ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrogen fixation  (144)
  • Springer  (144)
  • American Chemical Society (ACS)
  • MDPI - Multidisciplinary Digital Publishing Institute
  • 2010-2014  (2)
  • 1985-1989  (142)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosystems 16 (2013): 1550-1564, doi:10.1007/s10021-013-9701-0.
    Description: We examined controls of benthic dinitrogen (N2) fixation and primary production in oligotrophic lakes in Arctic Alaska, Toolik Field Station (Arctic Long-Term Ecological Research Site). Primary production in many oligotrophic lakes is limited by nitrogen (N), and benthic processes are important for whole-lake function. Oligotrophic lakes are increasingly susceptible to low-level, non-point source nutrient inputs, yet the effects on benthic processes are not well understood. This study examines the results from a whole-lake fertilization experiment in which N and P were added at a relatively low level (4 times natural loading) in Redfield ratio to a shallow (3 m) and a deep (20 m) oligotrophic lake. The two lakes showed similar responses to fertilization: benthic primary production and respiration (each 50–150 mg C m−2 day−1) remained the same, and benthic N2 fixation declined by a factor of three- to fourfold by the second year of treatment (from ~0.35 to 0.1 mg N m−2 day−1). This showed that the response of benthic N2 fixation was de-coupled from the nutrient limitation status of benthic primary producers and raised questions about the mechanisms, which were examined in separate laboratory experiments. Bioassay experiments in intact cores also showed no response of benthic primary production to added N and P, but contrasted with the whole-lake experiment in that N2 fixation did not respond to added N, either alone or in conjunction with P. This inconsistency was likely a result of nitrogenase activity of existing N2 fixers during the relative short duration (9 days) of the bioassay experiment. N2 fixation showed a positive saturating response when light was increased in the laboratory, but was not statistically related to ambient light level in the field, leading us to conclude that light limitation of the benthos from increasing water-column production was not important. Thus, increased N availability in the sediments through direct uptake likely caused a reduction in N2 fixation. These results show the capacity of the benthos in oligotrophic systems to buffer the whole-system response to nutrient addition by the apparent ability for significant nutrient uptake and the rapid decline in N2 fixation in response to added nutrients. Reduced benthic N2 fixation may be an early indicator of a eutrophication response of lakes which precedes the transition from benthic to water-column-dominated systems.
    Description: This project was supported by NSF-OPP 9732281, NSF-DEB 9810222, NSF-DEB 0423385, and by a Doctoral Dissertation Improvement Grant NSF-DEB 0206173. Additional funding was provided by the Small Grants Program through the NSF-IGERT Program in Biogeochemistry and Environmental Change at Cornell University.
    Keywords: Benthic ; Nitrogen fixation ; Primary production ; Oligotrophic ; Arctic ; Toolik
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.
    Description: Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.
    Description: We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.).
    Keywords: Amazon Basin ; Ecosystem modeling ; Mass balance ; Nitrogen fixation ; Nutrient cycling ; Rondonia ; Tropical forest
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 61-66 
    ISSN: 1432-0789
    Keywords: Stem nodulation ; Aeschynomene afraspera ; Legume ; Nitrogen fixation ; Acetylene reduction assay (ARA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Aeschynomene afraspera is a wild annual legume growing in periodically waterlogged soils in western Africa. This legume is characterized by a profuse stem nodulation. Nodules are formed on the stem at the emergence of lateral root primordia, called nodulation sites. These sites are irregularly distributed on vertical rows all along the stem and branches. Stem nodules are hemispherically shaped. Their outside is dark green and they contain a red-pigmented central zone. Stem nodules exhibit a high nitrogen-fixing potential. Acetylene reduction assays result in stem nodule activity of 309 μmol C2H4 g−1 dry nodule h−1. Field-grown stem nodulated Aeschynomene accumulated more N (51 g N m−2 in 10 weeks) than the root nodulated one. Because of this nitrogenfixing potential and its ability to grow in waterlogged conditions, A. afraspera could probably be introduced into tropical rice cropping systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 356-368 
    ISSN: 1432-0789
    Keywords: Plant-root associations ; Azospirillum spp ; Rhizosphere ; Nitrogen fixation ; Acetylene reduction assay (ARA) ; Phytohormones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Bacteria of the genus Azospirillum are extensively studied for their plant-growth promoting effect following inoculation. Physiological and biochemical studies of these diazotrophic bacteria are now benefiting from recent breakthroughs in the development of genetic tools for Azospirilum. Moreover, the identification and cloning of Azospirillum genes involved in N2 fixation, plant interaction, and phytohormone production have given new life to many research projects on Azospirillum. The finding that Azospirillum genes can complement specific mutations in other intensively studied rhizosphere bacteria like Rhizobia will certainly trigger the exploration of new areas in rhizosphere biology. Therefore a review of the Azospirillum-plant interactions is particularly timely.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 83-87 
    ISSN: 1432-0789
    Keywords: Inoculation ; Inoculum dose ; Nitrogen fixation ; Chickpea ; Rhizobium spp. ; Cicer arietinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of three inoculum rates on the performance of three chickpea (Cicer arietinum L.) Rhizobium strains was examined in the field on a Mollisol soil. Increasing amounts of inoculum improved the performance of the strains. A normal dose (104 cells per seed) applied at different intervals gave non-significant increases in nodulation, nitrogenase activity (acetylene reduction assay), nitrogen uptake and grain yield. A ten-fold increase in inoculum increased nodule number, shoot dry weight, nitrogenase activity (ARA) and grain yield, but increases over the control were significant only for nodule dry weight and nitrogen uptake by shoot and grain. The highest level of inoculum (100 × normal) significantly increased nodule dry weight, grain yield, total nitrogenase activity (ARA) and nitrogen uptake by shoot and grain. Strain TAL 620 was more effective than the other two. Combined nitrogen (60 kg N ha−1) suppressed nodulation and nitrogenase activity (ARA).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 39-44 
    ISSN: 1432-0789
    Keywords: Alnus ; Energy forestry ; Frankia ; Meadow soil ; Nitrogen fixation ; Nodulation ; Peat soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Use of the N2-fixing grey alder, Alnus incana (L.) Moench, as a short-rotation crop for energy production is currently being explored. To evaluate the need for inoculation of alders, the distribution of infective propagules of Frankia in the soil at potential sites for alder plantations was examined. Uninoculated grey alder seedlings were grown in three types of soil. Frequent nodulation was found in a meadow soil which had been free from actinorhizal plants for nearly 60 years, but the alder seedlings failed to nodulate in peat soil from two different bog sites. One of these bogs had been exploited for peat and the surface layer of the peat had been removed, so that the soil samples were taken from deep layers of the peat. At the other site, an area of cultivated peat, there were no infective propagules of Frankia in plots without alders; the infective Frankia was present in plots only where it had been introduced by inoculated alders. There was no detectable air-borne dispersal of Frankia. Instead, water movement might account for the dispersal of Frankia in peat. Although the apparent absence of Frankia in these peat soils necessitates inoculation of alder seedlings before planting out, this makes it possible to introduce and maintain Frankia strains with selected beneficial characteristics, since there is no competition from an indigenous Frankia flora.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0789
    Keywords: Nodule damage ; Rivellia angulata ; Nitrogen fixation ; Cajanus cajan ; Pigeonpea ; Vertisol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Damage caused by Rivellia angulata larvae to pigeonpea root nodules at the ICRISAT center in India was greater in the crop grown on Vertisols (up to 86%) compared to that on Alfisols (20%). Attempts to quantify the field effects of nodule damage on growth and yield of pigeonpea in a Vertisol, involving many heavy applications of soil insecticides (aldrin and hexachlorocyclohexane) failed because the insecticides did not control the pest and adversely affected the growth of the pigeonpea and the subsequent crop of sorghum (Sorgorum bicolor L. Moench). The impact of nodule damage on pigeonpea growth, yield and nutrient uptake was successfully studied in greenhouse-grown plants at three N levels. In this pot study, artificial inoculation with Rivellia sp. led to substantial nodule damage (70%). The results of this damage were a significant overall reduction in nodule dry weight (46%), acetylene reduction activity (31%), total leaf area (36%), chlorophyll content of leaves (39%) and shoot dry weight (23%) 68 days after sowing. At maturity, Rivellia sp. infestation caused significant reductions in top dry weight (22%), root and nodule dry weight (27%), seed dry weight (14%), and total N (29%) and P uptake (19%). The problems and prospects of manipulating nodule damage so as to reduce N losses in pigeonpea are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0789
    Keywords: Triticum aestivum ; T. turgidum ; Nitrogen fixation ; Field inoculation ; Acetylene reduction assay (ARA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Eight commercial Israeli spring wheat cultivars (six Triticum aestivum and two T. turgidum) grown with 40 and 120 kg N/ha were tested for responses to inoculation with Azospirillum brasilense. At the low level of N fertilization (40 kg/ha), five cultivars showed significant increases in plant dry weight measured at the milky ripe stage; however, by maturation only the cultivar “Miriam” showed a significant increase in grain yield. Two cultivars, which had shown a positive inoculation effect at the earlier stages, had a significant decrease in grain yield. No significant effect of inoculation was found at the high N level. To confirm those results, four wheat (T. aestivum) cultivars were tested separately over 4 years in 4 different locations under varying N levels. Only Miriam showed a consistently positive effect of Azospirillum inoculation on grain yield. Inoculation increased the number of roots per plant on Miriam compared with uninoculated plants. This effect was found at all N levels. Nutrient (N, P and K) accumulation and number of fertile tillers per unit area were also enhanced by Azospirillum, but these parameters were greatly affected by the level of applied N. It is suggested that the positive response of the spring wheat cultivar “Miriam” to Azospirillum inoculation is due to its capacity to escape water stresses at the end of the growth season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 15-19 
    ISSN: 1432-0789
    Keywords: Nitrogen fixation ; N-balance studies ; Azolla ; Blue-green algae ; Chemical N fertilization ; Rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A nitrogen balance study conducted in ceramic pots under net house conditions for four seasons showed that flooded rice soil leaves a positive nitrogen balance (N increase) in soil after rice cropping in both fertilized and unfertilized soil. Recovery of nitrogen from rice soil was more than its input in unfertilized soil, but it was reverse in fertilized soil. Incorporation of Azolla or BGA twice as basal and 20 days after transplanting (DAT) alone or in combination showed higher nitrogen balance and N2-fixation (N gain) in soil than in that where it was applied once either as basal or 20 DAT. Planted soil showed more N2-fixation than that of fallow rice, and flooded soil fixed more nitrogen in comparison to non-flooded soil in light but less in dark. Soil exposed to light fixed more nitrogen than that of unexposed soil in both flooded and non-flooded conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 9-14 
    ISSN: 1432-0789
    Keywords: Rhizosphere ; Nitrogen fixation ; Root exudates ; Soil bacteria ; Carbon budget ; Rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The association of rice seedlings (cv. Delta) with different strains of Azospirillum was studied under monoxenic conditions in the dark. Axenic 3-day-old seedlings were obtained on a C- and N-free medium and inoculated with 6 · 107 bacteria per plant in a closed vial. Seven days later, different components of a carbon budget were evaluated on them and on sterile controls: respired CO2, carbon of shoot and roots, bacterial and soluble carbon in the medium. Two strains (A. lipoferum 4B and A. brasilense A95) isolated from the rhizosphere of rice caused an increase in exudation, + 36% and + 17% respectively compared with sterile control. Shoot carbon incorporation and respiration were reduced by inoculation. A third strain (A. brasilense R07) caused no significant change in exudation. A. lipoferum B7C isolated from maize did not stimulate rice exudation either. We further investigated a possible effect of nitrogen fixation on this phenomenon: inhibition of nitrogen fixation by 10% C2H2 did not modify the extent of C exudation by rice associated with A. lipoferum 4B or with the non-motile A. lipoferum 4T.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...