ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Wave propagation  (7)
  • Wiley-Blackwell  (4)
  • Wiley  (3)
  • Cambridge University Press
  • 2010-2014  (7)
  • 1955-1959
  • 1950-1954
  • 1
    Publication Date: 2017-04-04
    Description: Local and regional seismicity jointly recorded by two dense small aperture arrays, one installed at surface and one at 1.3 km depth, constitutes an interesting data set useful for coda observations. Applying array techniques to earthquakes recorded at the two arrays we measure slowness, backazimuth and correlation coefficient of the coherent coda wave signals in five frequency bands in the range 1–10 Hz. Slowness distributions show marked differences between surface and underground, with slow signals at surface (slowness greater than 1.0 s km−1) that are not observed underground. We interpret these coherent signals as surface waves produced by the interaction of body waves with the free surface characterized by rough topography. The backazimuth values measured in the frequency bands centred at 1.5 and 3 Hz are almost uniformly distributed between 0 and 360◦, while those measured at higher frequencies show different distributions between surface and underground. On the contrary, the earthquake envelopes show very similar coda shapes between surface and underground recordings, with an almost constant coda-amplitude ratio (between 4 and 8) in a wide frequency range.
    Description: Published
    Description: 367-371
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Coda waves ; Wave scattering and diffraction ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this work, we present regional maps of the inverse intrinsic quality factor (Qi −1), the inverse scattering quality factor (Qs −1) and total inverse quality factor (Qt −1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create ‘2-D probabilistic maps’ of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.
    Description: This work has been partially supported by the Spanish project Ephestos, CGL2011–29499-C02–01, by the EU project EC-FP7 MEDiterranean SUpersite Volcanoes (MED-SUV), by the Basque Government researcher training program BFI09.277 and by the Regional project ‘Grupo de Investigaci´on en Geof´ısica y Sismolog´ıa de la Junta de Andaluc´ıa, RNM104.’ Edoardo del Pezzo was partly supported by DPC-INGV projects UNREST SPEED and V2 (Precursori).
    Description: Published
    Description: 1957-1969
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation; ; Seismic tomography ; Volcano seismology ; Wave scattering and diffraction ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We investigate shear wave polarization in the Hayward fault zone near Niles Canyon, Fremont, CA. Waveforms of 12 earthquakes recorded by a seven-accelerometer seismic array around the fault are analysed to clarify directional site effects in the fault damage zone. The analysis is performed in the frequency domain through H/V spectral ratios with horizontal components rotated from 0◦ to 180◦, and in the time domain using the eigenvectors and eigenvalues of the covariance matrix method employing three component records. The near-fault ground motion tends to be polarized in the horizontal plane. At two on-fault stations where the local strike is N160◦, ground motion polarization is oriented N88 ± 19◦ and N83 ± 32◦, respectively. At a third on-fault station, the motion is more complex with horizontal polarization varying in different frequency bands. However, a polarization of N86 ± 7◦, similar to the results at the other two on-fault stations, is found in the frequency band 6–8 Hz. The predominantly high-angle polarization from the fault strike at the Hayward Fault is consistent with similar results at the Parkfield section of the San Andreas Fault and the Val d’Agri area (a Quaternary extensional basin) in Italy. In all these cases, comparisons of the observed polarization directions with models of fracture orientation based on the fault movement indicate that the dominant horizontal polarization is near-orthogonal to the orientation of the expected predominant cracking direction. The results help to develop improved connections between fault mechanics and near-fault ground motion.
    Description: Published
    Description: 1255–1272
    Description: JCR Journal
    Description: open
    Keywords: Earthquake ground motions. ; Interface waves ; Site effects ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-08
    Description: We investigated the high frequency attenuation of S-waves in Southeastern Alps and Northern External Dinarides using waveforms from 331 earthquakes (3.0〈 Mw〈 6.5). The spectral decay parameter, k, was computed using 1345 three component high quality records, collected by the Italian Strong Motion Network (RAN) and by the Short-Period Seismometric Network of North-Eastern Italy (NEI) in the period 1976-2007. Weak motion data from 11 stations of the NEI network and strong motion data collected by 5 accelerometers of the RAN were analyzed. The k parameter was estimated in the 0-250 Km distance range, in a frequency band extending from the corner frequency of the event up to 25 or 45 Hz, using the amplitude acceleration Fourier spectra of S-waves. The observed record-to-record variability of k was modeled by applying a generalized inversion procedure, using both parametric and non-parametric approaches. Our results evidence that k is independent on earthquake size, while it shows both site and distance dependence. Stations of the NEI network present the same increase of k with epicentral distance, Re, and show values of the zero-distance k parameter, k0(S), between 0.017 and 0.053 s. For the whole region, the k increase with distance can be described through a linear model with slope dk/dRe = (1.4±0.1)x10^(-4) s/Km. Assuming an average S-wave velocity, 〈Vs〉=3.34 Km/s between 5 and 15 Km depth, we estimate an average frequency independent quality factor, 〈Qi〉=2140, for the corresponding crustal layer. The non-parametric approach evidences a weak positive concavity of the curve that describes the k increase with Re at about 90 Km distance. This result can be approximated through a piecewise linear function with slopes of 1.0x10^(-4) s/Km and 1.7x10^(-4) s/Km, in accordance with a three layers model where moving from the intermediate to the bottom layer both 〈Qi〉 and 〈Vs〉 decrease. Two regional dependences were found: data from earthquakes located westward to the NEI network evidence weaker attenuation properties, probably because of S-wave reflections from different part of the Moho discontinuity under the eastern Po Plain, at about 25-30 Km depth, while earthquakes located eastward (in western Slovenia), where the Moho deepens up to 45-50 Km, evidence a higher attenuation. Moreover, the k estimates obtained with data from earthquakes located in the area of the 1998 (Mw=5.7) and 2004 (Mw=5.2) Kobarid events are 0.017 s higher than the values predicted for the whole region, probably because of the high level of fracturing that characterizes fault zones. The comparison between measured and theoretical values of k, computed at a few stations with available S-wave velocity profiles, reveals that the major contribution to the total k0(S) is due to the sedimentary column (from surface to 800 m depth). The hard rock section contribution is limited to 0.005 s, in accordance with a maximum contribution of 0.010 s predicted by the non-parametric inversion.
    Description: Published
    Description: 1393-1416
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Earthquake source observations ; Body waves ; Seismic attenuation ; Site effects ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...