ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (2,493)
  • Earth Resources and Remote Sensing  (2,164)
  • Aircraft Design, Testing and Performance
  • Earth model, also for more shallow analyses !
  • Life and Medical Sciences
  • 2005-2009  (2,213)
  • 2000-2004  (3,430)
  • 1950-1954  (734)
  • 1930-1934  (392)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2009-01-06
    Description: Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity-even of unmagnetized isothermal material-can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in 'non-self-gravitating' simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Alyssa A -- Rosolowsky, Erik W -- Borkin, Michelle A -- Foster, Jonathan B -- Halle, Michael -- Kauffmann, Jens -- Pineda, Jaime E -- P41 RR013218/RR/NCRR NIH HHS/ -- P41 RR013218-12/RR/NCRR NIH HHS/ -- U54 EB005149/EB/NIBIB NIH HHS/ -- U54 EB005149-05/EB/NIBIB NIH HHS/ -- U54-EB005149/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Jan 1;457(7225):63-6. doi: 10.1038/nature07609.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Initiative in Innovative Computing at Harvard, Cambridge, Massachusetts 02138, USA. agoodman@cfa.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122636" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Astronomy ; Carbon Monoxide/analysis ; Computer Simulation ; *Gravitation ; Stars, Celestial/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-01-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):32-5. doi: 10.1126/science.323.5910.32.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19119196" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antarctic Regions ; Astronomy ; Australia ; *Autopsy ; Cause of Death ; Coroners and Medical Examiners ; Forensic Pathology ; Humans ; Male ; Methanol/*poisoning ; New Zealand ; Poisoning/diagnosis ; United States ; United States Government Agencies
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.
    Keywords: Earth Resources and Remote Sensing
    Type: To be published in Journal of Geophysical Research/American Geophysical Union
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future directions) The Science Organizing Committee: Co-chairs: Augusto Damineli (Brazil) & Theodore R. Gull (USA). Members: D. John Hillier (USA), Gloria Koenigsberger (Mexico), Georges Meynet (Switzerland), Nidia Morrell (Chile), Atsuo T. Okazaki (Japan), Stanley P. Owocki (USA), Andy M.T. Pol- lock (Spain), Nathan Smith (USA), Christiaan L. Sterken (Belgium), Nicole St Louis (Canada), Karel A. van der Hucht (Netherlands), Roberto Viotti (Italy) and GerdWeigelt (Germany)
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the 〉 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an intermediate mass black hole.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m(sup 2), 20 W/m(sup 2), 5 mm/day, 0.3 mm/day, and 100 mm, respectively. These results are highly relevant to continental- to global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. Based on the results presented here, we expect that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA's Global Forecast System (GFS).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 〈 0 〈 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 〈 0 〈 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy (E(sub peak)) of the nuF(nu) spectrum and the isotropic radiated energy, E(sub iso). Since most gamma-ray bursts (GRBs) have E(sub peak) above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate E(sub peak) values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected ; one can accurately fit E(sub peak) and E(sub iso) and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of March 2009, there were 45 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 47 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine spectral parameters. For those bursts with spectroscopic redshifts.. we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 86 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift, bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: An earlier issue presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA s Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit.
    Keywords: Earth Resources and Remote Sensing
    Type: The Earth Observer; Volume 21; Iss. 3; 4-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-05
    Description: Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-02
    Description: The amount of solar radiation reflected back to space or reaching the Earth's surface is primarily governed by the amount of cloud cover and, to a much lesser extent, by Rayleigh scatteri ng, aerosols, and various absorbing gases (e.g., O3, NO2, H2O). A useful measure of the effect of cloud plus aerosol cover is given by the amount that the 331 run Lambert Equivalent Reflectivity (LER) ofa scene exceeds the surfuce reflectivity for snow/ice-free scenes after Rayleigh scattering has been removed. Twenty-eight years of reflectivity data are available by overlapping data from several satellites: N7 (Nimbus 7, TOMS; 331 nm) from 1979 to 1992, SBUV-2 series (Solar Backscatter Ultraviolet, NOAA; 331 nm) 1985 to 2007, EP (Earth-Probe, TOMS; 331 nm) 1997 to 2006, SW (SeaWiFS; 412 nm) 1998 to 2006, and OMI (Ozone Measuring Instrument; 331 nm) 2004-2007. Only N7 and SW have a sufficiently long data record, Sun-synchronous orbits, and are adequately calibrated for long-term reflectivity trend estimation. Reflectivity data derived from these instruments and the SBUV-2 series are compared during the overlapping years. Key issues in determining long-term reflecti vity changes that have occurred during the N7 and SW operating periods are discussed. The largest reflectivity changes in the 412 nm SW LER and 331 nm EP LER are found to occur near the equator and are associated with a large EI Nino-Southern Oscillation event. Most other changes that have occurred are regional, such as the apparent cloud decrease over northern Europe since 1998. The fractional occurrence (fraction of days) of high reflectivity values over Hudson Bay, Canada (snow/ice and clouds) appears to have decreased when comparing reflectivity data from 1980 to 1992 to 1997-2006, suggesting shorter duration of ice in Hudson Bay since 1980.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This article presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA's Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit. The second half of the story is presented in another issue of this journal
    Keywords: Earth Resources and Remote Sensing
    Type: The Earth Observer; Volume 21; Issue 2; 13-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.
    Keywords: Astronomy
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Volume 113; Issue 10; 2130-2141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to map areas of snow that are actively melting.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: The Arctic is home to many indigenous peoples, including those who depend on reindeer herding for their livelihood, in one of the harshest environments in the world. For the largely nomadic peoples, reindeer not only form a substantial part of the Arctic food base and economy, but they are also culturally important, shaping their way of life, mythologies, festivals and ceremonies. Reindeer pastoralism or husbandry has been practiced by numerous peoples all across Eurasia for thousands of years and involves moving herds of reindeer, which are very docile animals, from pasture to pasture depending on the season. Thus, herders must adapt on a daily basis to find optimal conditions for their herds according to the constantly changing conditions. Climate change and variability plus rapid development are increasingly creating major changes in the physical environment, ecology, and cultures of these indigenous reindeer herder communities in the North, and climate changes are occurring significantly faster in the Arctic than the rest of the globe, with correspondingly dramatic impacts (Oskal, 2008). In response to these changes, Eurasian reindeer herders have created the EALAT project, a comprehensive new initiative to study these impacts and to develop local adaptation strategies based upon their traditional knowledge of the land and its uses - in targeted partnership with the science and remote sensing community - involving extensive collaborations and coproduction of knowledge to minimize the impacts of the various changes. This chapter provides background on climate and development challenges to reindeer husbandry across the Arctic and an overview of the EALAT initiative, with an emphasis on indigenous knowledge, remote sensing, Geographic Information Systems (GIS), and other scientific data to 'co-produce' datasets for use by herders for improved decision-making and herd management. It also provides a description of the EALAT monitoring data integration and sharing system and portal being developed for reindeer pastoralism. In addition, the chapter provides some preliminary results from the EALAT Project, including some early remote sensing research results.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)〉 or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Volume 113; Supplement 1; S110-S122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing Environment (ISSN 0034-4257); Volume 113; Issue 11; 2366-2379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: Several recent studies have found that the brightness of clear sky systematically increases near clouds. Understanding this increase is important both for a correct interpretation of observations and for improving our knowledge of aerosol-cloud interactions. However, while the studies suggested several processes to explain the increase, the significance of each process is yet to be determined. This study examines one of the suggested processes three-dimensional (3-D) radiative interactions between clouds and their surroundings by analyzing a large dataset of MODIS (Moderate Resolution Imaging Spectroradiometer) observations over the Northeast Atlantic Ocean. The results indicate that 3-D effects are responsible for a large portion of the observed increase, which extends to about 15 km away from clouds and is stronger (i) at shorter wavelengths (ii) near optically thicker clouds and (iii) near illuminated cloud sides. This implies that it is important to account for 3-D radiative effects in the interpretation of solar reflectance measurements over clear regions in the vicinity of clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass 〉85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-05
    Description: The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-05
    Description: In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.
    Keywords: Earth Resources and Remote Sensing
    Type: Geoscience and Remote Sensing (ISSN 0196-2892); Volume 47; Issue 12; 4095-4114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-27
    Description: This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1066 , NASA ARMD Fundamental Aeronautics Program 2009 Annual Review; 29 Sep. 1 Oct. 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: GRACE is unique among remote sensing systems in its ability to "see" below the first few centimeters of the land surface, and it has provided the first global observations of total terrestrial water storage variations. Now that we have more than seven years of GRACE measurements, it is tempting to look for trends in the data. Auxiliary information is almost always required in order to arrive at the correct diagnosis of an apparent trend. Here we will present a map of GRACE derived terrestrial water storage tendencies since 2002 and attempt to explain which are likely to continue due to climatic or human pressures, and which are short-term expressions of natural interannual variability.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 American Geophysical Union Conference; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of 〉 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN937
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.
    Keywords: Astronomy
    Type: Accretion and Ejection in AGN: A Global View; Jun 22, 2009 - Jun 26, 2009; Como; Italy|The Energetic Cosmos: from Suzaku to Astro-H; Jun 29, 2009 - Jul 02, 2009; Otaru; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: At redshifts, z〉l, the rest-frame mid-UV is brought into view of large, ground-based telescopes. Here, we report on a study of the potential of the rest-frame UV spectrum for deriving the age since the last major episode of star formation in a galaxy. We base this investigation on wide-band (0.2-1.0 microns), low-resolution (R-1000) spectra of single stars in Hubble's Next Generation Spectral Library (NGSL). We find that a combination of mid-UV spectral indices and colors can indeed yield the age of a stellar population, but only if light from the stellar population is unreddened.
    Keywords: Astronomy
    Type: International Astronomical Union (IAU) XXVII; Aug 03, 2009 - Aug 14, 2009; Rio de Janeiro; Brazil|VIIth Marseille International Cosmology Conference. Harvesting the Desrt: The Universe betrween Redshifts 1 and 3; Jun 29, 2009 - Jul 03, 2009; Marseille; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The International X-Ray Observatory, a joint NASA-ESA-JAXA effort, is a next generation X-ray telescope that will answer many fundamental questions in contemporary astrophysics such as how do supermassive black holes influence galaxy evolution and how do galaxy clusters evolve (and how does this constrain dark energy and dark matter)? As a powerful astronomical observatory, IXO will also address questions ranging from the neutron star equation of state to the distribution and dynamical state of intergalactic material. X-ray spectroscopy, polarimetry, and timing studies provided by IXO's instruments will give detailed measures of abundances, temperatures, densities, magnetic fields and gravitational potentials. These measurements will be complementary to the next generation of observatories such as ALMA, JWST, and future ground-based optical-NIR telescopes. This mission will be ready for launch in the 2020-2021 timeframe and will launch on an Atlas V or Ariane V launch vehicle to L2. It employs a deployable optical bench to achieve the 20 meter focal length and a suite of five instruments. This talk will describe the motivating science for this mission as well as the spacecraft, instruments and optics
    Keywords: Astronomy
    Type: Steward Colloquium; Apr 15, 2009 - Apr 17, 2009; Arizona; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific examples will be cited, including CloudSat's relocation (to accommodate a new viewing angle for the CALIPSO satellite), Glory's replan to move closer to PARASOL, and OCO's long term plans to minimize on-orbit operations costs while maintaining safety. In all cases, safety is ensured, science returns are enhanced, and operational flexibility is retained to the maximum extent possible.
    Keywords: Earth Resources and Remote Sensing
    Type: IAA Symposium on Small Satellites for Earth Observation; May 04, 2009 - May 08, 2009; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electro~nagnetic counterparts, will be highlighted.
    Keywords: Astronomy
    Type: Observational Signatures of Black Hole Mergers Meeting; Mar 30, 2009 - Apr 01, 2009; Maryland; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from the inspiral and merger of massive black hole binaries at high redshifts with large signal-to-noise ratios (SNRs). These high-SNR observations will make it possible to extract physical parameters such as hole masses and spins, luminosity distance, and sky position from the observed waveforms. LISA'S effectiveness as a tool for astrophysics will be influenced by the precision with which these parameters can be measured. In addition, the practicality of coordinated observations with other instruments will be affected by the temporal evolution of parameter errors such as sky position. We present estimates of parameter errors for the special case of non-spinning black holes. Our focus is on the contribution of the late inspiral and merger portions of the waveform, a regime which typically dominates the SNR but has not been extensively studied due to the historic lack of a precise description of the waveform. Advances in numerical relativity have recently made such studies possible. Initial results suggest that the portion of the waveform beyond the Schwarzchild inner-most stable circular orbit can reduce parameter uncertainties by up to a factor of two.
    Keywords: Astronomy
    Type: 2009 Meeting of the American Physical Society; May 02, 2009 - May 05, 2009; Colorado; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The author presents the current status of the RXTE/PCA Calibration, with emphasis on recent updates to the energy scale and the background subtraction. A new treatment of the Xenon K-escape line removes the largest remaining residual in the previously distributed matrices. Observations of Sco X-1 made simultaneously with Swift XRT, expressly for the purpose of cross calibrating the response to bright sources, are presented.
    Keywords: Astronomy
    Type: 4th International Astronomical Consortium for High Energy Calibration; Apr 25, 2009 - Apr 30, 2009; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope is the successor to Hubble and will be launched into space in 2013. It is not only bigger than Hubble, but is cooled to 225 degrees below zero Centigrade in order to detect the infrared light, or heat radiation, from distant stars and galaxies. I will discuss how Webb's scientific discoveries will take us beyond Hubble, and describe some of the recent progress we have made in its construction.
    Keywords: Astronomy
    Type: Museum of Natural History: Exhibit; Jan 30, 2009 - Jan 31, 2009; Michigan; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to 〉300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
    Keywords: Astronomy
    Type: Optical Fabrication and Testing; Jan 14, 2009; Pennsylvania; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.
    Keywords: Astronomy
    Type: Third Workshop on Titan Chemistry - Observations, Experiments, Computations, and Modeling; Feb 26, 2009 - Feb 28, 2009; San Juan; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: Spitzer has been used to monitor the mid-IR evolution of SN 1987A over a 5 year period as it develops into a supernova remnant through interaction with its surrounding environment. This interaction is dominated by the collision of the ejecta with the pre-existing equatorial ring. The mid-IR continuum indicates an increasing mass of shock-heated silicate dust, but without any significant change in temperature of the dust grains. Comparison of the IR and X-ray evolution of the remnant can be used to infer plasma conditions and the processing of the dust in the shock-heated X-ray emitting gas.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.
    Keywords: Astronomy
    Type: Satellite Workshop: Dynamics of Outer Planetary Systems; Nov 09, 2009 - Nov 11, 2009; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.
    Keywords: Astronomy
    Type: M09-0752 , Chandra Calibration Workshop; Sep 21, 2009; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Characterizing soil moisture (theta) variability is important for inferring high-resolution information from coarse estimates provided by remote sensors. In this study, we analyze the spatial variability and scale invariance of high-resolution theta estimates collected in two contrasting semiarid areas, Arizona (AZ) and Sonora (SON), during the Soil Moisture Experiment - North American Monsoon in 2004 (SMEX04- NAME). Results reveal that as the mean theta condition (〈theta〉) becomes drier, the spatial standard deviation becomes smaller in both domains. The coefficient of variation of theta decreases with 〈theta〉 in SON, but does not display a clear tendency with 〈theta〉 in AZ. We also found the presence of scale invariance and multifractality in the range of support scales from 51.2 km to 0.8 km for all soil moisture fields in the two regions. The multifractal properties of theta are clearly linked to 〈theta〉 in SON, while the relation is affected by more dispersion in AZ. We argue this is due to differences in the dynamic (rainfall) and static (vegetation) controls on theta in the two domains.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Arid Environments; 74; 572-578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.
    Keywords: Astronomy
    Type: GSFC.CP.4828.2011 , The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies; Oct 19, 2009 - Oct 23, 2009; Shanghai; China|ASP Conference Series; 439; 115-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Surface mining and reclamation is the dominant driver of land cover land use change (LCLUC) in the Central Appalachian Mountain region of the Eastern U.S. Accurate quantification of the extent of mining activities is important for assessing how this LCLUC affects ecosystem services such as aesthetics, biodiversity, and mitigation of flooding.We used Landsat imagery from 1976, 1987, 1999 and 2006 to map the extent of surface mines and mine reclamation for eight large watersheds in the Central Appalachian region of West Virginia, Maryland and Pennsylvania. We employed standard image processing techniques in conjunction with a temporal decision tree and GIS maps of mine permits and wetlands to map active and reclaimed mines and track changes through time. For the entire study area, active surface mine extent was highest in 1976, prior to implementation of the Surface Mine Control and Reclamation Act in 1977, with 1.76% of the study area in active mines, declining to 0.44% in 2006. The most extensively mined watershed, Georges Creek in Maryland, was 5.45% active mines in 1976, declining to 1.83% in 2006. For the entire study area, the area of reclaimed mines increased from 1.35% to 4.99% from 1976 to 2006, and from 4.71% to 15.42% in Georges Creek. Land cover conversion to mines and then reclaimed mines after 1976 was almost exclusively from forest. Accuracy levels for mined and reclaimed cover was above 85% for all time periods, and was generally above 80% for mapping active and reclaimed mines separately, especially for the later time periods in which good accuracy assessment data were available. Among other implications, the mapped patterns of LCLUC are likely to significantly affect watershed hydrology, as mined and reclaimed areas have lower infiltration capacity and thus more rapid runoff than unmined forest watersheds, leading to greater potential for extreme flooding during heavy rainfall events.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; 113; 1; 62-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
    Keywords: Earth Resources and Remote Sensing
    Type: 2009 IEEE International Geoscience and Remote Sensing Symposium: Earth Observation - Origins to Applications; Jul 12, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occurred around the periastron passage of the source. but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first "flare" (lasting about 9 days from M.ID 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab. and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL. RXTE and Suzaku. First results of these observations are presented. with special emphasis on the cyclotron lines present in the X-ray spectrum of the source. as well as in the pulse period and energy dependent pulse profiles of the source
    Keywords: Astronomy
    Type: The Extreme Sky: Sampling the Universe above 10 keV; Oct 13, 2009 - Oct 17, 2009; Otranto; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN2267 , Biogeosciences; 6; 2369-2381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: We present new results of Cassini s T9 flyby with complementary observations from T18. Based on Cassini plasma spectrometer (CAPS) and Cassini magnetometer (MAG), compositional evidence shows the upstream flow for both T9 and T18 appears composed of light ions (H+ and H2+), with external pressures approx.30 times lower than that for the earlier TA flyby where heavy ions dominated the magnetospheric plasma. When describing the plasma heating and sputtering of Titan s atmosphere, T9 and T18 can be considered interactions of low magnetospheric energy input. On the other hand, T5, when heavy ion fluxes are observed to be higher than typical (i.e., TA), represents the limiting case of high magnetospheric energy input to Titan s upper atmosphere. Beyond this distance the corona forms a neutral torus that surrounds Saturn. The T9 flyby unexpectedly resulted in observation of two wake crossings referred to as Events 1 and 2. Event 2 was evidently caused by draped magnetosphere field lines, which are scavenging pickup ions from Titan s induced magnetopause boundary with outward flux approx.2 x 10(exp 6) ions/sq cm/s. The composition of this out flow is dominated by H2+ and H+ ions. Ionospheric flow away from Titan with ion flux approx7 x 10(exp 6) ion/sq cm/s is observed for Event 1. In between Events 1 and 2 are high energy field aligned flows of magnetosphere protons that may have been accelerated by the convective electric field across Titan s topside ionosphere. T18 observations are much closer to Titan than T9, allowing one to probe this type of interaction down to altitudes approx.950 km. Comparisons with previously reported hybrid simulations are made.
    Keywords: Astronomy
    Type: Planetary and Space Science; 58; 3; 327-350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-12
    Description: In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2009-214597/REV , SSPO-MLLHV-TIP-20080506 , ARC-E-DAA-TN556
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: We present new HST far-UV spectroscopy of two dozen hot evolved stars in NGC 2808, a massive globular cluster with a large population of "blue-hook" stars. The blue-hook stars are found in ultraviolet color-magnitude diagrams of the most massive globular clusters, where they fall at luminosities immediately below the hot end of the horizontal branch (HB), in a region of the HR diagram unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that these subluminous HB stars are very likely the progeny of stars that undergo extensive internal mixing during a late He-core flash on the white dwarf cooling curve. This flash mixing leads to hotter temperatures and an enormous enhancement of the surface He and C abundances; the hotter temperatures and associated decrease in the hydrogen opacity shortward of the Lyman limit makes the stars brighter in the extreme UV but appear sub luminous in the UV and optical. Our far-UV spectroscopy demonstrates that, relative to normal HB stars at the same color, the blue-hook stars of NGC 2808 are hotter and greatly enhanced in He and C, thus providing unambiguous evidence of flash mixing in the subluminous population. Although the C abundance in the blue-hook stars is orders of magnitude larger than that in the normal HB stars, the atmospheric C abundance in both the blue-hook and normal HB stars appears to be affected by gravitational settling. The abundance variations seen in C, Si, and the Fe-peak elements indicate that atmospheric diffusion is at play in our sample, with all of our hot subdwarfs at 25,000 K to 50,000 K exhibiting large enhancements of the iron-peak elements. The hottest subdwarfs in our blue-hook sample may be pulsators, given that they fall in the temperature range of newly-discovered pulsating subdwarfs in omega Cen.
    Keywords: Astronomy
    Type: GSFC.JA.5514.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Pulsed laser signals and a time gated receiver are used to isolate the laser echo signals from the surface, to reject laser photons scattered in the atmosphere, and measure the surface height and scattering profile in the path. We have recently completed a second design study for the space instrument. For the study, we selected a nominal sun-synchronous orbit with an altitude of 400 km and equator crossing time of 1:30 pm, and a receiver telescope with 1.5 m diameter.
    Keywords: Earth Resources and Remote Sensing
    Type: 3rd International Workshop on Active CO2 DIAL Remote Sensing; Oct 13, 2009 - Oct 15, 2009; Hampton, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: A profiling airborne LiDAR is used to estimate the forest resources of Hedmark County, Norway, a 27390 square kilometer area in southeastern Norway on the Swedish border. One hundred five profiling flight lines totaling 9166 km were flown over the entire county; east-west. The lines, spaced 3 km apart north-south, duplicate the systematic pattern of the Norwegian Forest Inventory (NFI) ground plot arrangement, enabling the profiler to transit 1290 circular, 250 square meter fixed-area NFI ground plots while collecting the systematic LiDAR sample. Seven hundred sixty-three plots of the 1290 plots were overflown within 17.8 m of plot center. Laser measurements of canopy height and crown density are extracted along fixed-length, 17.8 m segments closest to the center of the ground plot and related to basal area, timber volume and above- and belowground dry biomass. Linear, nonstratified equations that estimate ground-measured total aboveground dry biomass report an R(sup 2) = 0.63, with an regression RMSE = 35.2 t/ha. Nonstratified model results for the other biomass components, volume, and basal area are similar, with R(sup 2) values for all models ranging from 0.58 (belowground biomass, RMSE = 8.6 t/ha) to 0.63. Consistently, the most useful single profiling LiDAR variable is quadratic mean canopy height, h (sup bar)(sub qa). Two-variable models typically include h (sup bar)(sub qa) or mean canopy height, h(sup bar)(sub a), with a canopy density or a canopy height standard deviation measure. Stratification by productivity class did not improve the nonstratified models, nor did stratification by pine/spruce/hardwood. County-wide profiling LiDAR estimates are reported, by land cover type, and compared to NFI estimates.
    Keywords: Earth Resources and Remote Sensing
    Type: IUFRO Division Extending Forest Inventory and Monitoring over Space and Time; May 19, 2009 - May 22, 2009; Quebec City; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for NASA's EOS missions. Two nearly identical copies have flown on the Terra and Aqua spacecraft for more than 9 years and 6 years since their launch in December 1999 and May 2002, respectively. MODIS observations and associated data products have been widely used by the science community and users worldwide for studies of Earth's system of land, oceans, and atmosphere. MODIS was developed based on the desire of the science community to extend and enhance heritage sensors' data records. It was designed with enhancements made over its heritage sensors in terms of its spectral, spatial, and radiometric characteristics. It is a cross-track scanning radiometer, that uses a two-sided scan mirror, collecting data in 36 spectral bands covering spectral regions of visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). The VIS, NIR, and SWIR bands (bands 1-19 and 26), which make measurements of daytime surface reflected radiances, are referred to as the reflective solar bands (RSB). The MWIR and LWIR bands (20-25 and 27-36), which measure both the daytime and nighttime scene emissive radiances, are thus referred to as the thermal emissive bands (TEB). In this paper, we provide an overview of MODIS instrument calibration and characterization methodologies, activities, and results from pre-launch to post launch, with emphasis on the lessons learned from its design to on-orbit operation. Currently, both instruments are operated normally and all the on-orbit calibration activities are performed on a regular basis with some at slightly reduced frequencies. The TEB responses have been extremely stable with less than 0.3% change per year. For the RSB, the changes are wavelength and scan angle dependent with the largest changes in the VIS spectral bands. As both Terra and Aqua MODIS continue to operate beyond their prime missions, constant effort is still needed to maintain instrument and calibration and data product quality. This paper shows that the lessons from Terra MODIS design, test, and operation, have greatly benefitted Aqua MODIS. Because of this, Aqua MODIS overall performance is better than Terra MODIS. It is not surprising that lessons from MODIS calibration and characterization, from methodologies to on-orbit implementation, have also provided valuable information for the design and development of future earth observing missions/sensors, such as VHRS on the NPP and NPOESS, ABI on GOES-R, OLI on LDCM, and the reflective solar sensor on CLARREO.
    Keywords: Astronomy
    Type: 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 12, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.
    Keywords: Astronomy
    Type: GALEX Helpdesk and GI Program - Inquiries 24/7 Worldwide Conference; Jun 22, 2009 - Jul 06, 2009; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Band-limited masks have become the baseline design for what is now called "classical TPF" and also the N|RCamcomnagraphonJW8 .This technology remains one of the most promising paths for direct detection ofmxop|anedm and disks. I'll describe some of the latest progress in the implementation of this technique and what we have learned about where it can and can not be effectively applied.
    Keywords: Astronomy
    Type: New Technologies of Probing the Diversity of Brown Dwarfs and Exoplanets; Jul 19, 2009 - Jul 24, 2009; Shanghai; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: The Rake Airflow Gage Experiment was flown on the Propulsion Flight Test Fixture at NASA Dryden Flight Research Center using one of Dryden s F-15B research testbed aircraft. Propulsion Flight Test Fixture is a modular, pylon-based platform for flight testing propulsion system components, such as the Channeled Centerbody Inlet Experiment, an innovative, variable-geometry, mixed compression supersonic inlet under development at NASA Dryden. The objective of this flight test was to ascertain the flowfield angularity and local Mach number profile of the aerodynamic interface plane that is defined by the planned location of the tip of the inlet centerbody. Knowledge of the flowfield characteristics at this location underneath will be essential to computational modeling of the new inlet as well as future propulsion systems flight testing using the test fixture. This paper describes the preparation for and execution of the flight test, as well as results and validation of the algorithm used to calculate local Mach number and angularity from the rake's pressure measurements.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-928 , 27th AIAA Applied Aerodynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.
    Keywords: Astronomy
    Type: JSC-CN-18152 , AMOS Technical Conference; Sep 01, 2009 - Sep 04, 2009; Maui, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: 400 years ago, Galileo first turned a telescope to the sky, and to honor that historic moment, 2009 has been designated the International Year of Astronomy (IYA2009). This session will feature two scientists who have used the telescope to understand our solar system and well beyond to yield fantastic new discoveries. Jennifer Wiseman will share the work she does with NASA, presenting beautiful and tantalizing images from the Hubble Space Telescope and discussing how space astronomy can inspire all ages.
    Keywords: Astronomy
    Type: The Evolution of Dust in the Local and Early Universe; Mar 06, 2009 - Mar 08, 2009; New York City, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: Models are foundational for estimating states of the earth's climate system, both as tools to extrapolate information in time and space, and as observation 'operators' used to relate what is analyzed and predicted to what is observed. Expanding the simulation approach further, observing system simulation experiments (OSSEs) are designed to mimic the complete process of analyzing the climate state by replacing real observations with entirely simulated ones determined from a model-based depiction of nature. OSSEs provide a framework to 'fly' simulated satellite instruments through a synthetic atmosphere and investigate the trade-spaces of measurements for various satellite configurations and sampling strategies, and assess their measurement impact on modeling and forecasting capabilities. Such a tool is a crucial but as yet unfulfilled need for future mission selection and design. The components of a state-of-the-art OSSE system are being assembled at the Global Modeling and Assimilation Office (GMAO, Code 610.1) at NASA/GSFC, leveraging on the GMAO's existing modeling and data assimilation infrastructure for numerical weather prediction (NWP). The OSSE framework is based on the GMAO's Goddard Earth Observing System atmospheric general circulation model, version 5 (GEOS-5) and the Gridpoint Statistical Interpolation (GSI) observational analysis scheme, combined with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model developed by the Atmospheric Chemistry and Dynamics Branch (Code 613.3). This system is an evolving, key component of Goddard's planned development of an Integrated Earth System Analysis (IESA) capability, which will bring together into a single, fully interactive system Goddard's modeling and assimilation efforts in atmosphere, ocean and chemistry and aerosols to provide a comprehensive analysis and prediction system for weather and climate In addition to providing a state-of-the-art capability for assimilating current observation types, GEOS-5, and the future IESA, provide the capability to identify the need for, and assess the potential impact of, future observing systems under consideration for improving weather and climate prediction.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: The AM Short Course on The Modern Era Retrospective-analysis for Research and Applications (MERRA) data and accessibility will be held on January 11, 2009 preceding the 89th Annual Meeting in Phoenix, Arizona. Preliminary programs, registration, hotel, and general information will be posted on the AMS Web site in mid-September 2008. Retrospective-analyses (or reanalyses) have been established as an important tool in weather and climate research over the last decade. As computer power increases, the data assimilation and modeling systems improve and become more advanced, the input data quality increases and so reanalyses become more reliable. In 2008, NASA Global Modeling and Assimilation Office began producing a new reanalysis called the Modem Era Retrospective-analysis for Research and Applications (MERRA). The initial data from the reanalysis has been made available to the community and should be complete through 30 years (1979-present) by Fall of 2009. MERRA has taken advantage of the advancement of computing resources to provide users more data than previously available. The native spatial resolution is nominally 1/2 degrees and the surface two dimensional data are one hourly frequency. In addition to the meteorological analysis data, complete mass, energy and momentum budget data and also stratospheric data are provided. The eventual data holdings will exceed 150Tb. In order to facilitate user accessibility to the data, it will be stored in online hard drives (not tape storage) and available through several portals. Subsetting tools will also be available to allow users to tailor their data requests. The goals of this short course are to provide hands on users of reanalyses instruction on MERRA systems and also interactive experience with the online data and access tools. The course is intended for students and research scientists who will be actively interested in accessing and applying MERRA data in their weather, climate or applications work. The course has three parts. There will be an overview of the MERRA system, the validation of the system and the native data format. Second, Instructors will provide examples of weather and climate data analysis using various software packages (primarily GrADS) as well as the online access tools for subsetting and download, as well as visualization (e.g. Giovanni and Google Earth). This will also include examples on changing the data format to fit user's preferences and also to regrid the data for comparisons to other reanalyses and observational data. Lastly, there will he time set aside for participants to have hands on access to the data and software while interacting with the instructors and other developers. The course convener is Dr. Michael Bosilovich, NASA GSFC Global Modeling and Assimilation Office (GMAO). He will be joined by several GMAO, Goddard Earth Science Data and information Services Center (GES DISC) and Software Integration and Visualization Office (SIVO) staff.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An extrasolar planet sculpts the famous debris disk around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks---difficult processes to model simultaneously. The author describes new 3-D models of debris disk dynamics, Drag-o-llision models, that incorporate both collisions and resonant trapping of dust for the first time. The author also discusses the implications of these models for coronagraphic imaging with Gemini and other telescopes.
    Keywords: Astronomy
    Type: 2nd Subaru International Conference - Exoplanets and Disks: Their Formation and Diversity; Mar 04, 2009 - Mar 12, 2009; Hawaii; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: After one year of survey observations and more than 70 billion triggers, Fermi is revealing an unprecedented view of the high energy gamma-ray sky. The observatory carries two instruments, the Gamma-ray Burst Monitor (GBM, 8 keV - 40 MeV) and the Large Area Telescope (LAT, 20 MeV - X300 GeV), which in combination cover over 7 orders of magnitude in energy. The LAT provides substantially more sensitivity than previous instruments in this waveband and has opened up the energy window from 10-100 GeV. This is particularly relevant for the study of gamma-ray sources in the Galaxy. The first year data have revealed new classes of Galactic emitters as well as providing spectacular detail on some old friends. I'll review the fascinating range of Galactic emission now seen - from pulsars their nebulae to X-ray binaries and supernova remnants - with particular emphasis on the impact of the Fermi pulsars.
    Keywords: Astronomy
    Type: A First Year View of the Galaxy with the Fermi Gamma-ray Space Telescope; Sep 28, 2009 - Sep 30, 2009; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Enceladus has taken its place as one of the most remarkable moons in the solar system. When Voyager encountered Enceladus it was noted that its surface showed signs of recent activity with the observations of a large province, which was characterized by smooth sparsely cratered terrain. Even the heavily cratered areas of Enceladus showed a lower crater density than other Saturnian satellites. Moreover, its extraordinarily high albedo hinted at past cryovolcanic resurfacing events. Ground-based observations further demonstrated that Saturn's diffuse E-ring is concentrated at the orbit of EnceladLis, making the moon, the likely source of E-ring particles. However the short estimated lifetime of E-ring particles requires that new particles must constantly be fed to the Ering, implying more recent activity on Enceladus. Recently, in 2005 the Cassini spacecraft provided definitive proof that Enceladus is currently geologically active when multiple Cassini instruments detected plumes of gas and ice particles emanating from a series of warm fractures centered on the south pole, dubbed the "tiger stripes." Enceladus is the second cryovolcanically active icy satellite that has been identified (Triton is the only other known active icy satellite) and can be used to study active processes that are thought to have once played a role in shaping the surfaces of other icy satellites. These processes include tidal heating, cryovolcanism, and ice tectonism, which all can be studied as they currently happen on Enceladus, Moreover, the plume source region on Enceladus samples a warm, chemically rich, environment that may facilitate complex organic chemistry and biological processes. For these reasons, Enceladus science is highly relevant to NASA's goals.
    Keywords: Astronomy
    Type: 41st annual meeting of the Division of Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 10, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical Libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, small amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production. along the tiger stripes as produced by tidal shear heating. We have modeled the expected power en-litted along the tiger stripes for various types of physical libration and have quantified which types of physical libration best reproduce the observed power flux as detailed in Cassini CIRS data. We find that including a physical libration does allow better fits to the observations and we have identified regions of the libration phase space that where these fits are optimized. A physical libration has important implications for tidal dissipation within Enceladus and if identified may provide an additional constraint on its interior mass distribution.
    Keywords: Astronomy
    Type: 41st annual meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 10, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.
    Keywords: Astronomy
    Type: National Radio Astronomy Observatory Conference; Jan 30, 2009 - Jan 31, 2009; Martinsville, WV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Prior to the launch of Fermi, only weak gamma-ray pulsations from a single millisecond pulsar, PSR J0218+4232, had been reported. A firm detection of gamma rays from a member of this class of pulsar having periods near neutron star break-up and magnetic dipole moments well below those of normal pulsars would provide new insights into pulsar acceleration and emission. Using accurate ephemerides obtained from several radio telescopes as well as the unprecedented accuracy of the GPS-derived clocks used by Fermi and the LAT, we have searched for gamma-ray pulsations from known pulsars over a broad range of timing parameters. We will present some results from our search for pulsed gamma rays from millisecond pulsars.
    Keywords: Astronomy
    Type: 213th American Astronomical Society Meeting; Jan 04, 2009 - Jan 08, 2009; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: The delivery of amino acids to the early Earth by comets and their fragments could have been a significant source of the early Earth's prebiotic organic inventory that led to the emergence of life (Chyba and Sagan, 1992). Over 20 organic molecules including methane, ethane, ammonia, cyanic acid, formaldehyde, formamide, acetaldehyde, acetonitrile, and methanol have been identified by radio spectroscopic observations of the comae of comets Hale-Bopp and Hyakutake (Crovisier et al. 2004). These simple molecules could have provided the organic reservoir to allow the formation of more complex prebiotic organic compounds such as amino acids. After a 7-year mission, the Stardust spacecraft returned to Earth samples from comet Wild 2 on January 15, 2006 providing the opportunity to analyze the organic composition and isotopic distribution of cometary material with state-of-the-art laboratory instrumentation. The Preliminary Examination Team analyses of organics in samples returned by Stardust were largely focused on particles that impacted the collector aerogel and aluminum foil (Sandford et al. 2006). However, it is also possible that Stardust returned a "diffuse" sample of gas-phase organic molecules that struck the aerogel directly or diffused away from the grains after impact. To test this possibility, samples of Stardust flight aerogel and foil were carried through a hot water extraction and acid hydrolysis procedure to see if primary amine compounds were present in excess of those seen in controls. Here we report highly sensitive liquid chromatography time-of-flight mass spectrometry measurements of amino acids and amines in samples returned from a comet (Glavin et al. 2008). A suite of amino acids and amines including glycine, L-alanine, methylamine (MA), and ethylamine (EA) were identified in the Stardust bulk aerogel. With the exception of MA and EA, all other primary amines detected in comet-exposed aerogels were also present in the aerogel witness tile that was not exposed to Wild 2, suggesting that most amines are terrestrial in origin. However, the enhanced abundances of MA, EA, and possibly glycine in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (1 to 2) that are distinct from preflight aerogels (7 to 10), suggest that these amines were captured from Wild 2. It is possible that MA and EA were formed on energetically processed icy grains containing methane, ethane, and ammonia. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organics on the early Earth. To better understand their origin, a systematic compound specific carbon isotopic analysis (C-CSIA) via gas chromatography quadrupole mass spectrometry in with parallel with combustion isotope ratio mass spectrometry (GCQMS/ IRMS) is being conducted. We will discuss our latest C-CSIA measurements and what they indicate about the origin of amino acids extracted from Stardust samples.
    Keywords: Astronomy
    Type: Origins of Life and Evolution of the Biosphere; 39; 179-392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing data and products to support these federally funded efforts on multiple fronts. Landsat and ASTER data is being analyzed to assess changes in barrier island land cover over the last 35 years. ASTER, SRTM, and EAARL terrain products and other NASA airborne imagery are being applied in assessing changes in barrier island geomorphology and geospatial extent. MODIS data is being examined as a tool for sediment transport modeling by supplying geospatial data that quantifies in-water sediment concentrations. MODIS satellite data is being assessed for monitoring changes in the spatial extent of individual barrier islands. Results thus far indicate that NASA data products are useful in assessing barrier island conditions and changes. This value is enhanced with additional historical geospatial data, commercial high resolution satellite data, other non-NASA aerial imagery, and field survey data. The project s products are relevant to the Gulf of Mexico Alliance priority issues, including coastal habitat conservation, restoration and coastal community resilience. Such products will be available to state and federal agencies involved with coastal restoration. Potential end-users of these products include the National Park Service, U.S. Geological Survey, U.S. Army Corps of Engineers, Environmental Protection Agency, Mississippi Department of Environmental Quality, and Mississippi Department of Marine Resources.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0182 , OCEANS''09 MTS/IEEE Conference and Exhibition; Oct 26, 2009 - Oct 29, 2009; Biloxi, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.
    Keywords: Astronomy
    Type: Pathways Towards Habitable Planets; Aug 14, 2009 - Aug 18, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.
    Keywords: Astronomy
    Type: The Path to CMBPol: Upcoming Measurements of CMB Polarization; Jul 01, 2009 - Jul 03, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.
    Keywords: Astronomy
    Type: The Path to CMBP0l: Upcoming Measurements of DMB Polarizaiton; Jul 01, 2009 - Jul 03, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We report on a study of approx.20,000 luminous red galaxies (LRG's) at z=0.4-0.5 observed by the Sloan Digital Sky Survey. In order to differentiate among them, we measured restframe magnitudes, u (3000-3500 A), b (4200-4800 A), and y (5700-6300 A) from the spectra themselves. The galaxies show a significant range in restframe colors and absolute magnitudes. We binned the spectra according to the restframe u-b color and y-band absolute magnitude in order to increase the S/N. We used 3 approaches to estimate the ages and metal content of these binned spectra: via their spectral energy distributions, from spectral-line indices, and by full spectral fitting. The three methods usually produce discordant results
    Keywords: Astronomy
    Type: VIIth Marseille International Cosmology Conference. Harvesting the Desert: The Universe between Redshift 1 and 3; Jun 29, 2009 - Jul 03, 2009; Marseille; France|International Astronomical Union (IAU) XXVII; Aug 03, 2009 - Aug 14, 2009; Rio de Janeiro; Brazil|Bridging Laboratory and Astrophysics: From the Infrared to the Submm; Jun 08, 2009 - Jun 10, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.
    Keywords: Astronomy
    Type: M09-0288 , April meeting of the APS; May 02, 2009 - May 05, 2009; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: The Aerostructures Test Wing (ATW) was developed to test unique concepts for flutter prediction and control synthesis. A follow-on to the successful ATW, denoted ATW2, was fabricated as a test bed to validate a variety of instrumentation in flight and to collect data for development of advanced signal processing algorithms for flutter prediction and aviation safety. As a means to estimate flutter speed, a ground vibration test (GVT) was performed. The results of a GVT are typically utilized to update structural dynamics finite element (FE) models used for flutter analysis. In this study, two GVT methodologies were explored to determine which nodes provide the best sensor locations: (i) effective independence and (ii) kinetic energy sorting algorithms. For measurement, ten and twenty sensors were used for three and 10 target test modes. A total of six accelerometer configurations measured frequencies and mode shapes. This included locations used in the original ATW GVT. Moreover, an optical measurement system was used to acquire data without mass effects added by conventional sensors. A considerable frequency shift was observed in comparing the data from the accelerometers to the optical data. The optical data provided robust data for use of the ATW2 finite element model update.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-844 , 27th IMAC Conference and Exposition on Structural Dynamics; Feb 09, 2009 - Feb 12, 2009; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society with HAD and HEAD; Jan 04, 2009 - Jan 08, 2009; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, Herschel, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future balloon programs, paving the way for interferometric observations of exoplanets.
    Keywords: Astronomy
    Type: Low Cost Access to Near Space 2009; Oct 25, 2009 - Oct 28, 2009; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (〈1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.
    Keywords: Astronomy
    Type: Missions for Exoplanets 2010-2020; Apr 20, 2009 - Apr 24, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society; Jan 04, 2009 - Jan 09, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society with HAD and HEAD: 2009 International Year of Astronomy; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.
    Keywords: Astronomy
    Type: Opening Ceremonies of the 2009 International Year of Astronomy; Jan 13, 2009 - Jan 17, 2009; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-1063 , Congreso "Evolucion 09,"; 28 Sep. 1 Oct. 2009; Puebla; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: The scientific capabilities of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and dark matter, gas, stars, metals morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. A comprehensive, top-level review of JWST sciences was published in the journal Space Science Reviews (Gardner et al. 2006, SSR, 123, 485). That paper gives details of the 4 JWST science themes, and describes the design of the observatory and ground system. Since that paper was published, the JWST Science Working Group, working with members of the astronomical community, has continued to develop the science case for JWST, giving more details in a series of white papers. In this poster, the main science themes and white papers are reviewed.
    Keywords: Astronomy
    Type: 213th Meetin gof the American Astronomical Society with HAD and HEAD; Jan 04, 2008 - Jan 08, 2008; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 pm to 28 pm. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We will present an overview of the Observatory's current design following the Mission Preliminary Design Review, (PDR). Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST's optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory based on the mission PDR design.
    Keywords: Astronomy
    Type: 2008 International Year Astronomy - AAS; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~ 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~ 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.
    Keywords: Astronomy
    Type: GSFC.JA.6941.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...