ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atmosphere-ocean system
  • Salinity
  • Nature Publishing Group (NPG)  (20)
  • Springer  (9)
  • American Meteorological Society  (8)
  • Springer Nature
  • 2010-2014  (21)
  • 2005-2009  (7)
  • 1975-1979  (9)
Collection
Years
Year
  • 1
    Publication Date: 2010-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glausiusz, Josie -- England -- Nature. 2010 Apr 22;464(7292):1118-20. doi: 10.1038/4641118a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20414284" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Animals ; Desert Climate ; *Ecosystem ; Eutrophication ; Fresh Water/*analysis/chemistry/microbiology ; Indian Ocean ; International Cooperation ; Middle East ; Salinity ; Volatilization ; *Water Supply/analysis/economics/statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-15
    Description: DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5gamma. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the eukaryotic spliceosome, and an interesting paradigm for large RNA folding. We used single-molecule fluorescence to monitor the effect of Mss116 on folding dynamics of a minimal active construct, ai5gamma-D135. The data show that Mss116 stimulates dynamic sampling between states along the folding pathway, an effect previously observed only with high Mg(2+) concentrations. Furthermore, the data indicate that Mss116 promotes folding through discrete ATP-independent and ATP-dependent steps. We propose that Mss116 stimulates group II intron folding through a multi-step process that involves electrostatic stabilization of early intermediates and ATP hydrolysis during the final stages of native state assembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karunatilaka, Krishanthi S -- Solem, Amanda -- Pyle, Anna Marie -- Rueda, David -- R01 GM050313/GM/NIGMS NIH HHS/ -- R01 GM085116/GM/NIGMS NIH HHS/ -- R01GM050313/GM/NIGMS NIH HHS/ -- R01GM085116/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Oct 21;467(7318):935-9. doi: 10.1038/nature09422. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944626" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; DEAD-box RNA Helicases/*metabolism ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Hydrolysis ; Introns/*genetics ; *Nucleic Acid Conformation ; RNA, Catalytic/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology/genetics ; Saccharomyces cerevisiae Proteins/*metabolism ; Salinity ; Static Electricity ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-22
    Description: Many features of the Martian landscape are thought to have been formed by liquid water flow and water-related mineralogies on the surface of Mars are widespread and abundant. Several lines of evidence, however, suggest that Mars has been cold with mean global temperatures well below the freezing point of pure water. Martian climate modellers considering a combination of greenhouse gases at a range of partial pressures find it challenging to simulate global mean Martian surface temperatures above 273 K, and local thermal sources cannot account for the widespread distribution of hydrated and evaporitic minerals throughout the Martian landscape. Solutes could depress the melting point of water in a frozen Martian environment, providing a plausible solution to the early Mars climate paradox. Here we model the freezing and evaporation processes of Martian fluids with a composition resulting from the weathering of basalts, as reflected in the chemical compositions at Mars landing sites. Our results show that a significant fraction of weathering fluids loaded with Si, Fe, S, Mg, Ca, Cl, Na, K and Al remain in the liquid state at temperatures well below 273 K. We tested our model by analysing the mineralogies yielded by the evolution of the solutions: the resulting mineral assemblages are analogous to those actually identified on the Martian surface. This stability against freezing of Martian fluids can explain saline liquid water activity on the surface of Mars at mean global temperatures well below 273 K.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fairen, Alberto G -- Davila, Alfonso F -- Gago-Duport, Luis -- Amils, Ricardo -- McKay, Christopher P -- England -- Nature. 2009 May 21;459(7245):401-4. doi: 10.1038/nature07978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035, USA. alberto.g.fairen@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458717" target="_blank"〉PubMed〈/a〉
    Keywords: Atmospheric Pressure ; Carbon Dioxide/analysis ; Extraterrestrial Environment/*chemistry ; *Freezing ; Ice/analysis ; *Mars ; Partial Pressure ; Salinity ; Transition Temperature ; Volatilization ; Water/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-08-29
    Description: Northern Hemisphere surface temperature reconstructions suggest that the late twentieth century was warmer than any other time during the past 500 years and possibly any time during the past 1,300 years (refs 1, 2). These temperature reconstructions are based largely on terrestrial records from extra-tropical or high-elevation sites; however, global average surface temperature changes closely follow those of the global tropics, which are 75% ocean. In particular, the tropical Indo-Pacific warm pool (IPWP) represents a major heat reservoir that both influences global atmospheric circulation and responds to remote northern high-latitude forcings. Here we present a decadally resolved continuous sea surface temperature (SST) reconstruction from the IPWP that spans the past two millennia and overlaps the instrumental record, enabling both a direct comparison of proxy data to the instrumental record and an evaluation of past changes in the context of twentieth century trends. Our record from the Makassar Strait, Indonesia, exhibits trends that are similar to a recent Northern Hemisphere temperature reconstruction. Reconstructed SST was, however, within error of modern values from about ad 1000 to ad 1250, towards the end of the Medieval Warm Period. SSTs during the Little Ice Age (approximately ad 1550-1850) were variable, and approximately 0.5 to 1 degrees C colder than modern values during the coldest intervals. A companion reconstruction of delta(18)O of sea water-a sea surface salinity and hydrology indicator-indicates a tight coupling with the East Asian monsoon system and remote control of IPWP hydrology on centennial-millennial timescales, rather than a dominant influence from local SST variation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oppo, Delia W -- Rosenthal, Yair -- Linsley, Braddock K -- England -- Nature. 2009 Aug 27;460(7259):1113-6. doi: 10.1038/nature08233.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA. doppo@whoi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713927" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/analysis ; Calibration ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; History, Medieval ; Ice Cover ; India ; Indonesia ; Oceans and Seas ; Oxygen Isotopes ; Pacific Ocean ; Plankton/metabolism ; Rain ; Records as Topic ; Salinity ; Seasons ; Seawater/*analysis ; *Temperature ; Time Factors ; Tropical Climate ; Weather
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-07-17
    Description: Ice cores extracted from the Antarctic ice sheet suggest that glacial conditions, and the relationship between isotopically derived temperatures and atmospheric PCO(2) have been constant over the last 800,000 years of the Late Pleistocene epoch. But independent lines of evidence, such as the extent of Northern Hemisphere ice sheets, sea level and other temperature records, point towards a fluctuating severity of glacial periods, particularly during the more extreme glacial stadials centred around 340,000 and 420,000 years ago (marine isotope stages 10 and 12). Previously unidentified mechanisms therefore appear to have mediated the relationship between insolation, CO(2) and climate. Here we test whether northward migration of the subtropical front (STF) off the southeastern coast of South Africa acts as a gatekeeper for the Agulhas current, which controls the transport of heat and salt from the Indo-Pacific Ocean to the Atlantic Ocean. Using a new 800,000-year record of sea surface temperature and ocean productivity from ocean sediment core MD962077, we demonstrate that during cold stadials (particularly marine isotope stages 10 and 12), productivity peaked and sea surface temperature was up to 6 degrees C cooler than modern temperatures. This suggests that during these cooler stadials, the STF moved northward by up to 7 degrees latitude, nearly shutting off the Agulhas current. Our results, combined with faunal assemblages from the south Atlantic show that variable northwards migration of the Southern Hemisphere STF can modulate the severity of each glacial period by altering the strength of the Agulhas current carrying heat and salt to the Atlantic meridional overturning circulation. We show hence that the degree of northwards migration of the STF can partially decouple global climate from atmospheric partial pressure of carbon dioxide, P CO(2), and help to resolve the long-standing puzzle of differing glacial amplitudes within a consistent range of atmospheric PCO(2).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bard, Edouard -- Rickaby, Rosalind E M -- England -- Nature. 2009 Jul 16;460(7253):380-3. doi: 10.1038/nature08189.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CEREGE (UMR 6635), College de France, University Paul-Cezanne Aix-Marseille, CNRS, IRD, Europole de l'Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606147" target="_blank"〉PubMed〈/a〉
    Keywords: Amoeba/metabolism ; Animals ; Antarctic Regions ; Atlantic Ocean ; Atmosphere/chemistry ; Carbon Dioxide/metabolism ; *Climate ; Cold Climate ; Cold Temperature ; Geologic Sediments/microbiology ; *Ice Cover ; Indian Ocean ; Oxygen Isotopes ; Pacific Ocean ; Partial Pressure ; Plankton/metabolism ; Salinity ; Seawater/chemistry ; South Africa ; Tropical Climate ; *Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-11-27
    Description: The transport of warm and salty Indian Ocean waters into the Atlantic Ocean-the Agulhas leakage-has a crucial role in the global oceanic circulation and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC). There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages and model studies that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biastoch, A -- Boning, C W -- Schwarzkopf, F U -- Lutjeharms, J R E -- England -- Nature. 2009 Nov 26;462(7272):495-8. doi: 10.1038/nature08519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Leibniz-Institut fur Meereswissenschaften, Dusternbrooker Weg 20, 24105 Kiel, Germany. abiastoch@ifm-geomar.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940923" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Atlantic Ocean ; Computer Simulation ; Foraminifera ; Indian Ocean ; Salinity ; Seawater/*analysis/chemistry ; Temperature ; *Water Movements ; *Wind
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-07-17
    Description: Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stickley, Catherine E -- St John, Kristen -- Koc, Nalan -- Jordan, Richard W -- Passchier, Sandra -- Pearce, Richard B -- Kearns, Lance E -- England -- Nature. 2009 Jul 16;460(7253):376-9. doi: 10.1038/nature08163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉[1] Department of Geology, University of Tromso, N-9037 Tromso, Norway [2] Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromso, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606146" target="_blank"〉PubMed〈/a〉
    Keywords: Arctic Regions ; *Cold Climate ; Diatoms/chemistry/*isolation & purification/ultrastructure ; Fossils ; Geologic Sediments/microbiology ; History, Ancient ; Hydrogen-Ion Concentration ; Ice Cover/*chemistry/*microbiology ; Microscopy, Electron, Scanning ; Oceans and Seas ; Principal Component Analysis ; Salinity ; Seawater/chemistry ; Silicon Dioxide/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-06-26
    Description: Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (〈10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Kenneth S -- Riser, Stephen C -- Karl, David M -- England -- Nature. 2010 Jun 24;465(7301):1062-5. doi: 10.1038/nature09170.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA. johnson@mbari.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577212" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Carbon Dioxide/analysis/metabolism ; Ecosystem ; Hawaii ; Nitrates/*analysis/chemistry/*metabolism ; Nitrogen/analysis/chemistry/metabolism ; Oxygen/analysis/metabolism ; Pacific Ocean ; Salinity ; Seasons ; Seawater/*chemistry ; Ships ; Solubility ; Time Factors ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-03
    Description: The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohtadi, Mahyar -- Prange, Matthias -- Oppo, Delia W -- De Pol-Holz, Ricardo -- Merkel, Ute -- Zhang, Xiao -- Steinke, Stephan -- Luckge, Andreas -- England -- Nature. 2014 May 1;509(7498):76-80. doi: 10.1038/nature13196.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany. ; Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA. ; Department of Oceanography, University of Concepcion, Concepcion, Chile. ; Federal Institute for Geosciences and Natural Resources, 30655 Hannover, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784218" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Eastern ; Air ; Atlantic Ocean ; Borneo ; Geologic Sediments/chemistry ; Greenland ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; Humidity ; Hydrology ; Ice Cover ; Indian Ocean ; Indonesia ; Lakes ; *Models, Theoretical ; Oxygen Isotopes ; Rain ; Salinity ; Seasons ; Seawater/analysis/chemistry ; Temperature ; Time Factors ; *Tropical Climate ; Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-29
    Description: The Atlantic Ocean receives warm, saline water from the Indo-Pacific Ocean through Agulhas leakage around the southern tip of Africa. Recent findings suggest that Agulhas leakage is a crucial component of the climate system and that ongoing increases in leakage under anthropogenic warming could strengthen the Atlantic overturning circulation at a time when warming and accelerated meltwater input in the North Atlantic is predicted to weaken it. Yet in comparison with processes in the North Atlantic, the overall Agulhas system is largely overlooked as a potential climate trigger or feedback mechanism. Detailed modelling experiments--backed by palaeoceanographic and sustained modern observations--are required to establish firmly the role of the Agulhas system in a warming climate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beal, Lisa M -- De Ruijter, Wilhelmus P M -- Biastoch, Arne -- Zahn, Rainer -- SCOR/WCRP/IAPSO Working Group 136 -- England -- Nature. 2011 Apr 28;472(7344):429-36. doi: 10.1038/nature09983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Florida 33149, USA. lbeal@rsmas.miami.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21525925" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; *Climate ; *Global Warming ; Indian Ocean ; Salinity ; Seawater/analysis/chemistry ; Temperature ; Time Factors ; *Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...