this membrane interface. The volume of nutrient solution required by this system for plant growth is relatively small, since the plenum, which contains the nutrient solution in contact with the membrane, needs only to be of sufficient size to provide for uniform flow to all parts of the membrane. Solution not passing through the membrane to the root zone is recirculated through a reservoir where pH and nutrient levels are controlled. The size of the solution reservoir depends on the sophistication of the replenishment system. The roots on the surface of the membrane are covered with a polyethylene film (white on top, black on bottom) to maintain a high relative humidity and also limit light to prevent algal growth. Seeds are sown directly on the stainless steel membrane under the holes in the polyethylene film that allow a pathway for the shoots.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 25; 6; 707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 14; 11; 1-466
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: A Workshop on "Nitrogen Dynamics in Controlled Systems" was held September 26-28, 1995 at the Lawrence Berkeley National Laboratory. The meetings were sponsored by the NASA Advanced Life Support program and the Lawrence Berkeley National Laboratory, and hosted by Prof. Lester Packer of the University of California at Berkeley, and of the Lawrence Berkeley National Laboratory. The Workshop participants were asked to: 1. summarize current knowledge on the cycling of nitrogen in closed systems; 2. identify the needs that closed systems may have for specific forms of nitrogen; 3. identify possible ways of generating and maintaining (or avoiding) specific forms and concentrations of nitrogen; 4. compare biological and physical/chemical methods of transforming nitrogen.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 3; 1-2; 11-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.
    Keywords: Man/System Technology and Life Support
    Type: Compost science & utilization (ISSN 1065-657X); Volume 5; 3; 25-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: We investigated the effects of vegetation on the fate of pentachlorophenol (PCP) in soil using a novel high-flow sealed test system. Pentachlorophenol has been widely used as a wood preservative, and this highly toxic biocide contaminates soil and ground water at many sites. Although plants are known to accelerate the rates of degradation of certain soil contaminants, this approach has not been thoroughly investigated for PCP. The fate of [14C]PCP, added to soil at a concentration of 100 mg/kg, was compared in three unplanted and three planted systems. The plant used was Hycrest, a perennial, drought-tolerant cultivar of crested wheatgrass [Agropyron desertorum (Fischer ex Link) Schultes]. The flow-through test system allowed us to maintain a budget for 14C-label as well as monitor mineralization (breakdown to 14CO2) and volatilization of the test compound in a 155-d trial. In the unplanted systems, an average of 88% of the total radiolabel remained in the soil and leachate and only 6% was mineralized. In the planted system, 33% of the radiolabel remained in the soil plus leachate, 22% was mineralized, and 36% was associated with plant tissue (21% with the root fraction and 15% with shoots). Mineralization rates were 23.1 mg PCP mineralized kg-1 soil in 20 wk in the planted system, and for the unplanted system 6.6 mg PCP kg-1 soil for the same time period. Similar amounts of volatile organic material were generated in the two systems (1.5%). Results indicated that establishing crested wheatgrass on PCP-contaminated surface soils may accelerate the removal of the contaminant.
    Keywords: Man/System Technology and Life Support
    Type: Journal of environmental quality (ISSN 0047-2425); Volume 23; 2; 272-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.
    Keywords: Man/System Technology and Life Support
    Type: Acta horticulturae (ISSN 0567-7572); Volume 440; 19-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.
    Keywords: Man/System Technology and Life Support
    Type: Behavioral science (ISSN 0005-7940); Volume 39; 3; 183-212
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: Staphylococcus aureus was isolated over 2 years from Space Shuttle mission crewmembers to determine dissemination and retention of bacteria. Samples before and after each mission were from nasal, throat, urine, and feces and from air and surface sampling of the Space Shuttle. DNA fingerprinting of samples by digestion of DNA with SmaI restriction endonuclease followed by pulsed-field gel electrophoresis showed S. aureus from each crewmember had a unique fingerprint and usually only one strain was carried by an individual. There was only one instance of transfer between crewmembers. Strains from interior surfaces after flight matched those of crewmembers, suggesting microbial fingerprinting may have forensic application.
    Keywords: Man/System Technology and Life Support
    Type: FEMS immunology and medical microbiology (ISSN 0928-8244); Volume 16; 3-4; 273-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: A large amount of inedible plant material, generated as a result of plant growth in a Controlled Ecological Life Support System (CELSS), should be pretreated and converted into forms that can be recycled on earth as well as in space. The main portion of the inedible biomass is lignocellulosic material. Enzymatic hydrolysis of this cellulose would provide sugars for many other uses by recycling carbon, hydrogen, oxygen, and nitrogen through formation of carbon dioxide, heat, and sugars, which are potential foodstuffs. To obtain monosaccharides from cellulose, the protective effect of lignin should be removed. White-rot fungi degrade lignin more extensively and rapidly than other microorganisms. Pleurotus ostreatus degrades lignin effectively, and produces edible and flavorful mushrooms that increase the quality and nutritional value of the diet. This mushroom is also capable of metabolizing hemicellulose, thereby providing a food use of this pentose containing polysaccharide. This study presents the current knowledge of physiology and biochemistry of primary and secondary metabolisms of basidiomycetes, and degradation mechanism of lignin. A better understanding of the ligninolytic activity of white-rot fungi will impact the CELSS Program by providing insights on how edible fungi might be used to recycle the inedible portions of the crops.
    Keywords: Man/System Technology and Life Support
    Type: Applied biochemistry and biotechnology (ISSN 0273-2289); Volume 62; 2-3; 131-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved intraoperative neuroprotection.
    Keywords: Man/System Technology and Life Support
    Type: Annals of the New York Academy of Sciences (ISSN 0077-8923); Volume 890; 59-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 12; 5; 1-268
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: The effect of SeO3= and SeO4= on NO3- assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol m-3 in the uptake solutions severely inhibited the induction of NO3- uptake and active nitrate reductases. Selenate, at 1.0 mol m-3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m-3 SeO4= for 24 h, subsequent NO3- uptake from SeO4(=) -free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3= when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3=. By contrast, SO4= partially alleviated the inhibitory effect of SeO4= even in seedlings pretreated with SeO4=. Since uptake of NO3- by intact seedlings was also inhibited by SO3=, the percentage of the absorbed NO3- that was reduced was not affected. By contrast, SeO4=, which affected NO3- uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3= and SeO4= inhibited the in vivo reduction of NO3- as well as induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4= ; approximately a five to 10 times higher concentration of SeO4= than SeO3= was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3= and SeO4= on in vivo NO3- reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4=. The inhibitory effects of Se salts on the induction of the nitrite reductase were, however, completely alleviated by SO4=. The results show that in barley seedlings SeO3= is more toxic than SeO4=. The reduction of SeO4= to SeO3= may be a rate limiting step in causing Se toxicity.
    Keywords: Man/System Technology and Life Support
    Type: Plant, cell & environment (ISSN 0140-7791); Volume 13; 773-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Plants of Norland potatoes (Solanum tuberosum L.) were maintained for 42 days at Mg concentrations of 0.05, 0.125, 0.25, 1, 2, and 4 mM in a nonrecirculating nutrient film system under controlled environment. With the increased Mg supply from 0.05 to 4 mM, Mg concentrations in the leaves of the 42-day old plants increased significantly from 1.1 to 11.2 mg g-1 dry weight. Plant leaf area and plant and tuber dry weights increased with increased Mg concentrations up to 1 mM in solution or 6.7 mg g-1 in leaves, and then decreased with further increases in Mg concentrations. Rates of CO2 assimilation measured on leaflets in situ at ambient and various intercellular CO2 concentrations were consistently lower at 0.05 and 4 mM Mg than at other Mg treatments, which may indicate decreased photosynthetic activity in mesophyll tissues at the lowest and highest Mg concentrations. Dark respiration rates in leaves were highest at 0.05 and 4 mM Mg, lowest at 0.25 and 1 mM Mg, and intermediate at 0.125 and 2 mM Mg. The different Mg treatments also influenced accumulation of other minerals in leaves. Leaf concentrations of Ca and Mn decreased with increased Mg supply except that Ca and Mn were lower at 0.05 mM than at 0.125 mM Mg. Leaf K concentrations were lower at 1, 2 and 4 mM Mg than at other Mg treatments. Foliar concentrations of P, Fe, Zn, and Cu had small but inconsistent variation with different Mg concentrations. Leaf concentrations of N, S, and B were similar at different Mg concentrations. This study demonstrates that various Mg nutrition, along with altered accumulation of other nutrients, could regulate dry matter production in potatoes by affecting not only leaf area but also leaf carbon dioxide assimilation and respiration.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 15; 9; 1359-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.
    Keywords: Man/System Technology and Life Support
    Type: Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA (ISSN 0734-242X); Volume 9; 5; 485-90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This special issue contains papers from the NASA Symposium on Waste Processing for Advanced Life Support, which was held at NASA Ames Research Center on September 11-13, 1990. Specialists in waste management from academia, government, and industry convened to exchange ideas and advise NASA in developing effective methods for waste management in a Controlled Ecological Life Support System (CELSS). Innovative and well-established methods were presented to assist in developing and managing wastes in closed systems for future long-duration space missions, especially missions to Mars.
    Keywords: Man/System Technology and Life Support
    Type: Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA (ISSN 0734-242X); Volume 9; 5; 323-490
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: Thus far in the manned space program, human life support has depended on storage of air, water, food, and energy. There are no refrigerators on Shuttle, and fresh foods are limited to what can be stowed in lockers for the first 3 days of a mission, when spoilage becomes a factor. Oxygen is stored, CO2 is scrubbed, and water is stored and treated. As we approach the Space Station era, life support will be a combination of storage and resupply. Duty cycles will be 90 days, and physico-chemical (P/C) systems will be important for recycling oxygen and water. Nutritionists seek a capability for refrigerated storage of fresh food on Station. However, most food still will be thermostabilized, rehydratables that can be stored at room temperature. Present Shuttle food is not much more sophisticated than repackaged camp food, and tends to be high in salt content. Hopefully, menus will be healthier on Station, where dietary countermeasures against biomedical responses to chronic microgravity might be implemented, and certainly need to be studied.
    Keywords: Man/System Technology and Life Support
    Type: Transactions of the Kansas Academy of Science (ISSN 0022-8443); Volume 96; 1-2; 87-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Two experiments were conducted to determine the effects of various NH4(+)-N/NO3(-)-N percentages on growth and mineral concentrations in potato (Solanum tuberosum L.) plants using a non-recirculating nutrient film system in a controlled environment. The first experiment included six NH4(+)-N/NO3(-)-N percentages at 0/100, 20/80, 40/60, 60/40, 80/20, and 100/0 with the same total N concentration of 4 mM. The second experiment included six NH4(+)-N/NO3(-)-N percentages at 0/100, 4/96, 8/92, 12/88, 16/84, and 20/80 again with the same total N of 4 mM. In each experiment, plants were harvested 35 days after transplanting when tubers had been initiated and started to enlarge. Dry weights of shoots, tubers, and whole plant at the harvest were increased significantly with all mixed nitrogen treatments as compared with single NH4+ or NO3- form. The enhanced growth with mixed nitrogen was greatest at 8% to 20% NH4(+)-N. Also, the concentrations and accumulation of total N in the shoots and roots were greater with mixed nitrogen than with separate NH4+ or NO3- nutrition. With NH4+ present in the solutions, the concentrations of P and Cl in the shoots were increased compared to NO3- alone, whereas the tissue concentrations of Ca and Mg were decreased. It was concluded that nitrogen fertilization provided with combined NH4+ and NO3- forms, even at small proportions of NH4+, can enhance nitrogen uptake and productivity in potato plants.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 16; 9; 1691-704
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 26; 2; 203-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: Two approaches for biomass processing in Controlled Ecological Life Support Systems are compared in a literature survey. The approaches are based on (1) total oxidation of plant matter and (2) the potential of bioregenerative recovery.
    Keywords: Man/System Technology and Life Support
    Type: Enzyme and microbial technology (ISSN 0141-0229); Volume 14; 76-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
    Keywords: Man/System Technology and Life Support
    Type: Acta horticulturae (ISSN 0567-7572); Volume 469; 71-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: Although terrestrial CO2 concentrations, [CO2] are not expected to reach 1000 micromoles mol-1 for many decades, CO2 levels in closed systems such as growth chambers and glasshouses, can easily exceed this concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1 (1%). Here we studied the effect of six CO2 concentrations, from ambient up to 10000 micromoles mol-1, on seed yield, growth and gas exchange of two wheat cultivars (USU-Apogee and Veery-l0). Elevating [CO2] from 350 to 1000 micromoles mol-1 increased seed yield (by 33%), vegetative biomass (by 25%) and number of heads m-2 (by 34%) of wheat plants. Elevation of [CO2] from 1000 to 10000 micromoles mol-1 decreased seed yield (by 37%), harvest index (by 14%), mass per seed (by 9%) and number of seeds per head (by 29%). This very high [CO2] had a negligible, non-significant effect on vegetative biomass, number of heads m-2 and seed mass per head. A sharp decrease in seed yield, harvest index and seeds per head occurred by elevating [CO2] from 1000 to 2600 micromoles mol-1. Further elevation of [CO2] from 2600 to 10000 micromoles mol-1 caused a further but smaller decrease. The effect of CO2 on both wheat cultivars was similar for all growth parameters. Similarly there were no differences in the response to high [CO2] between wheat grown hydroponically in growth chambers under fluorescent lights and those grown in soilless media in a glasshouse under sunlight and high pressure sodium lamps. There was no correlation between high [CO2] and ethylene production by flag leaves or by wheat heads. Therefore, the reduction in seed set in wheat plants is not mediated by ethylene. The photosynthetic rate of whole wheat plants was 8% lower and dark respiration of the wheat heads 25% lower when exposed to 2600 micromoles mol-1 CO2 compared to ambient [CO2]. It is concluded that the reduction in the seed set can be mainly explained by the reduction in the dark respiration in wheat heads, when most of the respiration is functional and is needed for seed development.
    Keywords: Man/System Technology and Life Support
    Type: Annals of botany (ISSN 0305-7364); Volume 80; 4; 539-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 33; 4; 650-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: In a study of lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues (mining, material processing, and manufacturing), and the human elements of physiology, behavior, and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the Earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 4; 3-4; 127-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.
    Keywords: Man/System Technology and Life Support
    Type: Ecological engineering (ISSN 0925-8574); Volume 13; 273-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 24; 3; 263-413
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 20; 10; 1799-2054
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 22; 11; 1745-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 6; 3; 161-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.
    Keywords: Man/System Technology and Life Support
    Type: Soil Science Society of America journal. Soil Science Society of America (ISSN 0361-5995); Volume 63; 3; 657-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-26
    Description: The designers of the Orion Crew Exploration Vehicle (CEV) utilize an intensive simulation program in order to predict the launch and landing characteristics of the Crew Impact Attenuation System (CIAS). The CIAS is the energy absorbing strut concept that dampens loads to levels sustainable by the crew during landing and consists of the crew module seat pallet that accommodates four to six seated astronauts. An important parameter required for proper dynamic modeling of the CIAS is knowledge of the suited center of mass (COM) variations within the crew population. Significant center of mass variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. Established suited, whole-body, and posture-based mass properties were not available due to the uncertainty of the final CEV seat posture and suit hardware configurations. While unsuited segmental center of mass values can be obtained via regression equations from previous studies, building them into a model that was posture dependent with custom anthropometry and integrated suit components proved cumbersome and time consuming. Therefore, the objective of this study was to quantify the effects of posture, suit components, and the expected range of anthropometry on the center of mass of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry; body segment mass; suit component mass; suit component location relative to the body; and joint angles defining the seated posture. Anthropometry and body segment masses used in this study were taken from a selection of three-dimensional human body models, called boundary manikins, which were developed in a previous project. These boundary manikins represent the critical anthropometric dimension extremes for the anticipated astronaut population. Six male manikins and 6 female manikins, representing a subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM as well as the prevalence of suit components on the right side of the body.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19203 , 3rd International Conference on Applied Human Factors and Ergonomics; 17-20 Jul. 2010; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near-term technologies are adequate to implement a Lunar Base CELSS. There are no apparent "show-stoppers" which require the development of new technologies. However, there are several areas in which new materials and technologies could be used for a more efficient implementation of the system, e.g., by decreasing mass or power requirement and increasing recycling efficiency. These areas must be further addressed through research and development. Finally, although this study focused on the development of a Lunar Base CELSS, the same technologies and a nearly identical design would be appropriate for a Mars base. Actually, except for the distance of transportation, the implementation of a CELSS on Mars would even be easier than it would be on the Moon. The presence of atmospheric CO2 on Mars, although in low concentration, coupled with the fact that the day/night cycle on Mars is very similar to that on Earth, makes the use of light-weight, greenhouse-like structures for growing food plants even more feasible than on the Moon. There are some environmental problems, which would have to be dealt with, like dust storms and the large amount of the ultraviolet radiation incident on the planet's surface. However, the materials and methods are largely available today to develop such a life support system for a Mars base.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space biology and medicine (ISSN 1569-2574); Volume 6; 231-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 69; 3; 282-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.
    Keywords: Man/System Technology and Life Support
    Type: Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA (ISSN 0734-242X); Volume 9; 5; 327-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a low salt' (0.015 molar NaCl) to high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1 delta 9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1 delta 9, C18:1 delta 11), with the higher increase in oleic acid C18:1 delta 9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.
    Keywords: Man/System Technology and Life Support
    Type: Plant physiology (ISSN 0032-0889); Volume 94; 1512-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.
    Keywords: Man/System Technology and Life Support
    Type: Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA (ISSN 0734-242X); Volume 9; 5; 435-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: Thin layer explants taken from the pedicels and peduncles of flowering tomato plants yielded calli with great organogenetic potential. Of the 15 cultivars tested, 7 regenerated roots, shoots and eventually entire fruit-bearing plants. Calli grown on modified Murashige-Skoog medium responded to varied auxins and cytokinins with different morphogenetic patterns. Thus, naphthaleneacetic acid yielded root-producing calli, while the auxin precursor isatin (indole 2,3-dione) caused the production of calli with vegetative and floral shoots, rarely yielding roots. This may be related to isatin's slow, steady conversion to an active auxin (Plant Physiol 41:1485-1488, 1966) in contrast with naphthaleneacetic acid's immediate presentation of a high level of active auxin. The highest incidence of vegetative shoot (100%) and flower (50%) formation was obtained with 10 micromoles isatin and 3 micromoles zeatin. A few of the flowers developed into ripe fruits. The high frequency of induction of vegetative shoots and flowers before roots with isatin suggests its utility in micropropagation from plant tissue cultures.
    Keywords: Man/System Technology and Life Support
    Type: Plant growth regulation (ISSN 0167-6903); Volume 15; 17-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: This paper deals with the electrochemical production of hydrogen by depolarizing the oxygen evolution reaction using human feces and urine, which contains 30-40% bacteria and yeast. The electroactivity of graphite, tungsten carbide, perovskite and RuO2-coated Ebonex (Ti4O7) as anode materials are compared. The scale-up of the process in a laboratory-scale three-dimensional packed bed cell is discussed.
    Keywords: Man/System Technology and Life Support
    Type: International journal of hydrogen energy (ISSN 0360-3199); Volume 19; 1; 23-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: In tightly closed environments used for human life support in space, carbon dioxide (CO2) partial pressures can reach 500 to 1000 Pa, which may be supraoptimal or toxic to plants used for life support. To study this, soybeans [Glycine max (L.) Merr. cvs. McCall and Pixie] were grown for 90 days at 50, 100, 200, and 500 Pa partial pressure CO2 (500, 1000, 2000, and 5000 ppm). Plants were grown using recirculating nutrient film technique with a 12-h photoperiod, a 26 degrees C/20 degrees C thermoperiod, and approximately 300 micromoles m-2 s-1 photosynthetic photon flux (PPF). Seed yield and total biomass were greatest at 100 Pa for cv. McCall, suggesting that higher CO2 levels were supraoptimal. Seed yield and total biomass for cv. Pixie showed little difference between CO2 treatments. Average stomatal conductance of upper canopy leaves at 50 Pa CO2 approximately 500 Pa 〉 200 Pa 〉 100 Pa. Total water use over 90 d for both cultivars (combined on one recirculating system) equalled 822 kg water for 100 Pa CO2, 845 kg for 50 Pa, 879 kg for 200 Pa, and 1194 kg for 500 Pa. Water use efficiences for both cultivars combined equalled 3.03 (g biomass kg-1 water) for 100 Pa CO2, 2.54 g kg-1 for 200 Pa, 2.42 g kg-1 for 50 Pa, and 1.91 g kg-1 for 500 Pa. The increased stomatal conductance and stand water use at the highest CO2 level (500 Pa) were unexpected and pose interesting considerations for managing plants in a tightly closed system where CO2 concentrations may reach high levels.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant physiology (ISSN 0176-1617); Volume 142; 173-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: This study was conducted to evaluate the responses of potatoes to six K solution concentrations maintained with a flow-through nutrient film system. Potato plants were grown for 42 days in sloping shallow trays containing a 1 cm layer of quartz gravel with a continuous flow of 4 ml min-1 of nutrient solutions having K concentrations of 0.10, 0.55, 1.59, 3.16, 6.44, 9.77 meq L-1. Plant leaf area, total and tuber dry weights were reduced over 25% at 0.10 meq L-1 of K and over 17% at 9.77 meq L-1 of K compared to concentrations of 0.55, 1.59, 3.16 and 6.44 meq L-1 of K. Gas exchange measurements on leaflets in situ after 39 days of growth demonstrated no significant differences among different K treatments in CO2 assimilation rate, stomatal conductance, intercellular CO2 concentration, and transpiration. Further measurements made only on plants grown at 0.10, 1.59, 6.44 meq L-1 of K showed similar responses of CO2 assimilation rate to different intercellular CO2 concentrations. This suggested that the photosynthetic systems were not affected by different K nutrition. The leaves of plants accumulated about 60% less K at 0.10 meq L-1 of K than at higher K concentrations. However, Ca and Mg levels in the leaves were higher at 0.10 meq L-1 of K than at higher K concentrations. This indicates that low K nutrition not only reduced plant growth, but also affected nutrient balance between major cations.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 14; 6; 525-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.
    Keywords: Man/System Technology and Life Support
    Type: ASGSB bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 0898-4697); Volume 8; 2; 93-104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: Life support systems represent one of the most critical aspects of human space exploration. Future long-term missions such as the establishment of human-tended Lunar and Martian bases require closed life support systems. A conceptual approach to an Engineered Closed/Controlled EcoSystem incorporating bioregenerative capabilities by integrating humans, plants, and waste management processes is presented. The integration of physical/chemical and biological waste treatment processes is suitable for supporting plant growth through hydroponics and materially closing the human and plant metabolic loops. This conceptual design separates wastes into individual loops for treatment according to the specific metabolic needs of humans and plants. The means through which an integrated Engineered Closed/Controlled EcoSystem meets the life support objectives of long-term space habitation are summarized.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 2; 3-4; 161-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 1-288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 149-56
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 189-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 215-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 239-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: Potato (Solanum tuberosum L.) cv. 'Norland', vegetative growth and tuber productivity grown in the porous water and nutrient delivery system (PTNDS) developed by the Wisconsin Center for Space Automation and Robotics were compared with the vegetative growth and tuber productivity of plants grown in a peat:vermiculite potting mixture (PT/VR). The plants were grown at 12, 16, and 24-h light periods, 18 degrees C constant temperature, 70% relative humidity, and 300 micromol m-2 s-1 photosynthetic photon flux. Canopy height of plants grown in the PT/VR system was taller than that of plants grown in the PTNDS system. Canopy height differences were greatest when the plants were grown under a 24-h photoperiod. Leaf and stem dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24-h photoperiod, leaf and stem dry masses of plants grown in the PT/VR system were more than 3 times those of plants grown in the PTNDS system. Tuber dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24 h-photoperiod, tuber dry weights of plants grown in the PT/VR system were more than twice those of plants grown in the PTNDS system. A slightly higher harvest index (ratio of tuber weight to leaf plus stem weight) was noted for the plants grown in the PTNDS than for the plants grown in the PT/VR system. Plants grown in the PTNDS system at the 24-h photoperiod matured earlier than plants grown at this photoperiod in the PT/VR system. Vegetative growth and tuber productivity of plants grown under the 16-h photoperiod generally were intermediate to those noted for plants grown under the 12 and 24-h photoperiods. These results indicate that potato plants grown in a PTNDS system may require less plant growing volume, mature in a shorter time, and likely produce more tubers per unit area compared with plants grown in the PT/VR system. These plant characteristics are a distinct advantage for a plant growing unit of a CELSS.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 243-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 33-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 63-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-24
    Description: Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 43-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: A perspective of the process of obtaining performance robustness of space exploration life support systems is presented. Some useful definitions are made, some relevant issues are addressed, and a procedure for establishing performance robustness, so far as it now known, is explained. An example is given to illustrate the procedure.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 167-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 191-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 211-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 223-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-24
    Description: This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 281-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 289-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-08-24
    Description: An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 293-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 3-352
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of 〈0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 1-2; 301-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-24
    Description: Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
    Keywords: Man/System Technology and Life Support
    Type: Annals of botany (ISSN 0305-7364); Volume 79; 3; 273-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: If humans are to live permanently in space, regenerative life support systems are an enabling technology and must replace the picnic approach of taking all supplies required for each mission. These systems are classified by technologies as either physical/chemical or bioregenerative. Both of these system-types can recycle water, remove carbon dioxide, produce oxygen, and recover essential elements from waste products. Bioregenerative can also produce food, thus, making it essential if humans are to exist in space independent of earth. A solely bioregenerative life support system includes plants as a biomass production module and microbial organisms in bioreactors as a resource recovery module. In the Advanced Life Support Program, bioregenerative life support systems are being investigated through a research and technology development project which includes large scale testing as part of the Breadboard Project and human tests conducted in the soon to be constructed BioPlex facility. Research and technology development efforts are directed toward optimizing biomass productivity in controlled chambers by developing light weight, energy efficient, and automated systems; recycling liquid and solid wastes; baselining the operation of bioreactors; determining system microbial stability; assessing chemical contamination; and building models required for long term system operations. The program will include space flight studies in the near future to determine if these life support technologies will function in microgravity. When a bioregenerative system is finally incorporated into a mission, the conversion from a picnic and resupply mentality to permanent recycling and independence from earth will be complete.
    Keywords: Man/System Technology and Life Support
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 11; 2; 31-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-24
    Description: Researchers report the results of experiments conducted onboard MIR in 1990, 1995, and 1996 in raising edible crops. In the 1990 experiment, radishes and Chinese cabbage were grown successfully, though the experimental plants were up to four times smaller than controls at harvest. The 1995 experiment in growing wheat through a complete life cycle was not completed. The 1996 experiment was successful in growing wheat through a complete life cycle to the seed stage. No seeds developed on any of the 279 ears harvested in that experiment. Reasons for the seedless development are explored.
    Keywords: Man/System Technology and Life Support
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 4; 2; P71-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-24
    Description: The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of 'Norland' potato (Solanum tuberosum L.) was determined under high (412 varies as mol m-2s-1) and low (263 varies as mol m-2s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 micromoles m-2s-1, and leaf starch increased from 70 to 129 and 118 mg g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 micromoles mol-1) or CO2 saturation point (1100-1200 micromoles mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (approximately 15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (〉 or = 12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon,then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.
    Keywords: Man/System Technology and Life Support
    Type: Journal of the American Society for Horticultural Science. American Society for Horticultural Science (ISSN 0003-1062); Volume 121; 2; 264-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-24
    Description: A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.
    Keywords: Man/System Technology and Life Support
    Type: Journal of the American Society for Horticultural Science. American Society for Horticultural Science (ISSN 0003-1062); Volume 121; 3; 483-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-12-03
    Description: The maintenance of optimal levels of oxygen in the gaseous environment of a plant growth chamber during light and dark periods is an essential criterion for the correct growth of plants. The use of solid oxide electrolyzers to control the oxygen levels by removing the excess gaseous oxygen during periods of illumination and full-scale photosynthesis is described. A part of the oxygen removed can be stored and supplied back to the plants during dark periods. The excess oxygen can be used by the crew. The electrolizer can be additionally used in its open circuit mode, to sense the oxygen concentrations in the plant chamber. The solid oxide electrolysis process is described.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings of the 6th European Symposium on Space Environmental Control Systems, volume 2; Volume 2; 771-775; ESA-SP-400-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-12-03
    Description: NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.
    Keywords: Man/System Technology and Life Support
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; Volume 1; 283-294; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-12-03
    Description: The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings from the 1998 Occupational Health Conference: Benchmarking for Excellence; 170-177; NASA/CP-1999-208543
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2004-12-03
    Description: The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.
    Keywords: Man/System Technology and Life Support
    Type: Summer Research Internships at Biosphere 2 Center; NASA/CR-97-207804
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-12-03
    Description: Two systems are currently being integrated into the F18 Hornet support aircraft at NASA Dryden Flight Research Center (DFRC). The first system is the Aircrew Personal Environmental Control System (APECS). The system is designed to increase aircrew performance by combating heat stress in the cockpit. The second system is the Extended Duration Oxygen System (EDOX). This system will provide additional redundancy and oxygen system duration to the F18 without extensive modification to the current system.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-12-03
    Description: Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.
    Keywords: Man/System Technology and Life Support
    Type: Fortieth Anniversary: Pioneering the Future; 367-381; NASA/CP-1998-207191
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2004-12-03
    Description: Extensive use and reliance on laboratory fume hoods exist at LeRC for the control of chemical hazards (nearly 175 fume hoods). Flow-measuring devices are necessary to continually monitor hood performance. The flow-measuring device should he tied into an energy management control system to detect problems at a central location without relying on the users to convey information of a problem. Compatibility concerns and limitations should always be considered when choosing the most effective flow-measuring device for a particular situation. Good practice on initial hood design and placement will provide a system for which a flow-measuring device may be used to its full potential and effectiveness.
    Keywords: Man/System Technology and Life Support
    Type: Proceeding from the 1997 NASA Occupational Health Conference: Achieving Quality in Occupational Health; 180-181; NASA/CP-97-206321
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2004-12-03
    Description: In 1995, Lewis participated in a pilot test of Lead Specifications. The Specifications were sponsored by the Center to Protect Worker's Rights (CPWR). Entitled "Model Specifications for the Protection of Worker's from Lead on Steel Structures", one aspect of this endeavor was to test and compare several lead abatement technologies. The project overview, objectives, team, and requirements as well as abatement methods and materials are outlined.
    Keywords: Man/System Technology and Life Support
    Type: Proceeding from the 1997 NASA Occupational Health Conference: Achieving Quality in Occupational Health; 172-174; NASA/CP-97-206321
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-12-03
    Description: This project presents guidelines for the integration of the Intelligent Crop Scheduler (ICS) developed by Leon (1995) with a version of the Biological Life Support System (BLSS) simulation based on the work by Volk and Rummel (1987). These guidelines will also aid in defining the appropriate model detail of simulation-based schedulers. ICS determines what, when and how much to plant of different crops. These decisions are made such that the critical reservoir levels are maintained close to their nominal or desired settings during the duration of the mission. Initial feasibility of the approach has been demonstrated using simplified implementations of the scheduling approach and CELSS 'world' model developed by the investigator at JSC in the Summer of 1995. The BLSS model incorporates more detail. The increased fidelity is in terms of added mass-regeneration formalism (biochemical stoichiometry), more plants, and more accurate modeling of the mechanical system. This report describes the main features of the Crop scheduler and CELSS simulator, discusses integration issues, and provides with detailed guidelines for the integration of these two applications.
    Keywords: Man/System Technology and Life Support
    Type: National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996; Volume 2; NASA-CR-202008-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-12-03
    Description: The objective of this study is to investigate the effects of cold only, commercially available gloves only, and the combination of gloves and cold on the blood flow and surface (skin) temperature of the medial and proximal phalanxes of digit 3, the metacarpal region of the hand, and the forearm.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 573-575
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Nutrition deficiencies affect multiple systems including muscle, bone, cardiovascular, renal, and gastrointestinal. Humans require many nutrients, ranging from the macronutrients (water, protein, energy sources) to micronutrients (minerals, vitamins). The ability to withstand shortfalls in intake of individual nutrients ranges from one or two days (e.g., water) to weeks (energy, protein, potassium) and months (some vitamins, minerals). In addition to putting humans at risk for nutrition deficiencies, space flight may also change the absorption, hence the pharmacodynamics, of several important medications. Papers given in this session dealt with all of these nutritional and pharmacological factors related to space flight: (1) Protein metabolism and muscle formation. (2) Pharmacodynamics. (3) Calcium metabolism and bone formation/resorption. and (4) Fluid and electrolytes.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 452-454
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-12-03
    Description: Approximately fifty percent of the potable water supplied to the Russian cosmonauts, American astronauts, and other occupants of the current Russian Mir Space Station is produced by the direct recycle of water from humidity condensate. The remainder comes from ground supplied potable water that is delivered on a Progress resupply spacecraft, or processed fuel cell water transferred from the Shuttle. Reclamation of water for potable and hygiene purposes is considered essential for extended duration missions in order to avoid massive costs associated with resupplying water from the ground. The Joint U.S/Russian Phase 1 program provided the U.S. the first opportunity to evaluate the performance of water reclamation hardware in microgravity. During the Phase I program, the U.S. collected recycled water, stored water, and humidity condensate samples for chemical and microbial evaluation. This experiment was conducted to determine the potability of the water supplied on Mir, to assess the reliability of the water reclamation and distribution systems, and to aid in developing water quality monitoring standards for International Space Station.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 345-347
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Dr. Musgrave has acquired extensive experience during a distinguished and impressive career that includes flying as an astronaut on six Shuttle missions, participating in many hours of extravehicular activity, and contributing his myriad talents toward great public service, especially in the area of education. He has a unique perspective as a physician, scientist, engineer, pilot, and scholar. His interests and breadth of knowledge, which astound even the seasoned space enthusiast, have provided the space program an extraordinary scientific and technical expertise. Dr. Musgrave presented a personal perspective on space flight with particular emphasis on extravehicular activity (EVA or space walking), which was copiously illustrated with photographs from many space missions. His theme was two fold: the exacting and detailed preparations required for successful execution of a mission plan and a cosmic view of mankind's place in the greater scheme of things.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings from the 1998 Occupational Health Conference: Benchmarking for Excellence; 92-93; NASA/CP-1999-208543
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2004-12-03
    Description: In recent decades, the concentration of methane in the earth's atmosphere increased 1-2% annually. It's rate of increases, combined with methane's effectiveness as a greenhouse gas, has led to an intensive research effort to determine the sources and sinks of the gas in the environment. Biosphere 2 offers a unique opportunity to contribute to the effort because it lacks a major photochemical sink present in the Earth's atmosphere. Researchers can therefore concentrate on biological processes involved in methane cycles. Wetlands are a large source of atmospheric methane, due to anoxic conditions in the sediments and the abundance of organic materials. In order to determine if these conditions in Biosphere 2 also promote methane production, this study looked for the fluxes of methane and methods of transport of the gas from from the water and sediments to the atmosphere in the Marsh Biome. Fluxes of methane from the sediments and waters were measured using static chambers, peepers, and leaf bags. Fluxes and vertical profiles of methane in the sediments show that substantial amounts of methane are being produced in the marsh and are being transported into the Biosphere 2 environment.
    Keywords: Man/System Technology and Life Support
    Type: Summer Research Internships at Biosphere 2 Center; NASA/CR-97-207804
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2004-12-03
    Description: This paper presents an alternative concept that employs existing technologies and off-the-shelf components to liquefy gaseous oxygen from an in-situ propellant production (ISPP) unit and to store the liquid oxygen without boil-off loss. A primary goal is to minimize active components with a secondary goal of designing the active component in a protected or failure-free environment. The resulting design requires only one active component, a compressor operating in a closed and consequently more protected system. The design avoids pumps as active components by employing cryopumping for gaseous oxygen (GOX) and gravity transfer for liquid oxygen (LOX).
    Keywords: Man/System Technology and Life Support
    Type: In Situ Resource Utilization (ISRU II) Technical Interchange Meeting; 25-26; NASA/CR-97-207784
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2004-12-03
    Description: Regulations require oxygen usage by commercial airliners during check out and during certain aircraft configurations. This oxygen is drawn from a high pressure on-board cylinder storage system. In a typical aircraft, oxygen cylinder removal for oxygen ground servicing is conducted every 4 to 6 weeks. In the early 1990's, it was recognized that an on-board oxygen generating system (OBOGS) could provide an economic advantage for the airlines. An in-flight service evaluation (ISE) of the SPE-OBOGS by United Technologies Corporate is in the planning stage.
    Keywords: Man/System Technology and Life Support
    Type: Space Electrochemical Research and Technology; 133-146; NASA-CP-3337
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2004-12-03
    Description: Flour tortillas are a favorite bread item for the Shuttle astronauts and have been used on most Shuttle missions since 1985. Spoilage problems were encountered with commercial tortillas on missions longer than 7 days. A shelf stable tortilla with a shelf life of 6 months was developed by modifying the formulation to reduce the water activity (a(sub w)) below 0.90 and packaging them in a reduced oxygen atmosphere. The water activity was reduced by substituting glycerin for some of the water in the basic tortilla formula. Reduction of the oxygen content was accomplished by packaging in a high-barrier container with a nitrogen atmosphere and including an oxygen scavenger in the package. Additional chemicals were added to the formula to lower the pH and further inhibit mold growth. The shelf life was verified by storage studies at 22 deg. C. The shelf stable tortillas have been well accepted by astronauts and have been used on eight Shuttle missions with durations beyond 7 days.
    Keywords: Man/System Technology and Life Support
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; 263-269; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2004-12-03
    Description: The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-12-03
    Description: Quantitative analysis of human performance in microgravity is important for both scientific investigations and spacecraft engineering design. By collecting and evaluating the kinematics and kinetics data of astronauts in space, it becomes possible to characterize human motor strategies, postural behavior in weightlessness, improve the design of orbital modules, help maintain a quiescent microgravity for acceleration-sensitive material science and life science experiments (NASA JSC, 1996), and optimize the human operative capabilities during long-duration space missions. Hence, there is a need for a precise measurement of the forces and moments exerted by the astronauts on the space station and their postures and movements.
    Keywords: Man/System Technology and Life Support
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 179-181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2004-12-03
    Description: As the environmental changes occur throughout the world in rapid rate, we need to have further understandings for our planet. Since the ecosystems are so complex, it is almost impossible for us to integrate every factor. However, mathematical models are powerful tools which can be used to simulate those ecosystems with limited data. In this project, I collected light intensity, canopy leaf temperature and Air Handler (AHU) temperature, and nitrogen concentration in the leaves for different profiles in the rainforest mesocosm. These data will later be put into mathematical models such as "big-leaf" and "sun/shade" models to determine how these factors will affect CO2 exchange in the rainforest. As rainforests are diminishing from our planet and their existence is very important for all living things on earth, it is necessary for us to learn more about the unique system of rainforests and how we can co-exist rather than destroy.
    Keywords: Man/System Technology and Life Support
    Type: Summer Research Internships at Biosphere 2 Center; NASA/CR-97-207804
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-12-03
    Description: Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.
    Keywords: Man/System Technology and Life Support
    Type: A Designer's Guide to Human Performance Modelling; A9-1 - A9-15; AGARD-AR-356
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-11-16
    Description: During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.
    Keywords: Man/System Technology and Life Support
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; Volume 1; 211-220; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-11-16
    Description: In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.
    Keywords: Man/System Technology and Life Support
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; Volume; 195-202; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-11-16
    Description: The National Aeronautics and Space Administration (NASA) places highest priority on the safety of its astronauts and support personnel. Because this is so, and to ensure the continuation of this safety, the agency has undertaken to thoroughly research and develop and provide personal protective equipment (PPE) and individual life support systems (LSS) in support of manned spaceflight. It is probable that technology developed for manned spaceflight in the field of PPE and individual LSS can be utilized in certain industrial/commercial endeavors. In an attempt to determine these other uses for this PPE and individual LSS, the Space Suit Systems Branch of the NASA JSC Crew Systems Division initiated a research project designed to access potential common technology that could benefit industry. Such dual-use technology transfer could eventually involve a joint effort by Government and industry. The research project took place over several months and involved discussions with various manufacturers/suppliers/users, as well as regulatory agencies and industries, of PPE and individual LSS. Research data was compiled and evaluated and a summary of significant findings is presented for identifying and establishing opportunities for future cooperation between Government and industry in the field of PPE and individual LSS.
    Keywords: Man/System Technology and Life Support
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; 174-185; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-11-16
    Description: Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.
    Keywords: Man/System Technology and Life Support
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; Volume 1; 167-173; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...