ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method). However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.
    Description: Published
    Description: 500-509
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: absolute and relative gravimeters ; uncertainty ; microgravity ; Etna volcano ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2–3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.
    Description: Published
    Description: 2712-2725
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: macroseismic data ; uncertainty ; earthquake parameters ; macroseismic magnitude ; macroseismic location ; bootstrap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: 28th IUGG Conference on Mathematical Geophysics; Pisa, Italy, 7–11 June 2010; The capabilities and limits of mathematical models applied to a variety of geophysical processes were discussed during the 28th international Conference on Mathematical Geophysics, held in Italy (see the conference Web site (http://cmg2010.pi.ingv.it), which includes abstracts). The conference was organized by the International Union of Geodesy and Geophysics (IUGG) Commission on Mathematical Geophysics (CMG) and the Istituto Nazionale di Geofisica e Vulcanologia and was cosponsored by the U.S. National Science Foundation. The meeting was attended by more than 160 researchers from 26 countries and was dedicated to the theme “Modelling Earth Dynamics: Complexity, Uncertainty, and Validation.” Many talks were dedicated to illustration of the complexities affecting geophysical processes. Novel applications of geophysical fluid dynamics were presented, with specific reference to volcanological and ­subsurface/surface flow processes. In most cases, investigations highlighted the need for multidimensional and multiphase flow models able to describe the nonlinear effects associated with the nonhomogeneous nature of the matter. Fluid dynamic models of atmospheric, oceanic, and environmental systems also illustrated the fundamental role of nonlinear couplings between the different subsystems. Similarly, solid Earth models have made it possible to obtain the first tomographies of the planet; to formulate nonlocal and dynamic damage models of rocks; to investigate statistically the triggering, clustering, and synchronization of faults; and to develop realistic simulators of the planetary dynamo, plate tectonics, and gravity and magnetic fields.
    Description: Published
    Description: 506
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: mathematical models ; geophysics ; uncertainty ; validation ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    BIT 10 (1970), S. 95-105 
    ISSN: 1572-9125
    Keywords: Land-use planning ; accessibility ; uncertainty ; game theory ; linear programming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract One objective in regional planning is the creation of communities with great accessibility. Thus we should plan the locations of inhabitants and the activities of the region so that the total accessibility will be maximized subject to some restrictions. This is a quadratic programming problem, which can be solved by quadratic programming techniques, but we cannot then take into account the uncertainties of the problem. In this paper a new criterion function is proposed for accessibility, uncertainty problems in regional land-use planning. It is derived from Hurwicz's generalized maximin principle. Many advantages are gained, for the planning problem is separated into linear programming problems, the uncertainties are taken into consideration as in game theory and the methods of parametric programming are available. A simplified problem of the populations of three town areas is studied and the method is generalized for problems of many activities and areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...