ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Etna  (21)
  • Elsevier  (15)
  • Elsevier Science Limited  (4)
  • Le Nove Muse  (1)
  • Nature Publishing Group
  • 2010-2014  (21)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: The reinterpretation of more than 2500 subsurface data, consisting of geoelectric and borehole prospecting undertaken at Mount Etna, allows reconstructing the contour map of the sedimentary basement. This reconstruction highlights a complex asymmetric topography due to the inhomogeneous long-term updoming of the region and the interrelationship between the development of the drainage network and flank instability. These different processes have produced a major morphological difference between the eastern sector, characterised by a 17 km-wide horseshoe-shaped depression, and the other flanks formed by palaeovalleys. The origin of the wide horseshoe-shaped depression can be attributed to the large-scale flank instability processes involving the entire continental margin in the Etna offshore. This depression of the Etna basement was generated by a series of coalescent landslides before the beginning of the eruptive activity of the Timpe phase more than 220 ka ago. This wide depression is the main cause of the flank instability that produced the gravitational slope failures of the Valle del Bove about 10 ka ago. Regarding Mt Etna's geometry, we have estimated a total volume of about 532 km3 that was emplaced during the past 330 ka, resulting in an average rate of volcanic output of 0.0016 km3/a. The reconstruction of the temporal variation of the average eruptive rate highlights a drastic increase of volcanism during the last 100 ka in response to the gradual stabilization of the plumbing system in the Etna region that led to the build-up of the composite stratovolcano structure. The data presented in this paper represent the state of knowledge of the sedimentary basement of Etna, which can be used for future studies aimed at developing a detailed understanding of the deep structure of the volcano's unstable flanks.
    Description: Published
    Description: 46-64
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; Basement ; Stratigraphy ; Morphostructural ; Volcanic output ; Flank instability ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Repeating volcano-tectonic (VT) earthquakes, taking place at Mt. Etna during 1999–2009,were detected and analyzed to investigate their behavior. We found 735 families amounting to 2479 VT earthquakes, representing ~38% of all the analyzed VT earthquakes. The number of VT earthquakes making up the families ranges from 2 to 23. Over 70% of the families comprise 2 or 3 VT earthquakes and only 20 families by more than 10 events. The occurrence lifetime is also highly variable ranging from some minutes to ten years. In particular, more than half of the families have a lifetime shorter than 0.5 day and only ~10% longer than 1 year. On the basis of these results, most of the detected families were considered “burst-type”, i.e., show swarm-like occurrence, and hence their origin cannot be explained by a temporally constant tectonic loading. Indeed, since the analyzed earthquakes take place in a volcanic area, the rocks are affected not only by tectonic stresses related to the fairly steady regional stress field but also by local stresses, caused by the volcano, such as magma batch intrusions/ movements and gravitational loading.We focused on the five groups of families characterized by the longest repeatability over time, namely high number of events and long lifetime, located in the north-eastern, eastern and southern flanks of the volcano. Unlike the first four groups, which similarly to most of the detected families show swarm-like VT occurrences, group “v”, located in the north-eastern sector, exhibits a more “tectonic” behavior with the events making up such a group spread over almost the entire analyzed period. It is clear how both occurrence and slip rates do not remain constant but vary over time, and such changes are time-related to the occurrence of the 2002–2003 eruption. Finally, by FPFIT algorithm a good agreement between directions identified by nodal planes and the earthquake epicentral distribution was generally found.
    Description: Published
    Description: 1223 – 1236
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: repeating earthquakes ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: No abstract
    Description: Published
    Description: 306-308
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Stromboli ; volatiles ; melt inclusions ; magma mixing ; magma degassing ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We investigated the relationship between the occurrence of earthquakes along the main volcano-tectonic structures and periods of volcanic unrest at Mt Etna. We focused our study on the Pernicana Fault System (PFS), one of the most outstanding tectonic structures delineating the northern border of the sliding eastern flank of Etna volcano. During recent decades several flank eruptions have occurred at Mt Etna and sometimes PFS released seismicity before the eruptive events, while in other cases there have been earthquakes that did not precede any eruption. To highlight a possible relation between PFS ruptures and volcanic unrest, we took into account the most energetic earthquakes (M ≥ 3.5) occurring in the last three decades (1980-2010), and considered the volcano deformation sources previously inferred by inverting geodetic data recorded during the several flank eruptions in this time interval. The estimates of stress redistribution on the PFS due to different volcano sources, such as the magma storage, the dike intrusions and the sliding eastern flank, were studied by implementing 3D numerical models that also consider the presence of topography and medium heterogeneity. Our results show that the pressurization of an intermediate storage and the traction exerted by the eastern flank sliding contribute to the seismicity along the PFS even without preceding an immediate eruption. Instead, the seismicity along the PFS related to the intrusions inside the northern sector of the volcano would represent a potential early-warning for an impending eruption at Mt Etna.
    Description: Published
    Description: 127-136
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; volcano-tectonic faults ; volcano sources and stress ; stress field change ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Using Etna as a case study location, we examine the balance between the volume of magma supplied to the shallow volcanic system (using ground-based SO2 data) and the volume erupted (using satellite thermal data). We do this for three eruptions of Mt. Etna (Italy) during 2002 to 2006. We find that, during the three eruptions, 2.3×107 m3 or 24% of the degassed volume remained unerupted. However, variations in the degree of partitioning between supplied (Vsupply) and erupted (Verupt) magma occur within individual eruptions over the time scales of days. Consequently, we define and quantify three types of partitioning. In the first case, VsupplybVerupt, i.e. more lava is erupted than is supplied. In such a case previously degassed magma is erupted or magma can rise faster than it is able to degas, as occurred during the open phases of the 2002–2003 and 2004–2005 eruptions, respectively. In the second case, VsupplyNVerupt, i.e. less lava is erupted than is supplied. In such a case, magma can erupt in an explosive manner, as occurred during Phase II of the 2002–2003 eruption, or remain within or below the edifice. In the third case, Vsupply=Verupt, i.e. all supplied magma is erupted. During 2002–2006, over a total of 280 days of eruptive activity, this balancing case applied to 50% of the time.
    Description: Published
    Description: 47-53
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; thermal remote sensing ; SO2 flux ; Effusive eruption ; mass balance ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Infrared satellite images measured with the MODIS instrument of the volcanic plume produced during the 2006 eruption of Mt. Etna were analysed to produce maps of SO2 amount. We used these maps to reconstruct time series of SO2 fluxes by integrating profiles of SO2 orthogonal to the plume advection direction and multiplying with wind speeds from a meteorological model. These data were then compared with a reconstructed time series of SO2 fluxes measured with the FLAME ground-based network of ultraviolet DOAS systems surrounding the volcano. We found weak agreement on 3rd December when little ash was emitted, but this agreement improved when a 0.3 m s−1 wind speed correction factor was used. FLAME and MODIS results were in good agreement on the 6th December, and improved when a –0.3 m s−1 offset was applied. The corrected data revealed that the only period of time when FLAME and MODIS did not track together was coincident with the presence of ash, which interferes with the IR imagery and retrieval of SO2. We highlight that combining two independent time series of SO2 flux allows a precise determination of wind speed, if there is sufficient time-dependent structure in the SO2 signal. The observed increase in SO2 flux prior to the ash emission is interpreted as a quiescent release of an accumulated gas phase that drive eruptive activity, as previously suggested for the southeast crater system of Etna. In this case the SO2 flux signal therefore acted as a precursor to the eruptive ash events. This work demonstrates that quantitative reconstruction of SO2 flux time series is feasible using MODIS data, opening a new frontier in the use of satellite data to interpret volcanic processes, in particular in poorly monitored remote locations.
    Description: European Space Agency's Earth Observation Envelope Programme (EOEP) – Data User Element (project SAVAA).
    Description: Published
    Description: 80-87
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: SO2 flux ; Modis ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: High resolution, LIDAR-derived digital elevation models of volcanic areas can significantly improve knowledge of lava flow morphology and emplacement mechanisms. Here we focus on single flow units, presenting a new semi-automatic procedure which provides a quantitative analysis of their shape. The method relies on the automatic processing of the elevation profiles obtained on transects orthogonal to the flow unit axis. The initial phase of the Mount Etna flank eruption from September 2004 is taken as test case, and the procedure is applied on an active lava flow, which was emplaced on the eastern flank of the volcano. The main topographic dataset used is a 2-m-resolution digital elevation model obtained from a LIDAR survey. Starting from the axis of a lava flow unit, our method yields morphometric data on the flow unit at a 2 m spacing, calculating parameters including flow width, channel width, the heights of the levees, inward and outward slope of levees, and estimating pre-emplacement slope along the axis. The procedure is embedded in a customized GIS, which allows easy processing, handling and displaying of data. The procedure has also been applied to another flow unit emplaced during the October–November 1999 overflow from the Bocca Nuova crater. Results show that the channel width seems to accommodate first‐order trends of the pre-emplacement slope along the flow unit axis, while it is little affected by high frequency changes in slope; in contrast, flow unit width and flow unit thickness are apparently influenced by small‐scale changes in slope. The different emplacement conditions of the two flow units are reflected by the overall contrasting morphologies, as shown by the different average thickness and by the different ratios between (i) flow width vs. channel width and (ii) flow unit section area vs. channel width. The new method provides an enhanced, systematic and thorough morphometric description of flow units, which may improve the understanding of the emplacement mechanisms of lava flows on Earth and other planets.
    Description: Published
    Description: 11-22
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: LIDAR ; Lava flow unit ; Lava flow morphology ; High resolution DEM ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...