ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4,942)
  • Elsevier  (4,942)
Collection
Language
  • 1
    Publication Date: 2024-06-28
    Description: The Red Sea is an important example of a continental rift transitioning slowly to an oceanic basin. However, structures that can inform us of how that transition occurred have been poorly reported because deep seismic reflection data capable of imaging basement under the rift sediments are generally lacking publicly. Three lines of multichannel seismic reflection data have recently been published revealing structures on the Nubian side of the central part of the basin. In this study, we reassess these data in the light of recent studies of the central Red Sea. Over continental crust, the data reveal reflection sequences likely due to strata at or near the base of the evaporites, in two cases with varied dips suggesting the presence of syn-rift growth stratigraphy. Almost all of those reflections dip downwards towards the rift axis, not away as would be expected from tilted fault blocks of bookshelf faulting types. That observation, and low relief of basement, confirm inferences made earlier based on gravity anomalies that this part of the Red Sea lacks large-relief fault escarpments and is most likely a syn-rift sag basin. In the transition to oceanic crust, an abnormally broad magnetic anomaly of estimated Chron 5 age is found not to be associated with structures such as sills, so it likely arises from deeper sources. One of the seismic lines traverses a ridge in Bouguer gravity anomalies that runs across the axis. This feature has previously been interpreted as a volcanic ridge similar to those observed at other ultra-slow spreading ridges. The seismic data reveal diffuse basement reflections and confirm that the record immediately above basement lacks reflections typical of sedimentary strata. Both observations are consistent with the presence of oceanic crust. Modelling of gravity anomalies suggests the ridge is likely underlain by igneous intrusive rocks displacing mantle rocks, as expected for a volcanic ridge. The seismic data, combined with recently updated multibeam and high-resolution sparker seismic results, further suggest how the evaporite movements have been modulated by basement topography. These results add to our knowledge of the evaporite movements and continent-ocean transition structures in the central Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-28
    Description: Highlights: • A cyclonic frontal eddy emerged near the South Java Coast (SJC) in 2019. • The cyclonic eddy induces filaments of Chl-a, cold water, and nutrients. • Anti-cyclonic eddies distribute the filaments further offshore. • The role of wind can't be ignored in distributing filaments in the SJC. • We propose a three-stage mechanism for Chl-a distribution in the offshore SJC. Intense mesoscale eddy activity has been observed off the southern Java coast (SJC), yet its impact on local ecosystems remains largely unknown. To investigate this, we examined remotely sensed altimetry, chlorophyll-a (Chl-a), and sea surface temperature (SST) data, focusing on their response to eddies in the region. Our eddy detection and tracking analysis revealed a unique cyclonic frontal eddy near the SJC coast and a large anticyclonic eddy offshore, active from July to September 2019. The cyclonic frontal eddy induced water transport through eddy filaments, upwelled subsurface cold water, and enhanced Chl-a concentrations by horizontally entraining Chl-a-rich shelf water offshore. The anticyclonic eddy then contributed to further distributing this enriched water southward. The mean cross-shelf transport associated with the frontal eddy was estimated at 1.80–2.33 Sv offshore, exporting approximately 1.87–2.40 × 103 tons of Chl-a to the Indian Ocean during its lifetime. Additionally, the spatial cross-correlation analysis of zonal and meridional wind stress with Chl-a revealed relatively high correlation values (0.6–1) and short lag times (〈5 days) in offshore areas, indicating that the role of wind in the Chl-a advection cannot be ignored. We propose a three-stage mechanism to explain the presence of high Chl-a offshore:1) Wind-driven upwelling intensifies coastal nutrients, elevating Chl-a concentrations in coastal waters, 2) Frontal cyclonic eddy facilitates the retention and offshore export of these upwelling-enriched waters. and 3) Anticyclonic eddy advects these nutrient-rich waters further south. The combination of enhanced coastal upwelling and eddies can explain nutrient-rich coastal waters in offshore regions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-28
    Description: The dynamic processes associated with subducting tectonic plates and rising plumes of hot material are typically treated separately in dynamical models and seismological studies. However, various types of observations and related models indicate these processes overlap spatially. Here we use precursors to PP and SS reflecting off mantle transition zone discontinuities to map deflections of these discontinuities near three subduction zones surrounding the Caribbean Plate: 1) Lesser Antilles, 2) Middle America and 3) northern South American subduction zones. In all three regions slow seismic anomalies are present behind the sinking slab within the transition zone in tomographic images. Using array methods, we identify precursors and verify their in-plane propagation for MW ≥ 5.8 events occurring between the years 2000 and 2020 by generating a large number of source receiver combinations with reflection points in the area, including crossing ray paths. The measured time lag between PP/SS arrivals and their corresponding precursors on robust stacks are used to measure the depth of the mantle transition zone discontinuities. In all three areas we find evidence for upward deflection of the 660 discontinuity behind the sinking slab, consistent with the presence of hot plume material (average temperature anomalies of 180 to 620 K), while there is not a corresponding downward deflection of the 410 km discontinuity. One interpretation of these disparate observations is suggested based on comparison to existing models of mantle convection and subduction: plume material rising across 660 km discontinuity could be entrained by lateral flow in the transition zone induced by the nearby sinking slab, and thus delaying the rise of hot material across the 410 km discontinuity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-27
    Description: Highlights • New geophysical data and samples redefine submarine volcanism in Sicilian Channel. • Three dominant bands of volcanism are distinguished. • Ancient, eroded structures aligned at 120° are tied to faulted banks in the north. • Younger band of similarly aligned volcanism in the south is linked to grabens. • Youngest structures comprise small, dispersed volcanoes with distinct orientation. Abstract The origin and role of volcanism in continental rifts remains poorly understood in comparison to other volcano-tectonic settings. The Sicilian Channel (central Mediterranean Sea) is largely floored by continental crust and represents an area affected by pronounced crustal extension and strike-slip tectonism. It hosts a variety of volcanic landforms closely associated with faults, which can be used to better understand the nature and distribution of rift-related volcanism. A paucity of appropriate seafloor data in the Sicilian Channel has led to uncertainties regarding the location, volume, sources and timing of submarine volcanism. To improve on this situation, we use newly acquired geophysical data (multibeam echosounder and magnetic data, sub-bottom profiles) and dredged seafloor samples to: (i) re-assess the evidence for submarine volcanism in the Sicilian Channel and define its spatial pattern, (ii) infer the relative age and style of magmatism, and (iii) relate this to the dominant tectonic structures in the region. Quaternary rift-related volcanism has been focused at Pantelleria and Linosa, at the northwest boundaries of their respective NW-SE trending grabens. Subsidiary and older volcanic sites potentially occur at the Linosa III and Pantelleria SE seamounts, collectively representing the only sites of recent volcanism that can be directly related to the main rift process. These long-lived polygenetic volcanic landforms have been shaped by magmatism that is directly correlated with extensional faulting and buried igneous bodies. Older volcanic landforms, sharing a similar scale and alignment, occur to the north at Nameless Bank and Adventure Bank. These deeply eroded volcanoes have likely been inactive since the Pliocene and are probably related to earlier stages of crustal thinning and underlying feeder structures in the northern region of the Sicilian Channel. Along a similar alignment, Pinne Bank, SE Pinne Bank and Cimotoe in the northern Sicilian Channel lack a surface volcanic signature but are associated with intrusive bodies or deeply buried volcanic rock masses. Terrible Bank, in the same region, also shows evidence of ancient, polygenetic magmatism, but was subject to significant erosion and lacks a prominent alignment. The much younger volcanism at Graham Volcanic Field and along the northern Capo-Granitola-Sciacca Fault Zone differs markedly from that observed in the other study areas. Here, the low-volume and scattered volcanic activity is driven by shallow-water mafic magma eruptions, which gave rise to small individual cones. These sites are associated with large fault structures away from the main rift axis and may have a distinct magmatic origin. Dispersed active fluid venting occurs across both ancient and young volcanic sites in the region and is directly associated with shallow magmatic bodies within tectonically-controlled basins. Our study provides the foundation for an updated tectonic and magmatic framework for the Sicilian Channel, and for future detailed chronological and geochemical assessment of the sources and evolution of magmatic processes in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-27
    Description: Highlights • Alkaline magmas of the TLTF island chain result from a subduction-modified mantle source and two-stage partial melting. • The role of mantle source and parental melt composition for high Cu-Au mineral potentials is important but limited. • A shallow crustal magma reservoir is key for epithermal ore formation. Abstract The Tabar-Lihir-Tanga-Feni (TLTF) island chain in northeastern Papua New Guinea formed by tectonic and alkaline to shoshonitic magmatic activity since the Pliocene. Several volcanic centers are Cusingle bondAu mineralized including the world-class Ladolam Au deposit and Conical Seamount south of Lihir. The latter has been recognized as a juvenile analogue to the Ladolam deposit located on-shore. Whereas the mineralization at Conical Seamount is reasonably well studied, the specific magmatic processes that promote epithermal mineralization at this seamount but not at others are poorly understood. Here, we present new petrological and geochemical data from Conical Seamount, and compare them with those from the barren (unmineralized) Edison, Tubaf and New World seamounts nearby. We focus on whole rock compositions and major and trace element analysis of melt inclusions and minerals including clinopyroxene, sulfide and magnetite. We combine our observations with modelled constraints on mantle source composition and partial melting as well as magma evolution. A first-stage melting leaves a residual mantle source enriched in Au. Second-stage melting of a previously subduction-metasomatized mantle generally promotes the transfer and concentration of metals and volatiles in the ascending melts. These magmas are unlikely to control ore formation as all seamounts show evidence for similar mantle sources and parental melt composition. However, the presence of a shallow crustal magma chamber is unique to Conical Seamount. It is characterized by frequent melt replenishments and extensive magma fractionation leading to sulfide and magmatic volatile saturation. These specific magma chamber processes lead to the pre-enrichment of the magma in chalcophile elements including Au, while sulfide saturation coeval with magmatic volatile exsolution provide the way for an effective Au transfer from the magmatic to the epithermal system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-24
    Description: Highlights • Statistically different gas geochemistry was observed in two adjacent springs. • About 74% of helium was contributed by the mantle. • Excess N2 relative to Ar was attributed to subducted materials and seawater mixing. • Magmatic CO2 has been largely removed by calcite precipitation in the reaction zone. • The residual CO2 may also be supplied by microbial oxidation of alkanes. Gas emissions from hydrothermal systems can serve as indicators of subsurface activity. In addition to gas sources, hydrothermal gas geochemistry is strongly influenced by secondary processes that occur during/after hydrothermal circulation. Here, we observed statistically significant differences in the geochemical characteristics (except for helium isotopes) of bubbling gases discharged from two adjacent vents in the Northern Luzon Arc. Helium (3He/4He = 4.25–7.09 Ra) in both vents was controlled by mixing between mantle and crustal components, where about 74% of helium was contributed by the mantle. Differences in N2/Ar ratios (∼ 300–330) of the two neighboring springs are attributed to subducted materials and seawater mixing (contributing ∼2.5% N2 and Ar), rather than phase separation in the reaction zone. Specifically, Ar was mainly supplied by atmospheric components that dissolved in the percolated seawater with only 8%–9% contributed by the excess radiogenic 40Ar. Excess N2 relative to Ar was mainly supplied by the decomposition of subducted materials (83%–92%) of the South China Sea plate beneath the Philippine Sea Plate. The Lutao gases showed low CO2 concentrations (0.07–22.2 mmol/mol), despite the high 3He/4He ratios indicating a significant contribution of magmatic components. Magmatic CO2 may have been largely consumed by the high Ca Lutao vent fluids via carbonate precipitation in the reaction zone. Alternatively, stable carbon isotope compositions (δ13C) indicate that Lutao CO2 may be supplied by microbial oxidation of alkanes (e.g., CH4 with concentrations of 14.6–173 mmol/mol in the samples), with fractionation factor ΔCO2–CH4 ranging from −15‰ to −25‰ and conversion rates of 〈10%. Up to 65% of the CO2 in the 2016 samples experienced secondary calcite precipitation in the discharge zone. Our results indicate that recycled subducted materials could potentially affect the geochemical characteristics of gases discharged from arc-volcanic systems. In addition, the influence of secondary processes needs to be considered before tracing the sources of hydrothermal fluids and/or gases, especially in shallow-water hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-24
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-20
    Description: Since the initial discovery of the non-exponential mass fractionation (non-EMF) of Nd isotopes analysis in 2002, similar deviations from an EMF pattern have been reported for measurements of a number of isotope systems (e.g., Si, Ge, Sr, Sn, Ba, Yb, W, Os, Hg and Pb) with MC-ICP-MS. However, the previous controversial reports on the magnitude of the deviations from EMF suggest that instrumental mass bias behaviour of MC-ICP-MS is neither fully understood nor well-characterised. Consequently, the standard approach of using a mass dependent fractionation (MDF) correction model (e.g., exponential law) may lead to both inaccurate and imprecise results. In this study, we systematically characterise the instrumental mass fractionation of MC-ICP-MS using Nd isotope measurements carried out under different plasma conditions, quantified using the normalised argon index (NAI) as an estimate of plasma temperature. Our results indicate that the mass bias of MC-ICP-MS is not always a simple exponential function of mass but shows systematic deviations from an EMF behaviour, which are closely associated with decreased NAIs. As a result, the conventional exponential correction yields a 143Nd/144Nd value of 0.512257 for the reference material BHVO-2 when the NAI is low, which is 722 ppm lower than the reported value of 0.512979. By tuning the plasma to higher NAIs (higher plasma temperatures), the deviations from the EMF array are systematically attenuated and the exponential correction is able to correct for the instrumental mass bias under high NAIs. In contrast, a regression correction model for Nd isotopes is developed to account for the observed mass fractionation behaviour that does not follow EMF under low NAIs, given that the regression correction relies on the observed loglinear fractionation of different isotope pairs and does not require both isotope ratios to undergo EMF. We expect that the analytical protocol and fundamental insights gained in this study are applicable to a wide range of other isotope measurements with MC-ICP-MS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-19
    Description: This chapter provides an overview of near-surface geochemical processes operating on Earth, with special emphasis placed on (i) marine weathering such as alteration and dissolution of silicates, carbonates and terrigenous riverine particles in the ocean, complemented by (ii) reverse weathering reactions leading to marine authigenic clay formation, and the impact of these phenomena on ocean alkalinity budget and the chemical and isotope composition of seawater. Model simulations of the above processes provide estimates of the global marine fluxes of major cations (Na+, K+, Mg2+, Ca2+) and alkalinity in the ocean induced by silicate weathering and dissolution of terrigenous material in seawater. Additional constraints on silicate vs. carbonate weathering, oceanic/coastal CaCO3 cycling, and paleo-seawater reconstructions are provided via the stable and radiogenic isotope systems of alkali and alkaline earth metals (Li, K, Mg, Ca, and Sr isotopes) that are discussed within the context of marine and reverse weathering in the present and past ocean. Key points • Impact of weathering processes on marine elemental cycles and the ocean alkalinity budget. • Alteration and dissolution of silicate minerals and riverine particles in the ocean quantified via thermodynamic equilibrium (PHREEQC) calculations, in seawater and top sediment settings. • Estimates of global ocean fluxes of dissolved cations (Na+ , K+ , Mg 2+ , Ca2+ ) and alkalinity induced by alteration and dissolution of terrigenous material in seawater and marine sediments. • Principles and mechanisms of isotope variability in nature (mass-dependent and radiogenic isotope effects) observed for alkali and alkaline earth metals. • Silicate vs. carbonate weathering and coastal carbon/carbonate cycling constrained via stable and radiogenic Ca and Sr, and Li isotopes. • Oceanic processes, marine carbonate chemistry (alkalinization vs. acidification), and paleo-seawater reconstructions constrained via d44 Ca, d88 Sr, d26 Mg proxies and numerical (MATLAB) modeling. • Emerging metal isotope proxies (d41 K) for silicate and reverse weathering in the ocean.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...